A note on generalized mobius (s-functions
In [1] the concept of a conjugate pair of sets of positive integers is introduced. Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if n1 (pertenece a) Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1) n = n1n2 (pertenece a) P(resp. Q) n1 (pe...
- Autores:
-
Albis González, Víctor Samuel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1968
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42015
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42015
http://bdigital.unal.edu.co/32112/
- Palabra clave:
- Integers
subsets
factorization
conjugate pair
functions
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In [1] the concept of a conjugate pair of sets of positive integers is introduced. Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if n1 (pertenece a) Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1) n = n1n2 (pertenece a) P(resp. Q) n1 (pertenece a) P,n2 (pertenece a) P (resp. Q), and, if in addition, for each integer n (pertenece a) Z there is a unique factorization of the form (2) n = ab , a (pertenece a) P, b (pertenece a) Q, we say that each of the sets P and Q is a direct factor set of Z, and that (P,Q) is a conjugate pair. It is clear that P (intersección) Q = {11}. Among the generalized functions studied in [1] , |
---|