A note on generalized mobius (s-functions

In [1] the concept of a conjugate pair of sets of positive integers is introduced.  Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if  n1  (pertenece a)  Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1)  n = n1n2  (pertenece a)  P(resp. Q) n1  (pe...

Full description

Autores:
Albis González, Víctor Samuel
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42015
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42015
http://bdigital.unal.edu.co/32112/
Palabra clave:
Integers
subsets
factorization
conjugate pair
functions
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In [1] the concept of a conjugate pair of sets of positive integers is introduced.  Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if  n1  (pertenece a)  Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1)  n = n1n2  (pertenece a)  P(resp. Q) n1  (pertenece a) P,n2 (pertenece a) P (resp. Q), and, if in addition, for each integer  n (pertenece a)  Z there is a unique factorization of the form (2)  n = ab , a (pertenece a)  P, b (pertenece a)  Q, we say that each of the sets P and Q is a direct factor set of Z, and that (P,Q) is a conjugate pair. It is clear that  P (intersección) Q = {11}.  Among the generalized functions studied in [1] ,