Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica

ilustraciones, diagramas, fotografías a color

Autores:
Hernández Carvajal, Jorge Enrique
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84602
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84602
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Extractos vegetales
Antimaláricos
Plant Extracts
Antimalarials
Curarea toxicofera
Antimalárico
Pruebas de toxicidad aguda
Alcaloides vegetales.
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7642ff052e4be5d7d6984793f2ec6c15
oai_identifier_str oai:repositorio.unal.edu.co:unal/84602
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
dc.title.translated.eng.fl_str_mv Contribution to the standardization of a plant extract with ethnopharmacological antecedents of antimalarial activity, through phytochemical evaluation and biological activity
title Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
spellingShingle Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Extractos vegetales
Antimaláricos
Plant Extracts
Antimalarials
Curarea toxicofera
Antimalárico
Pruebas de toxicidad aguda
Alcaloides vegetales.
title_short Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
title_full Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
title_fullStr Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
title_full_unstemmed Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
title_sort Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
dc.creator.fl_str_mv Hernández Carvajal, Jorge Enrique
dc.contributor.advisor.none.fl_str_mv Luengas Caicedo, Pilar Ester
Garavito Cárdenas, Giovanny
dc.contributor.author.none.fl_str_mv Hernández Carvajal, Jorge Enrique
dc.contributor.researchgroup.spa.fl_str_mv Tecnología de productos naturales (TECPRONA)
Farmacología de la Medicina Tradicional y Popular (FaMeTra)
dc.contributor.orcid.spa.fl_str_mv Hernández Carvajal, Jorge Enrique [0000-0002-5454-8069]
dc.contributor.cvlac.spa.fl_str_mv Hernández Carvajal Jorge Enrique [93397208]
dc.contributor.scopus.spa.fl_str_mv Hernández Carvajal Jorge Enrique [55941002800]
dc.contributor.researchgate.spa.fl_str_mv Hernandez Carvajal, Jorge enrique
dc.contributor.googlescholar.spa.fl_str_mv Hernandez Carvajal, Jorge enrique
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Extractos vegetales
Antimaláricos
Plant Extracts
Antimalarials
Curarea toxicofera
Antimalárico
Pruebas de toxicidad aguda
Alcaloides vegetales.
dc.subject.decs.spa.fl_str_mv Extractos vegetales
Antimaláricos
dc.subject.decs.eng.fl_str_mv Plant Extracts
Antimalarials
dc.subject.proposal.spa.fl_str_mv Curarea toxicofera
Antimalárico
Pruebas de toxicidad aguda
Alcaloides vegetales.
description ilustraciones, diagramas, fotografías a color
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-10
dc.date.accessioned.none.fl_str_mv 2023-08-28T14:38:50Z
dc.date.available.none.fl_str_mv 2023-08-28T14:38:50Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv DataPaper
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84602
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84602
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Adams, M., Alther, W., Kessler, M., Kluge, M., & Hamburger, M. (2011). Malaria in the renaissance: Remedies from European herbals from the 16th and 17th century. Journal of Ethnopharmacology, 133(2), 278-288. https://doi.org/10.1016/j.jep.2010.10.060
Affum, A. O., Shiloh, D. O., & Adomako, D. (2013). Monitoring of arsenic levels in some ready-to-use anti-malaria herbal products from drug sales outlets in the Madina area of Accra, Ghana. Food and Chemical Toxicology, 56, 131-135. https://doi.org/10.1016/j.fct.2013.01.049
Agência Nacional de Vigilância Sanitária (Brazil) & Fundação Oswaldo Cruz. (2010). Farmacopeia brasileira. Agência Nacional de Vigilância Sanitária : Fundação Oswaldo Cruz. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8031json-file-1
Aguiar, A. C. C., Rocha, E. M. M. da, Souza, N. B. de, França, T. C. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: A review. Memorias Do Instituto Oswaldo Cruz, 107(7), 831-845. https://doi.org/10.1590/s0074-02762012000700001
Ahmad, S. S., Rahi, M., Ranjan, V., & Sharma, A. (2021). Mefloquine as a prophylaxis for malaria needs to be revisited. International Journal for Parasitology: Drugs and Drug Resistance, 17, 23-26. https://doi.org/10.1016/j.ijpddr.2021.06.003
Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325-348. https://doi.org/10.1016/j.jep.2005.04.019
Andrade-Cetto, A., & Vázquez, R. C. (2010). Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. Journal of Ethnopharmacology, 130(1), 93-97. https://doi.org/10.1016/j.jep.2010.04.016
Arboles ornamentales. (2021). Arboles ornamentales. https://www.arbolesornamentales.es/Cecropiaceae.htm
Arias Marciales, M. H., Rodríguez Novoa, Y. V., & Garavito Cárdenas, G. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024
Ayyad, S.-E. N., Basaif, S. A., Al-Saggaf, A. T., & Alarif, W. M. (2012). Vincamine and 14-epi-vincamine indole alkaloids from Ambelania occidentalis. Journal of Saudi Chemical Society, 16(4), 419-422. https://doi.org/10.1016/j.jscs.2011.02.008
Baldas, J., Bick, I. R., Ibuka, T., Kapil, R. S., & Porter, Q. N. (1972). Mass spectrometry of bisbenzylisoquinoline alkaloids. 3. Alkaloids derived from coclaurine units joined head-to-tail. Journal of the Chemical Society. Perkin Transactions 1, 4, 599-601. https://doi.org/10.1039/p19720000599
Bannister, L., & Mitchell, G. (2003). The ins, outs and roundabouts of malaria. Trends in Parasitology, 19(5), 209-213. https://doi.org/10.1016/S1471-4922(03)00086-2
Berregi, I., Santos, J. I., Campo, G. del, Miranda, J. I., & Aizpurua, J. M. (2003). Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Analytica Chimica Acta, 486(2), 269-274. https://doi.org/10.1016/S0003-2670(03)00496-3
Bijauliya, R. K., & Alok, S. (2017). A comprehensive review on standardization of herbal drugs. International journal of pharmaceutical sciences and research. https://ijpsr.com/bft-article/a-comprehensive-review-on-standardization-of-herbal-drugs/
Botsaris, A. S. (2007). Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal. Journal of Ethnobiology and Ethnomedicine, 3, 18. https://doi.org/10.1186/1746-4269-3-18
Brandão, M. G. L., Zanetti, N. N. S., Oliveira, P., Grael, C. F. F., Santos, A. C. P., & Monte-Mór, R. L. M. (2008). Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. Journal of Ethnopharmacology, 120(2), 141-148. https://doi.org/10.1016/j.jep.2008.08.004
Busse, W. (2000). The significance of quality for efficacy and safety of herbal medicinal products. Drug Information Journal, 34(1), 15-23. Scopus. https://doi.org/10.1177/009286150003400102
Cadena-González, A. L., Sørensen, M., & Theilade, I. (2013). Use and evaluation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. Journal of Ethnobiology and Ethnomedicine, 9, 23. https://doi.org/10.1186/1746-4269-9-23
Calvo, M. I. (2006). Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. Journal of Ethnopharmacology, 107(3), 380-382. https://doi.org/10.1016/j.jep.2006.03.037
Cañigueral, S. (2002). La Fitoterapia: ¿una terapéutica para el tercer milenio? https://www.researchgate.net/publication/228863288_La_Fitoterapia_una_terapeutica_para_el_tercer_milenio
Cárdenas Cuadros, P. A. (2011). Evaluación de la actividad antimalárica de preparaciones tradicionales obtenidas de dos especies promisorias usadas por una comunidad en zona endémica y profundización en el estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/7721
Casanova, E., García-Mina, J. M., & Calvo, M. I. (2008). Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods for Human Nutrition, 63(3), 93-97. https://doi.org/10.1007/s11130-008-0073-0
Castro, L. S., Perazzo, F. F., & Maistro, E. L. (2009). Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo. Genetics and Molecular Research: GMR, 8(2), 440-447. https://doi.org/10.4238/vol8-2gmr588
Castro-Gamboa, I., & Castro, O. (2004). Iridoids from the aerial parts of Verbena littoralis (Verbenaceae). Phytochemistry, 65(16), 2369-2372. https://doi.org/10.1016/j.phytochem.2004.07.008
Cava, M. P., Kunitomo, J., & DaRocha, A. I. (1969). The alkaloids of Chondodendron toxicoferum. Phytochemistry, 8(12), 2341-2343. https://doi.org/10.1016/S0031-9422(00)88152-2
Céline, V., Adriana, P., Eric, D., Joaquina, A., Yannick, E., Augusto, L. F., Rosario, R., Dionicia, G., Michel, S., Denis, C., & Geneviève, B. (2009). Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. Journal of Ethnopharmacology, 123(3), 413-422. https://doi.org/10.1016/j.jep.2009.03.041
Chan, E. W. C., Wong, S. K., & Chan, H. T. (2016). Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. Journal of Integrative Medicine, 14(4), 269-284. https://doi.org/10.1016/S2095-4964(16)60261-3
Chassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85-88.
Consolini, A. E., & Migliori, G. N. (2005). Cardiovascular effects of the South American medicinal plant Cecropia pachystachya (ambay) on rats. Journal of Ethnopharmacology, 96(3), 417-422. https://doi.org/10.1016/j.jep.2004.09.030
Consolini, A. E., Ragone, M. I., Migliori, G. N., Conforti, P., & Volonté, M. G. (2006). Cardiotonic and sedative effects of Cecropia pachystachya Mart. (Ambay) on isolated rat hearts and conscious mice. Journal of Ethnopharmacology, 106(1), 90-96. https://doi.org/10.1016/j.jep.2005.12.006
CorpoAmazonia. (2022, junio 10). Clima. https://www.corpoamazonia.gov.co/region/Jur_Clima.htm
Costa, G. M., Schenkel, E. P., & Reginatto, F. H. (2011). Chemical and Pharmacological Aspects of the Genus Cecropia. Natural Product Communications, 6(6), 1934578X1100600637. https://doi.org/10.1177/1934578X1100600637
Daga, M. A., Ayala, T. S., & Menolli, R. A. (2020). A review of the anti-inflammatory and antimicrobial activities of the components of the Cecropia genus. Asian Journal of Pharmaceutical and Clinical Research, 13-20. https://doi.org/10.22159/ajpcr.2020.v13i8.38031
Dantas, B. B., Faheina-Martins, G. V., Coulidiati, T. H., Bomfim, C. C. B., da Silva Dias, C., Barbosa-Filho, J. M., & Araújo, D. A. M. (2015). Effects of curine in HL-60 leukemic cells: Cell cycle arrest and apoptosis induction. Journal of Natural Medicines, 69(2), 218-223. https://doi.org/10.1007/s11418-014-0881-5
De Lima, R., Guex, C. G., da Silva, A. R. H., Lhamas, C. L., Dos Santos Moreira, K. L., Casoti, R., Dornelles, R. C., da Rocha, M. I. U. M., da Veiga, M. L., de Freitas Bauermann, L., & Manfron, M. P. (2018). Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. Journal of Ethnopharmacology, 224, 76-84. https://doi.org/10.1016/j.jep.2018.05.012
De Maria, C. A. B., & Moreira, R. F. A. (2004). Métodos para análisis de ácido clorogênico. Química Nova, 27(4), 586-592. https://doi.org/10.1590/S0100-40422004000400013
De Paula, R. C. (2014). Atividade antimalárica de aspidosperma subincanum mart. biomonitorada por testes in vitro contra Plasmodium falciparum, in vivo contra P. berghei e efeito da uleína no retículo endoplasmático de P. falciparum. Universidade Federal de Minas Gerais. https://www.researchgate.net/profile/Alaide_De_Oliveira3/publication/279911567_Aspidosperma_species_Apocynaceae_as_sources_of_antimalarials_from_the_in_vitro_antiplasmodial_activity_of_extracts_to_preclinical_toxicologica.
De Pilla Varotti, F., Botelho, A. C. C., Andrade, A. A., de Paula, R. C., Fagundes, E. M. S., Valverde, A., Mayer, L. M. U., Mendonça, J. S., de Souza, M. V. N., Boechat, N., & Krettli, A. U. (2008). Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrobial Agents and Chemotherapy, 52(11), 3868-3874. https://doi.org/10.1128/AAC.00510-08
Deepak, M., & Handa, S. S. (1998). 3α,24-dihydroxy-urs-12-en-28-oic acid from Verbena officinalis fn1fn1RRL communication No. 2251. Phytochemistry, 49(1), 269-271. https://doi.org/10.1016/S0031-9422(97)01004-2
Deharo, E., Gautret, P., Muñoz, V., & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimalaricas. En CYTED – IRD (p. 24-80). La Paz, Bolivia
De-La-Cruz Chacón, I., González-Esquinca, A. R., & Riley-Saldaña, C. A. (2012). Biosíntesis de alcaloides bencilisoquinolínicos. Universitas Scientiarum, 17(2), 189-202.
Dolabela, M. F., Póvoa, M. M., Brandão, G. C., Rocha, F. D., Soares, L. F., de Paula, R. C., & de Oliveira, A. B. (2015). Aspidosperma species as sources of anti-malarials: Uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malaria Journal, 13 Suppl 1, 498. https://doi.org/10.1186/s12936-015-0997-4
Douglas, J. A., Follett, J. M., Parmenter, G. A., Sansom, C. E., Perry, N. B., & Littler, R. A. (2010). Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia, 81(7), 925-928. https://doi.org/10.1016/j.fitote.2010.06.006
Dutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4-29. https://doi.org/10.1016/j.phrs.2016.01.021
EMA. (2018, septiembre 17). Markers used for quantitative and qualitative analysis of herbal medicinal products traditional [Text]. European Medicines Agency. https://www.ema.europa.eu/en/markers-used-quantitative-qualitative-analysis-herbal-medicinal-products-traditional-herbal
Ezenyi, I. C., & Salawu, O. A. (2016). Approaches, Challenges and Prospects of Antimalarial Drug Discovery from Plant Sources. Current Topics in Malaria. https://doi.org/10.5772/65658
Fuloria, N. K., & Fuloria, S. (2013). Structural Elucidation of Small Organic Molecules by 1D, 2D and Multi Dimensional-Solution NMR Spectroscopy. Journal of Analytical & Bioanalytical Techniques, s11. https://doi.org/10.4172/2155-9872.S11-001
Galindo, A. S. (1983). Análisis fitoquímico preliminar: Metodología y su aplicación en la evaluación de 40 plantas de la familia compositae. Universidad Nacional de Colombia, Bogotá. https://agris.fao.org/agris-search/search.do?recordID=CO20000009717
Garavito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., Pinzón, R., & Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460-462. https://doi.org/10.1016/j.jep.2006.03.033
García, C. L. G. de, A, E. C., & C, N. R. (1995). Estudio fitoquímico preliminar y evaluación de la actividad antimicrobiana de algunas plantas superiores colombianas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 23(1), Article 1. https://revistas.unal.edu.co/index.php/rccquifa/article/view/56492
Garcia, G. R. M., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015, octubre 23). Curare Alkaloids: Constituents of a Matis Dart Poison (world) [Review-article]. American Chemical Society and American Society of Pharmacognosy. https://doi.org/10.1021/acs.jnatprod.5b00457
Garrido-Cardenas, J. A., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Plasmodium genomics: An approach for learning about and ending human malaria. Parasitology Research, 118(1), 1-27. https://doi.org/10.1007/s00436-018-6127-9
Gong, S., Xu, D., Zou, F., & Peng, R. (2017). (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 89, 894-901. https://doi.org/10.1016/j.biopha.2017.01.148
González-Coloma, A., Reina, M., Sáenz, C., Lacret, R., Ruiz-Mesia, L., Arán, V. J., Sanz, J., & Martínez-Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381-1392. https://doi.org/10.1007/s00436-011-2638-3
Google Maps. (2021). Google Maps. https://www.google.com/maps/place/4%C2%B008'17.5%22S+69%C2%B055'10.0%22W/@-4.0615861,-69.8977975,95200m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d-4.1381944!4d-69.9194444?hl=es
Greenwood, B. (2010). Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malaria Journal, 9 Suppl 3, S2. https://doi.org/10.1186/1475-2875-9-S3-S2
Guha, K. P., Mukherjee, B., & Mukherjee, R. (1979). Bisbenzylisoquinoline Alkaloids—A Review. Journal of Natural Products, 42(1), 1-84. https://doi.org/10.1021/np50001a001
Guidelines for the Treatment of Malaria (2nd ed.). (2010). World Health Organization. http://www.ncbi.nlm.nih.gov/books/NBK254223/
Gutiérrez, G. P. A., & Villegas, M. C. V. (2008). Efecto tóxico de Verbena officinallis (familia verbenaceae) en Sitophilus granarius (coleoptera: Curculionidae). Revista Lasallista de Investigación, 5(2), 74-82.
Hao, D.-C., Xiao, P.-G., Ma, H.-Y., Peng, Y., & He, C.-N. (2015). Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chinese Journal of Natural Medicines, 13(7), 507-520. https://doi.org/10.1016/S1875-5364(15)30045-5
Hata, Yoshie. (2005). Contribución a la estandarización de un extracto con base en Abuta grandifolia [Tesis]. Universidad Nacional de Colombia - Sede Bogotá
Hernández Carvajal. (2012). Análisis fitoquímico y de actividad antimalárica de dos especies del género Cecropia / Phytochemical analysis and antimalarial activity of two species of Cecropia genus. https://repositorio.unal.edu.co/handle/unal/10796
Hernández Carvajal, J. E., Luengas Caicedo, P. E., Otero Jiménez, V., & Garavito Cárdenas, G. (2014). Actividad antiplasmódica y hemolítica de extractos etanólicos y fracciones obtenidas de Cecropia membranacea Trécul. Y Cecropia metensis Cuatrec. (Sin. Cecropia peltata var. Candida Velásquez). Revista Cubana de Medicina Tropical, 66(1), 58-70.
Hernández, J. E. H., & Luengas, P. E. L. (2013). Estudio fitoquímico preliminar de Cecropia membranacea Trécul. y Cecropia metensis Cuatrec. Revista Cubana de Plantas Medicinales, 18(4), 586-595.
Hernández-Carvajal, J. E., Arias-Marciales, M. H., García, J. O., Hata-Uribe, Y. A., Garavito-Cárdenas, G., & Caicedo, P. E. L. (2022). Phytochemical and antiplasmodial evaluation of five Colombian plants with ethnopharmacological background of antimalarial use. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2022.16
IDEAM. (2022, junio 10). Amazonia Temperatura—REGIÓN AMAZONIA TEMPERATURA - IDEAM. Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/region-amazonia-temperatura
Inbaneson, S. J., Sundaram, R., & Suganthi, P. (2012). In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pacific Journal of Tropical Medicine, 5(2), 103-106. https://doi.org/10.1016/S1995-7645(12)60004-2
Instituto Nacional de Salud. (2018). Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx
Instituto Nacional de Salud. (2022, septiembre 18). Boletín Epidemiológico. Boletín Epidemiologíco. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx
Kanyinda, B., Vanhaelen-Fastré, R., Vanhaelen, M., & Ottinger, R. (1997). Two New Isochondodendrine-Type Alkaloids from the Roots of Anisocycla jollyana. Journal of Natural Products, 60(11), 1121-1124. https://doi.org/10.1021/np970257j
Karunamoorthi, K., Sabesan, S., Jegajeevanram, K., & Vijayalakshmi, J. (2013). Role of Traditional Antimalarial Plants in the Battle Against the Global Malaria Burden. Vector-Borne and Zoonotic Diseases, 13(8), 521-544. https://doi.org/10.1089/vbz.2011.0946
Katzung. (2004). Farmacología: Medicamentos antiprotozoales. (13.a ed.). Mcgraw Hill (ED), (p.1239-1243) New York, USA
Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229-3256. https://doi.org/10.1016/j.bmc.2009.02.050.
Khan, I. A. (2006). Issues related to botanicals. Life Sciences, 78(18), 2033-2038. https://doi.org/10.1016/j.lfs.2005.12.019.
Knudson-Ospina, A., Barreto-Zorza, Y. M., Castillo, C. F., Y. Mosquera, L., Apráez-Ippolito, G., Olaya-Másmela, L. A., Piamba, A. H., & Sanchez, R. (2020). Estrategias para la eliminación de malaria: Una perspectiva afro-colombiana. Revista de Salud Pública, 21, 9-16. https://doi.org/10.15446/rsap.v21n1.76210
Komlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., & Champy, P. (2015). Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. Journal of Ethnopharmacology, 172, 333-346. https://doi.org/10.1016/j.jep.2015.06.041
Kumatia, E. K., Ayertey, F., Appiah-Opong, R., Bagyour, G. K., Asare, K. O., Mbatcho, V. C., & Dabo, J. (2021). Intervention of standardized ethanol leaf extract of Annickia polycarpa, (DC.) Setten and Maas ex I.M. Turner. (Annonaceae), in Plasmodium berghei infested mice produced anti-malaria action and normalized gross hematological indices. Journal of Ethnopharmacology, 267, 113449. https://doi.org/10.1016/j.jep.2020.113449
Kushwaha, S., Kushwaha, N., Maurya, N., & Rai, A. (2010). Role of Markers in the Standardization of Herbal Drugs: A Review. Archives of Applied Science Research, 2. https://www.researchgate.net/profile/Swa
Kvist, L. P., Christensen, S. B., Rasmussen, H. B., Mejia, K., & Gonzalez, A. (2006). Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. Journal of Ethnopharmacology, 106(3), 390-402. https://doi.org/10.1016/j.jep.2006.01.020
Li, S., Han, Q., Qiao, C., Song, J., Lung Cheng, C., & Xu, H. (2008). Chemical markers for the quality control of herbal medicines: An overview. Chinese Medicine, 3, 7. https://doi.org/10.1186/1749-8546-3-7
Li, Y., Ishibashi, M., Chen, X., & Ohizumi, Y. (2003). Littorachalcone, a new enhancer of NGF-mediated neurite outgrowth, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(7), 872-874. https://doi.org/10.1248/cpb.51.872
Li, Y., Ishibashi, M., Satake, M., Oshima, Y., & Ohizumi, Y. (2003). A new iridoid glycoside with nerve growth factor-potentiating activity, gelsemiol 6’-trans-caffeoyl-1-glucoside, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(9), 1103-1105. https://doi.org/10.1248/cpb.51.1103
Liu, Y., & Wang, M.-W. (2008). Botanical drugs: Challenges and opportunities: Contribution to Linnaeus Memorial Symposium 2007. Life Sciences, 82(9), 445-449. https://doi.org/10.1016/j.lfs.2007.11.007
Lohombo-Ekomba, M.-L., Okusa, P. N., Penge, O., Kabongo, C., Choudhary, M. I., & Kasende, O. E. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2-3), 331-335. https://doi.org/10.1016/j.jep.2004.04.006
Luenga-Caicedo, P. E., Braga, F. C., Brandão, G. C., & Braga de Oliveira, A. (2007). Seasonal and intraspecific varation of flavonoids and proanthocyanidins in Cecropia glaziovi sneth. Leaves from native and cultivated specimens. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 62(9-10), 701-709. https://doi.org/10.1515/znc-2007-9-1013
Lv, J.-J., Xu, M., Wang, D., Zhu, H.-T., Yang, C.-R., Wang, Y.-F., Li, Y., & Zhang, Y.-J. (2013). Cytotoxic bisbenzylisoquinoline alkaloids from Stephania epigaea. Journal of Natural Products, 76(5), 926-932. https://doi.org/10.1021/np400084t
Lv, Y.-N., Yang, C.-Y., Shi, L.-C., Zhang, Z.-L., Xu, A.-S., Zhang, L.-X., Li, X.-L., & Li, H.-T. (2020). Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chinese Journal of Natural Medicines, 18(8), 594-605. https://doi.org/10.1016/S1875-5364(20)30071-6
MacWilliam, I. C., & Wenn, R. V. (1972). Interpretation of colour tests for polyphenols and melanoidins. Journal of the Institute of Brewing, 78(4), 309-309. https://doi.org/10.1002/j.2050-0416.1972.tb03452.x
Makler, M. T., Ries, J. M., Williams, J. A., Bancroft, J. E., Piper, R. C., Gibbins, B. L., & Hinrichs, D. J. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. The American Journal of Tropical Medicine and Hygiene, 48(6), 739-741. https://doi.org/10.4269/ajtmh.1993.48.739
Malca Garcia, G. R., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015). Curare Alkaloids: Constituents of a Matis Dart Poison. Journal of Natural Products, 78(11), 2537-2544. https://doi.org/10.1021/acs.jnatprod.5b00457
Mall, M., Verma, R. K., Gupta, M. M., Shasany, A. K., Khanuja, S. P. S., & Shukla, A. K. (2019). Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. South African Journal of Botany, 123, 98-104. https://doi.org/10.1016/j.sajb.2019.01.032
Mambu, L., Martin, M. T., Razafimahefa, D., Ramanitrahasimbola, D., Rasoanaivo, P., & Frappier, F. (2000). Spectral characterisation and antiplasmodial activity of bisbenzylisoquinolines from Isolona ghesquiereina. Planta Medica, 66(6), 537-540. https://doi.org/10.1055/s-2000-8610
Manzali de Sá, I., & Elisabetsky, E. (2012). Medical knowledge exchanges between Brazil and Portugal: An ethnopharmacological perspective. Journal of Ethnopharmacology, 142(3), 762-768. https://doi.org/10.1016/j.jep.2012.05.058
Marsaioli, A. J., Rúveda, E. A., & Reis, F. de A. M. (1978). 13C NMR spectral analysis of some isoquinoline alkaloids. Phytochemistry, 17(9), 1655-1658. https://doi.org/10.1016/S0031-9422(00)94662-4
Menachery, M. D. (1996). Chapter Three The alkaloids of south american menispermaceae. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 11, pp. 269-302). Pergamon. https://doi.org/10.1016/S0735-8210(96)80007-0
Miller, L. H., Ackerman, H. C., Su, X., & Wellems, T. E. (2013). Malaria biology and disease pathogenesis: Insights for new treatments. Nature Medicine, 19(2), 156-167. https://doi.org/10.1038/nm.3073
Ministerio de la protección Social, C. M. de la P. (2008). Vademécum Colombiano de Plantas Medicinales. Vademécum Colombiano de Plantas Medicinales, 241-241. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdf
Ministerio de la salud y protección social. (2018, junio 6). Decreto 1156 de 2018. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87281
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
Murambiwa, P., Masola, B., Govender, T., Mukaratirwa, S., & Musabayane, C. T. (2011). Anti-malarial drug formulations and novel delivery systems: A review. Acta Tropica, 118(2), 71-79. https://doi.org/10.1016/j.actatropica.2011.03.005
Murebwayire, S., Frédérich, M., Hannaert, V., Jonville, M.-C., & Duez, P. (2008). Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine, 15(9), 728-733. https://doi.org/10.1016/j.phymed.2007.10.005
Ncube, B., Nair, J. J., Rárová, L., Strnad, M., Finnie, J. F., & Van Staden, J. (2015). Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 97, 69-76. https://doi.org/10.1016/j.sajb.2014.12.005
Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461-477. https://doi.org/10.1021/np068054v
Nguta, J. M., & Mbaria, J. M. (2013). Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. Journal of Ethnopharmacology, 148(3), 988-992. https://doi.org/10.1016/j.jep.2013.05.053
Nkhoma, S., Molyneux, M., & Ward, S. (2007). In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. The American Journal of Tropical Medicine and Hygiene, 76(6), 1107-1112.
Nogueira, F., & Rosário, V. E. do. (2010). Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle. Revista Pan-Amazônica de Saúde, 1(3), 109-124. https://doi.org/10.5123/S2176-62232010000300015
Ocampo, D. M., Valverde, C. L., Colmenares, A. J., & Isaza, J. H. (2014). Fenoles totales y actividad antioxidante en hojas de dos especies colombianas del género Meriania (melastomataceae). Revista Colombiana de Química, 43(2), 41-46. https://doi.org/10.15446/rev.colomb.quim.v43n2.53124
OECD. (2002). OECD (2002), Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris [Text]. https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001
O’Leary, N., Múlgura, M. E., & Morrone, O. (2007). Revisión taxonómica de las especies del género verbena (verbenaceae): serie pachystachyae1. Annals of the Missouri Botanical Garden, 94(3), 571-621. https://doi.org/10.3417/0026-6493(2007)94[571:RTDLED]2.0.CO;2
Omole, R. A., Gathirwa, J., Akala, H., Malebo, H. M., Machocho, A. K., Hassanali, A., & Ndiege, I. O. (2014). Bisbenzylisoquinoline and hasubanane alkaloids from Stephania abyssinica (Dillon & A. Rich) (Menispermeceae). Phytochemistry, 103, 123-128. https://doi.org/10.1016/j.phytochem.2014.03.026
OMS. (2021, octubre 6). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
OMS. (2022, diciembre 22). Expert committee on specifications for pharmaceutical preparations. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards-for-pharmaceuticals/expert-committee-on specifications-for-pharmaceutical-preparations
Ōmura, S. (2015). From bacteria and plants to novel anti-parasite therapies. 5. http://www.nobelprizemedicine.org/wp-content/uploads/2013/10/press.pdf
OPS. (2010). OPS/OMS Organización Panamericana de la Salud. https://www.paho.org/es/search/r?keys=tratamiento+para+malaria#gsc.tab=0&gsc.q=tratamiento%20para%20malaria
Ortiz, R. del C. (2018). A taxonomic revision of Curarea Barneby & Krukoff (Menispermaceae). PhytoKeys, 100, 9-89. https://doi.org/10.3897/phytokeys.100.21828
Osorio, E., Arango, G. J., García, E., Muñoz, K., Ruiz, G., Gutiérrez, D., Paco, M. A., & Giménez, A. (2005). Actividad antiplasmódica in vitro e inhibición de la formación de la β-Hematina de plantas colombianas de la familia Annonaceae. Acta Farmacéutica Bonaerense, 24, n.o 4. http://sedici.unlp.edu.ar/handle/10915/6773
Osorio, E., Arango, G. J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M. A., Giménez, A., & Robledo, S. (2007). Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. Journal of Ethnopharmacology, 111(3), 630-635. https://doi.org/10.1016/j.jep.2007.01.015
Otshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., Van Zeebroeck, A., Lauwers, S., Frédérich, M., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94. https://doi.org/10.1016/j.jep.2005.05.021
Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 37, 27. https://doi.org/10.7705/biomedica.v37i0.3769
Paganga, G., & Rice-Evans, C. A. (1997). The identification of flavonoids as glycosides in human plasma. FEBS Letters, 401(1), 78-82. https://doi.org/10.1016/s0014-5793(96)01442-1
Paixao, A., Mancebo, B., Regalado, A. I., Chong, D., & Sánchez, L. M. (2017). Evaluación de la Toxicidad Aguda Oral del extracto etanólico de Tephrosia vogelii Hook (kalembe). Revista de Salud Animal, 39(2), 00-00.
Pathak, A. (2017). Q-Markers or Chemical Markers: A New Insight towards Quality Control of Herbal Medicines. Organic & Medicinal Chemistry International Journal, 3(2), 62-63
Pérez-Guerrero, C., Herrera, M. D., Ortiz, R., Alvarez de Sotomayor, M., & Fernández, M. A. (2001). A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. Journal of Ethnopharmacology, 76(3), 279-284. https://doi.org/10.1016/s0378-8741(01)00253-7
Peters, W., Bafort, J., & Ramkaran, A. E. (1970). The chemotherapy of rodent malaria. XI. Cyclically transmitted, chloroquine-resistant variants of the Keyberg 173 strain of Plasmodium berghei. Annals of Tropical Medicine and Parasitology, 64(1), 41-51.
Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews. Disease Primers, 3, 17050. https://doi.org/10.1038/nrdp.2017.50
Rocha, T. D., de Brum Vieira, P., Gnoatto, S. C. B., Tasca, T., & Gosmann, G. (2012). Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research, 110(6), 2551-2556. https://doi.org/10.1007/s00436-011-2798-1
Rodríguez Novoa, Y. V. (2016). Actividad antimalárica de una preparación tradicional indígena en combinación con fármacos de uso común en la enfermedad. https://repositorio.unal.edu.co/handle/unal/57962
Rodriguez Parra, Z. (2015). Evaluación comparativa de la actividad antimalárica de un remedio tradicional frente a un extracto primario; profundización del estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/56695
Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288-294. https://doi.org/10.1016/j.jep.2018.04.008
Rodriguez, Z. J., Rodríguez, Y. V., García, J. O., Arias, M. H., Deharo, E., & Garavito, G. (2020). Comparison of the antimalarial activity of a Colombian traditional Uitoto remedy with laboratory preparations. Journal of Vector Borne Diseases, 57(2), 170-175. https://doi.org/10.4103/0972-9062.310868
Rojas, L. C., Uribe, Y. H., Martínez, N. S., & Niño, D. R. (2009). Análisis Fitoquímico Preliminar De Hojas, Tallos Y Semillas De Cupatá (strych Nos Schultesiana Krukoff). Colombia Forestal, 12, 161-170. ISSN 0120-0739
Roux, S., Sablé, E., & Porsolt, R. D. (2005). Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Current Protocols in Pharmacology, Chapter 10, Unit 10.10. https://doi.org/10.1002/0471141755.ph1010s27
Ruiz, L., Ruiz, L., Maco, M., Cobos, M., Gutierrez-Choquevilca, A.-L., & Roumy, V. (2011). Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. Journal of Ethnopharmacology, 133(2), 917-921. https://doi.org/10.1016/j.jep.2010.10.039
Sanz-Biset, J., Campos-de-la-Cruz, J., Epiquién-Rivera, M. A., & Cañigueral, S. (2009). A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). Journal of Ethnopharmacology, 122(2), 333-362. https://doi.org/10.1016/j.jep.2008.12.009
Schiff, P. L. (1985). Bisbenzylisoquinoline Alkaloids. En J. D. Phillipson, M. F. Roberts, & M. H. Zenk (Eds.), The Chemistry and Biology of Isoquinoline Alkaloids (pp. 126-141). Springer. https://doi.org/10.1007/978-3-642-70128-3_8
Schiff, P. L. (1999). Chapter One—The Bisbenzylisoquinoline Alkaloids – A Tabular Review. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 14, pp. 1-284). Pergamon. https://doi.org/10.1016/S0735-8210(99)80004-1
Sharapin N, Pinzón RS, et al. (2000). Fundamentos de Tecnología de Productos Fitoterapéuticos, Santafé de Bogotá: Convenio Andrés Bello (CAB)—Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).
Shu, J.-C., Liu, J.-Q., & Chou, G.-X. (2013). A new triterpenoid from Verbena officinalis L. Natural Product Research, 27(14), 1293-1297. https://doi.org/10.1080/14786419.2012.733391
Souza, J. E. de, Nascimento, M. F. A. do, Borsodi, M. P. G., Almeida, A. P. de, Rossi-Bergmann, B., Oliveira, A. B. de, & Costa, S. S. (2018). Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 29, 1318-1327. https://doi.org/10.21577/0103-5053.20170228
Srinivasan, V. S. (2006). Challenges and scientific issues in the standardization of botanicals and their preparations. United States Pharmacopeia’s dietary supplement verification program—A public health program. Life Sciences, 78(18), 2039-2043. https://doi.org/10.1016/j.lfs.2005.12.014
Sun, S.-W., Lee, S.-S., Wu, A.-C., & Chen, C.-K. (1998). Determination of bisbenzylisoquinoline alkaloids by high-performance liquid chromatography. Journal of Chromatography A, 799(1), 337-342. https://doi.org/10.1016/S0021-9673(97)01065-0
Tanae, M. M., Lima-Landman, M. T. R., De Lima, T. C. M., Souccar, C., & Lapa, A. J. (2007). Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antiacid secretion and antidepressant-like activities. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(5), 309-313. https://doi.org/10.1016/j.phymed.2007.03.002
Tasso de Souza, T. J., Manfron, M. P., Zanetti, G. D., Hoelzel, S. C. da S. M., & Pagliarin, V. P. (2005). Análise morfo-histológica y fitoquímica de Verbena litoralis Kunth. Acta Farmacéutica Bonaerense, 24, n.o 2. http://sedici.unlp.edu.ar/handle/10915/6733
Tavares, L. A., & Ferreira, A. G. (2006). Análises quali- e quantitativa de cafés comerciais via ressonância magnética nuclear. Química Nova, 29(5), 911-915. https://doi.org/10.1590/S0100-40422006000500005
Thornber, C. W. (1970). Alkaloids of the menispermaceae. Phytochemistry, 9(1), 157-187. https://doi.org/10.1016/S0031-9422(00)86628-5
Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., Cubillas-Tejeda, A. C., Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., & Cubillas-Tejeda, A. C. (2016). Evaluación de la toxicidad aguda in vivo del extracto etanólico y acuoso de Calea urticifolia. Botanical Sciences, 94(1), 133-140. https://doi.org/10.17129/botsci.191
Tshibangu, J. N., Wright, A. D., & König, G. M. (2003). HPLC isolation of the anti-plasmodially active bisbenzylisoquinone alkaloids present in roots of Cissampelos mucronata. Phytochemical Analysis: PCA, 14(1), 13-22. https://doi.org/10.1002/pca.673
Uche, F. I., Abed, M. N., Abdullah, M. I., Drijfhout, F. P., McCullagh, J., Claridge, T. W. D., Richardson, A., & Li, W.-W. (2017). Isochondodendrine and 2′-norcocsuline: Additional alkaloids from Triclisia subcordata induce cytotoxicity and apoptosis in ovarian cancer cell lines. RSC Advances, 7(70), 44154-44161. https://doi.org/10.1039/C7RA08032H
Uchôa, V. T., Paula, R. C. de, Krettli, L. G., Santana, A. E. G., & Krettli, A. U. (2010). Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Development Research, 71(1), 82-91. https://doi.org/10.1002/ddr.20351
Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complementary and Alternative Medicine: ECAM, 2020, 8749083. https://doi.org/10.1155/2020/8749083
Valadeau, C., Castillo, J. A., Sauvain, M., Lores, A. F., & Bourdy, G. (2010). The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. Journal of Ethnopharmacology, 127(1), 175-192. https://doi.org/10.1016/j.jep.2009.09.024
Van Breemen, R. B., Fong, H. H. S., & Farnsworth, N. R. (2007). The role of quality assurance and standardization in the safety of botanical dietary supplements. Chemical Research in Toxicology, 20(4), 577-582. https://doi.org/10.1021/tx7000493
Vestena, A., Piton, Y., de Loretto Bordignon, S. A., Garcia, S., Arbo, M. D., Zuanazzi, J. A., & von Poser, G. (2019). Hepatoprotective activity of Verbena litoralis, Verbena montevidensis and their main iridoid, brasoside. Journal of Ethnopharmacology, 239, 111906. https://doi.org/10.1016/j.jep.2019.111906
Vispo, N. (2016, abril 30). Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. http://revistabionatura.com/plasmodium.html
Wagner, H., & Bladt, S. (1996). Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media. New York, USA
Weathers, P. J., Jordan, N., Lasin, P., & Towler, M. J. (2014). Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria. Journal of ethnopharmacology, 151(2), 858-863. https://doi.org/10.1016/j.jep.2013.11.043
Weber, C., & Opatz, T. (2019). Chapter One—Bisbenzylisoquinoline Alkaloids. En H.-J. Knölker (Ed.), The Alkaloids: Chemistry and Biology (Vol. 81, pp. 1-114). Academic Press. https://doi.org/10.1016/bs.alkal.2018.07.001
Weniger, B., Robledo, S., Arango, G. J., Deharo, E., Aragón, R., Muñoz, V., Callapa, J., Lobstein, A., & Anton, R. (2001). Antiprotozoal activities of Colombian plants. Journal of Ethnopharmacology, 78(2-3), 193-200. https://doi.org/10.1016/s0378-8741(01)00346-4
White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723-735. https://doi.org/10.1016/S0140-6736(13)60024-0
WHO (Ed.). (2011). Quality control methods for herbal materials (Updated edition of Quality control methods for medicinal plant materials, 1998). World Health Organization.
Willcox, M., Bodeker, G., Rasoanaivo, P., & Addae-Kyereme, J. (2004). Traditional Medicinal Plants and Malaria. CRC Press.
Winstanley, P. A. (2000). Chemotherapy for falciparum malaria: The armoury, the problems and the prospects. Parasitology Today (Personal Ed.), 16(4), 146-153. https://doi.org/10.1016/s0169-4758(99)01622-1
Wright, C. W. (2005). Traditional antimalarials and the development of novel antimalarial drugs. Journal of Ethnopharmacology, 100(1), 67-71. https://doi.org/10.1016/j.jep.2005.05.012
Xian-Kai, W., Tong-Fang, Z., Sheng, L., Shizuri, Y., & Yamamura, S. (1993). Head-to-tail bisbenzylisoquinoline alkaloids from Cyclea sutchuenensis. Phytochemistry, 33(5), 1253-1256. https://doi.org/10.1016/0031-9422(93)85060-5
Zhang, H., Wang, X., Guo, Y., Liu, X., Zhao, X., Teka, T., Lv, C., Han, L., Huang, Y., & Pan, G. (2021). Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. Journal of Ethnopharmacology, 268, 113566. https://doi.org/10.1016/j.jep.2020.113566
Zuiderveen, G. H., Burkhart, E. P., & Lambert, J. D. (2021). Benzylisoquinoline alkaloid content in goldenseal (Hydrastis canadensis L.) is influenced by phenological stage, reproductive status, and time-of-day. Phytochemistry Letters, 42, 61-67. https://doi.org/10.1016/j.phytol.2021.02.006
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 214 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá D.C
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84602/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84602/2/93397208.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84602/3/93397208.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b5a37a5d09c4cf41caae54129ae2d96e
5ce7908f8f2a142552e5d65eac9bee17
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089374292246528
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Luengas Caicedo, Pilar Ester79bab56b1b35f165a563b31a1df726c5Garavito Cárdenas, Giovanny7da6435a236b15e14666026678743393Hernández Carvajal, Jorge Enrique2e955e7935ab62cd90b83f5374c1292cTecnología de productos naturales (TECPRONA)Farmacología de la Medicina Tradicional y Popular (FaMeTra)Hernández Carvajal, Jorge Enrique [0000-0002-5454-8069]Hernández Carvajal Jorge Enrique [93397208]Hernández Carvajal Jorge Enrique [55941002800]Hernandez Carvajal, Jorge enriqueHernandez Carvajal, Jorge enrique2023-08-28T14:38:50Z2023-08-28T14:38:50Z2022-10-10https://repositorio.unal.edu.co/handle/unal/84602Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorUtilizando el criterio etnofarmacológico se preseleccionaron cinco plantas con reportes de actividad antimalárica: Cecropia metensis Cuatrec, Cecropia membranacea Trécul, Verbena littoralis Kunth, Ambelania duckey Mark y Curarea toxicofera Wedd Barneby & Krukoff. El material vegetal fue colectado en diferentes departamentos de Colombia, acondicionado y sometidos a extracción etanólica por percolación exhaustiva. En una primera etapa los extractos etanólicos de las cinco plantas preseleccionadas se evaluaron in vitro, frente a Plasmodium falciparum cepa FCR-3 (cloroquina resistente). El extracto etanólico de C. toxicofera presentó la mejor actividad antiplasmodial (CI50=7.6 ± 3.9 µg/mL) y se detectaron alcaloides. El resultado de actividad antiplasmodial para los extractos etanólicos de las otras especies evaluadas fue de inactivo. Posteriormente para el extracto etanólico de C. toxicofera se realizó un fraccionamiento ácido-base. Los resultados de la actividad antimalárica in vivo frente Plasmodium berghei, a una dosis de 400 mg/Kg, mostraron para EtOHCt un porcentaje de parasitemia de 38.0 ± 3, del mismo orden que las fracciones alcaloides: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) y (FrAcB) (39 ± 3). Los porcentajes de parasitemia para cloroquina y el vehículo fueron de 20 ± 7 y 42 ± 3 respectivamente. La similitud en la actividad antimalárica in vivo de los tratamientos puede estar asociada con la semejanza química observada en los perfiles cromatográficos de los alcaloides. A partir del ensayo de toxicidad aguda se establecieron las siguientes dosis letales 50: EtOHCt (DL50=1000 mg/Kg), FrDCM1 (DL50=5000 mg/Kg) y FrDCM2 (DL50=400 mg/Kg). La fracción alcaloidal (FrDCM2) se sometió a cromatografía en columna empleando silica gel hasta obtener un compuesto puro, para el cual se realizó el estudio estructural mediante cromatografía líquida ultraeficiente con detector de arreglo diodos (CLUE-DAD), cromatografía líquida ultraeficiente con detector de arreglo diodos acoplada a espectrometría de masas (CLUE-DAD-EM), 1H-RMN y los experimentos bidimensionales COSY y HSQC. A partir de estos resultados se estableció que el compuesto aislado era isochondodendrina. Las CI50 de las muestras evaluadas por el método LDH frente a P. falciparum cepa W2 (resistente a cloroquina) fueron: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) y FrDCM2 (6.28 ± 0.66 µg/mL). Todas las muestras presentaron actividad antiplasmodial, clasificada en rango activo (CI50 = 1 a 15 µg/mL). Las fracciones y el compuesto identificado como isochondodendrina (A1) se clasificaron como moderadamente citotóxicos ya que sus valores de CC50 fueron menores que 50 µg/mL. Estos resultados mostrarón que las fracciones de alcaloides de C. toxicofera presentaron actividad antimalárica que puede estar asociada con los alcaloides bisbenzilisoquinolínicos (BBIQS) como el alcaloide isochondodendrina, una sustancia aislada en esta investigación. Las fracciones obtenidas de C. toxicofera pueden convertirse en una alternativa para el tratamiento de la malaria. (Texto tomado de la fuente)Using ethnopharmacological criteria, five plants with reports of antimalarial activity were preselected: Cecropia metensis Cuatrec., Cecropia membranacea Trécul., Verbena littoralis Kunth., Ambelania duckey Mark, and Curarea toxicofera Wedd Barneby & Krukoff. The plant material was collected in different departments of Colombia, conditioned and subjected to ethanolic extraction by exhaustive percolation. In a first stage, the ethanolic extracts of the five preselected plants were evaluated in vitro, against Plasmodium falciparum strain FCR-3 (resistant chloroquine), the ethanolic extract of C. toxicofera presented the best antiplasmodial activity (IC50=7.6 ± 3.9 µg/mL) and alkaloids are detected. The result of antiplasmodial activity for the ethanolic extracts of the other evaluated species was inactive. Subsequently, acid-base fractionation was performed. The results of the in vivo antimalarial activity against Plasmodium berghei showed a percentage of parasitemia of 38.0 ± 3 for EtOHCt, in the same order as the alkaloid fractions: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) and (FrAcB) (39 ±3). The percentages of parasitemia for chloroquine and the vehicle were 20 ± 7 and 42 ± 3, respectively. The similarity in the in vivo antimalarial activity of the treatments may be associated with the chemical similarity observed in the chromatographic profiles of the alkaloids. From the acute toxicity test, the following lethal doses 50 were established: EtOHCt (LD50=1000 mg/Kg), FrDCM1 (LD50=5000 mg/Kg) and FrDCM2 (LD50=400 mg/Kg). The alkaloidal fraction (FrDCM2) was subjected to column chromatography using silica gel until a pure compound was obtained, for which the structural study was carried out using ultra-efficient liquid chromatography with diode array detector (CLUE-DAD), ultra-efficient liquid chromatography with diode array-mass spectrometry. (CLUE-DAD-MS), 1H-NMR and the bidimensional COSY and HSQC experiments. From these results it was established that the isolated compound was isochondodendrine. The IC50 of the samples evaluated by the LDH method against P. falciparum strain W2 (chloroquine resistant) were: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) and FrDCM2 (6.28 ± 0.66 µg /mL). All samples presented antiplasmodial activity, classified in active range (IC50 = 1 to 15 µg/mL). The fractions and the compound identified as isochondodendrin (A1) were classified as moderately cytotoxic since their CC50 values were less than 50 µg/mL. These results showed that the alkaloid fractions of C. toxicofera presented antimalarial activity that may be associated with bisbenzylisoquinoline alkaloids (BBIQS) such as the isochondodendrine alkaloid, a substance isolated in this investigation. The fractions obtained from C. toxicofera can become an alternative for the treatment of malaria.DoctoradoDoctor en Ciencias FarmacéuticasFarmacognosia y Fitoquímica214 páginasapplication/pdfUniversidad Nacional de Colombia Sede Bogotá D.CBogotá - Ciencias - Doctorado en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéutica540 - Química y ciencias afines::547 - Química orgánicaExtractos vegetalesAntimaláricosPlant ExtractsAntimalarialsCurarea toxicoferaAntimaláricoPruebas de toxicidad agudaAlcaloides vegetales.Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológicaContribution to the standardization of a plant extract with ethnopharmacological antecedents of antimalarial activity, through phytochemical evaluation and biological activityTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06DataPaperTexthttp://purl.org/redcol/resource_type/TDAdams, M., Alther, W., Kessler, M., Kluge, M., & Hamburger, M. (2011). Malaria in the renaissance: Remedies from European herbals from the 16th and 17th century. Journal of Ethnopharmacology, 133(2), 278-288. https://doi.org/10.1016/j.jep.2010.10.060Affum, A. O., Shiloh, D. O., & Adomako, D. (2013). Monitoring of arsenic levels in some ready-to-use anti-malaria herbal products from drug sales outlets in the Madina area of Accra, Ghana. Food and Chemical Toxicology, 56, 131-135. https://doi.org/10.1016/j.fct.2013.01.049Agência Nacional de Vigilância Sanitária (Brazil) & Fundação Oswaldo Cruz. (2010). Farmacopeia brasileira. Agência Nacional de Vigilância Sanitária : Fundação Oswaldo Cruz. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8031json-file-1Aguiar, A. C. C., Rocha, E. M. M. da, Souza, N. B. de, França, T. C. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: A review. Memorias Do Instituto Oswaldo Cruz, 107(7), 831-845. https://doi.org/10.1590/s0074-02762012000700001Ahmad, S. S., Rahi, M., Ranjan, V., & Sharma, A. (2021). Mefloquine as a prophylaxis for malaria needs to be revisited. International Journal for Parasitology: Drugs and Drug Resistance, 17, 23-26. https://doi.org/10.1016/j.ijpddr.2021.06.003Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325-348. https://doi.org/10.1016/j.jep.2005.04.019Andrade-Cetto, A., & Vázquez, R. C. (2010). Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. Journal of Ethnopharmacology, 130(1), 93-97. https://doi.org/10.1016/j.jep.2010.04.016Arboles ornamentales. (2021). Arboles ornamentales. https://www.arbolesornamentales.es/Cecropiaceae.htmArias Marciales, M. H., Rodríguez Novoa, Y. V., & Garavito Cárdenas, G. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024Ayyad, S.-E. N., Basaif, S. A., Al-Saggaf, A. T., & Alarif, W. M. (2012). Vincamine and 14-epi-vincamine indole alkaloids from Ambelania occidentalis. Journal of Saudi Chemical Society, 16(4), 419-422. https://doi.org/10.1016/j.jscs.2011.02.008Baldas, J., Bick, I. R., Ibuka, T., Kapil, R. S., & Porter, Q. N. (1972). Mass spectrometry of bisbenzylisoquinoline alkaloids. 3. Alkaloids derived from coclaurine units joined head-to-tail. Journal of the Chemical Society. Perkin Transactions 1, 4, 599-601. https://doi.org/10.1039/p19720000599Bannister, L., & Mitchell, G. (2003). The ins, outs and roundabouts of malaria. Trends in Parasitology, 19(5), 209-213. https://doi.org/10.1016/S1471-4922(03)00086-2Berregi, I., Santos, J. I., Campo, G. del, Miranda, J. I., & Aizpurua, J. M. (2003). Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Analytica Chimica Acta, 486(2), 269-274. https://doi.org/10.1016/S0003-2670(03)00496-3Bijauliya, R. K., & Alok, S. (2017). A comprehensive review on standardization of herbal drugs. International journal of pharmaceutical sciences and research. https://ijpsr.com/bft-article/a-comprehensive-review-on-standardization-of-herbal-drugs/Botsaris, A. S. (2007). Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal. Journal of Ethnobiology and Ethnomedicine, 3, 18. https://doi.org/10.1186/1746-4269-3-18Brandão, M. G. L., Zanetti, N. N. S., Oliveira, P., Grael, C. F. F., Santos, A. C. P., & Monte-Mór, R. L. M. (2008). Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. Journal of Ethnopharmacology, 120(2), 141-148. https://doi.org/10.1016/j.jep.2008.08.004Busse, W. (2000). The significance of quality for efficacy and safety of herbal medicinal products. Drug Information Journal, 34(1), 15-23. Scopus. https://doi.org/10.1177/009286150003400102Cadena-González, A. L., Sørensen, M., & Theilade, I. (2013). Use and evaluation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. Journal of Ethnobiology and Ethnomedicine, 9, 23. https://doi.org/10.1186/1746-4269-9-23Calvo, M. I. (2006). Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. Journal of Ethnopharmacology, 107(3), 380-382. https://doi.org/10.1016/j.jep.2006.03.037Cañigueral, S. (2002). La Fitoterapia: ¿una terapéutica para el tercer milenio? https://www.researchgate.net/publication/228863288_La_Fitoterapia_una_terapeutica_para_el_tercer_milenioCárdenas Cuadros, P. A. (2011). Evaluación de la actividad antimalárica de preparaciones tradicionales obtenidas de dos especies promisorias usadas por una comunidad en zona endémica y profundización en el estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/7721Casanova, E., García-Mina, J. M., & Calvo, M. I. (2008). Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods for Human Nutrition, 63(3), 93-97. https://doi.org/10.1007/s11130-008-0073-0Castro, L. S., Perazzo, F. F., & Maistro, E. L. (2009). Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo. Genetics and Molecular Research: GMR, 8(2), 440-447. https://doi.org/10.4238/vol8-2gmr588Castro-Gamboa, I., & Castro, O. (2004). Iridoids from the aerial parts of Verbena littoralis (Verbenaceae). Phytochemistry, 65(16), 2369-2372. https://doi.org/10.1016/j.phytochem.2004.07.008Cava, M. P., Kunitomo, J., & DaRocha, A. I. (1969). The alkaloids of Chondodendron toxicoferum. Phytochemistry, 8(12), 2341-2343. https://doi.org/10.1016/S0031-9422(00)88152-2Céline, V., Adriana, P., Eric, D., Joaquina, A., Yannick, E., Augusto, L. F., Rosario, R., Dionicia, G., Michel, S., Denis, C., & Geneviève, B. (2009). Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. Journal of Ethnopharmacology, 123(3), 413-422. https://doi.org/10.1016/j.jep.2009.03.041Chan, E. W. C., Wong, S. K., & Chan, H. T. (2016). Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. Journal of Integrative Medicine, 14(4), 269-284. https://doi.org/10.1016/S2095-4964(16)60261-3Chassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85-88.Consolini, A. E., & Migliori, G. N. (2005). Cardiovascular effects of the South American medicinal plant Cecropia pachystachya (ambay) on rats. Journal of Ethnopharmacology, 96(3), 417-422. https://doi.org/10.1016/j.jep.2004.09.030Consolini, A. E., Ragone, M. I., Migliori, G. N., Conforti, P., & Volonté, M. G. (2006). Cardiotonic and sedative effects of Cecropia pachystachya Mart. (Ambay) on isolated rat hearts and conscious mice. Journal of Ethnopharmacology, 106(1), 90-96. https://doi.org/10.1016/j.jep.2005.12.006CorpoAmazonia. (2022, junio 10). Clima. https://www.corpoamazonia.gov.co/region/Jur_Clima.htmCosta, G. M., Schenkel, E. P., & Reginatto, F. H. (2011). Chemical and Pharmacological Aspects of the Genus Cecropia. Natural Product Communications, 6(6), 1934578X1100600637. https://doi.org/10.1177/1934578X1100600637Daga, M. A., Ayala, T. S., & Menolli, R. A. (2020). A review of the anti-inflammatory and antimicrobial activities of the components of the Cecropia genus. Asian Journal of Pharmaceutical and Clinical Research, 13-20. https://doi.org/10.22159/ajpcr.2020.v13i8.38031Dantas, B. B., Faheina-Martins, G. V., Coulidiati, T. H., Bomfim, C. C. B., da Silva Dias, C., Barbosa-Filho, J. M., & Araújo, D. A. M. (2015). Effects of curine in HL-60 leukemic cells: Cell cycle arrest and apoptosis induction. Journal of Natural Medicines, 69(2), 218-223. https://doi.org/10.1007/s11418-014-0881-5De Lima, R., Guex, C. G., da Silva, A. R. H., Lhamas, C. L., Dos Santos Moreira, K. L., Casoti, R., Dornelles, R. C., da Rocha, M. I. U. M., da Veiga, M. L., de Freitas Bauermann, L., & Manfron, M. P. (2018). Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. Journal of Ethnopharmacology, 224, 76-84. https://doi.org/10.1016/j.jep.2018.05.012De Maria, C. A. B., & Moreira, R. F. A. (2004). Métodos para análisis de ácido clorogênico. Química Nova, 27(4), 586-592. https://doi.org/10.1590/S0100-40422004000400013De Paula, R. C. (2014). Atividade antimalárica de aspidosperma subincanum mart. biomonitorada por testes in vitro contra Plasmodium falciparum, in vivo contra P. berghei e efeito da uleína no retículo endoplasmático de P. falciparum. Universidade Federal de Minas Gerais. https://www.researchgate.net/profile/Alaide_De_Oliveira3/publication/279911567_Aspidosperma_species_Apocynaceae_as_sources_of_antimalarials_from_the_in_vitro_antiplasmodial_activity_of_extracts_to_preclinical_toxicologica.De Pilla Varotti, F., Botelho, A. C. C., Andrade, A. A., de Paula, R. C., Fagundes, E. M. S., Valverde, A., Mayer, L. M. U., Mendonça, J. S., de Souza, M. V. N., Boechat, N., & Krettli, A. U. (2008). Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrobial Agents and Chemotherapy, 52(11), 3868-3874. https://doi.org/10.1128/AAC.00510-08Deepak, M., & Handa, S. S. (1998). 3α,24-dihydroxy-urs-12-en-28-oic acid from Verbena officinalis fn1fn1RRL communication No. 2251. Phytochemistry, 49(1), 269-271. https://doi.org/10.1016/S0031-9422(97)01004-2Deharo, E., Gautret, P., Muñoz, V., & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimalaricas. En CYTED – IRD (p. 24-80). La Paz, BoliviaDe-La-Cruz Chacón, I., González-Esquinca, A. R., & Riley-Saldaña, C. A. (2012). Biosíntesis de alcaloides bencilisoquinolínicos. Universitas Scientiarum, 17(2), 189-202.Dolabela, M. F., Póvoa, M. M., Brandão, G. C., Rocha, F. D., Soares, L. F., de Paula, R. C., & de Oliveira, A. B. (2015). Aspidosperma species as sources of anti-malarials: Uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malaria Journal, 13 Suppl 1, 498. https://doi.org/10.1186/s12936-015-0997-4Douglas, J. A., Follett, J. M., Parmenter, G. A., Sansom, C. E., Perry, N. B., & Littler, R. A. (2010). Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia, 81(7), 925-928. https://doi.org/10.1016/j.fitote.2010.06.006Dutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4-29. https://doi.org/10.1016/j.phrs.2016.01.021EMA. (2018, septiembre 17). Markers used for quantitative and qualitative analysis of herbal medicinal products traditional [Text]. European Medicines Agency. https://www.ema.europa.eu/en/markers-used-quantitative-qualitative-analysis-herbal-medicinal-products-traditional-herbalEzenyi, I. C., & Salawu, O. A. (2016). Approaches, Challenges and Prospects of Antimalarial Drug Discovery from Plant Sources. Current Topics in Malaria. https://doi.org/10.5772/65658Fuloria, N. K., & Fuloria, S. (2013). Structural Elucidation of Small Organic Molecules by 1D, 2D and Multi Dimensional-Solution NMR Spectroscopy. Journal of Analytical & Bioanalytical Techniques, s11. https://doi.org/10.4172/2155-9872.S11-001Galindo, A. S. (1983). Análisis fitoquímico preliminar: Metodología y su aplicación en la evaluación de 40 plantas de la familia compositae. Universidad Nacional de Colombia, Bogotá. https://agris.fao.org/agris-search/search.do?recordID=CO20000009717Garavito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., Pinzón, R., & Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460-462. https://doi.org/10.1016/j.jep.2006.03.033García, C. L. G. de, A, E. C., & C, N. R. (1995). Estudio fitoquímico preliminar y evaluación de la actividad antimicrobiana de algunas plantas superiores colombianas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 23(1), Article 1. https://revistas.unal.edu.co/index.php/rccquifa/article/view/56492Garcia, G. R. M., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015, octubre 23). Curare Alkaloids: Constituents of a Matis Dart Poison (world) [Review-article]. American Chemical Society and American Society of Pharmacognosy. https://doi.org/10.1021/acs.jnatprod.5b00457Garrido-Cardenas, J. A., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Plasmodium genomics: An approach for learning about and ending human malaria. Parasitology Research, 118(1), 1-27. https://doi.org/10.1007/s00436-018-6127-9Gong, S., Xu, D., Zou, F., & Peng, R. (2017). (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 89, 894-901. https://doi.org/10.1016/j.biopha.2017.01.148González-Coloma, A., Reina, M., Sáenz, C., Lacret, R., Ruiz-Mesia, L., Arán, V. J., Sanz, J., & Martínez-Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381-1392. https://doi.org/10.1007/s00436-011-2638-3Google Maps. (2021). Google Maps. https://www.google.com/maps/place/4%C2%B008'17.5%22S+69%C2%B055'10.0%22W/@-4.0615861,-69.8977975,95200m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d-4.1381944!4d-69.9194444?hl=esGreenwood, B. (2010). Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malaria Journal, 9 Suppl 3, S2. https://doi.org/10.1186/1475-2875-9-S3-S2Guha, K. P., Mukherjee, B., & Mukherjee, R. (1979). Bisbenzylisoquinoline Alkaloids—A Review. Journal of Natural Products, 42(1), 1-84. https://doi.org/10.1021/np50001a001Guidelines for the Treatment of Malaria (2nd ed.). (2010). World Health Organization. http://www.ncbi.nlm.nih.gov/books/NBK254223/Gutiérrez, G. P. A., & Villegas, M. C. V. (2008). Efecto tóxico de Verbena officinallis (familia verbenaceae) en Sitophilus granarius (coleoptera: Curculionidae). Revista Lasallista de Investigación, 5(2), 74-82.Hao, D.-C., Xiao, P.-G., Ma, H.-Y., Peng, Y., & He, C.-N. (2015). Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chinese Journal of Natural Medicines, 13(7), 507-520. https://doi.org/10.1016/S1875-5364(15)30045-5Hata, Yoshie. (2005). Contribución a la estandarización de un extracto con base en Abuta grandifolia [Tesis]. Universidad Nacional de Colombia - Sede BogotáHernández Carvajal. (2012). Análisis fitoquímico y de actividad antimalárica de dos especies del género Cecropia / Phytochemical analysis and antimalarial activity of two species of Cecropia genus. https://repositorio.unal.edu.co/handle/unal/10796Hernández Carvajal, J. E., Luengas Caicedo, P. E., Otero Jiménez, V., & Garavito Cárdenas, G. (2014). Actividad antiplasmódica y hemolítica de extractos etanólicos y fracciones obtenidas de Cecropia membranacea Trécul. Y Cecropia metensis Cuatrec. (Sin. Cecropia peltata var. Candida Velásquez). Revista Cubana de Medicina Tropical, 66(1), 58-70.Hernández, J. E. H., & Luengas, P. E. L. (2013). Estudio fitoquímico preliminar de Cecropia membranacea Trécul. y Cecropia metensis Cuatrec. Revista Cubana de Plantas Medicinales, 18(4), 586-595.Hernández-Carvajal, J. E., Arias-Marciales, M. H., García, J. O., Hata-Uribe, Y. A., Garavito-Cárdenas, G., & Caicedo, P. E. L. (2022). Phytochemical and antiplasmodial evaluation of five Colombian plants with ethnopharmacological background of antimalarial use. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2022.16IDEAM. (2022, junio 10). Amazonia Temperatura—REGIÓN AMAZONIA TEMPERATURA - IDEAM. Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/region-amazonia-temperaturaInbaneson, S. J., Sundaram, R., & Suganthi, P. (2012). In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pacific Journal of Tropical Medicine, 5(2), 103-106. https://doi.org/10.1016/S1995-7645(12)60004-2Instituto Nacional de Salud. (2018). Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxInstituto Nacional de Salud. (2022, septiembre 18). Boletín Epidemiológico. Boletín Epidemiologíco. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxKanyinda, B., Vanhaelen-Fastré, R., Vanhaelen, M., & Ottinger, R. (1997). Two New Isochondodendrine-Type Alkaloids from the Roots of Anisocycla jollyana. Journal of Natural Products, 60(11), 1121-1124. https://doi.org/10.1021/np970257jKarunamoorthi, K., Sabesan, S., Jegajeevanram, K., & Vijayalakshmi, J. (2013). Role of Traditional Antimalarial Plants in the Battle Against the Global Malaria Burden. Vector-Borne and Zoonotic Diseases, 13(8), 521-544. https://doi.org/10.1089/vbz.2011.0946Katzung. (2004). Farmacología: Medicamentos antiprotozoales. (13.a ed.). Mcgraw Hill (ED), (p.1239-1243) New York, USAKaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229-3256. https://doi.org/10.1016/j.bmc.2009.02.050.Khan, I. A. (2006). Issues related to botanicals. Life Sciences, 78(18), 2033-2038. https://doi.org/10.1016/j.lfs.2005.12.019.Knudson-Ospina, A., Barreto-Zorza, Y. M., Castillo, C. F., Y. Mosquera, L., Apráez-Ippolito, G., Olaya-Másmela, L. A., Piamba, A. H., & Sanchez, R. (2020). Estrategias para la eliminación de malaria: Una perspectiva afro-colombiana. Revista de Salud Pública, 21, 9-16. https://doi.org/10.15446/rsap.v21n1.76210Komlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., & Champy, P. (2015). Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. Journal of Ethnopharmacology, 172, 333-346. https://doi.org/10.1016/j.jep.2015.06.041Kumatia, E. K., Ayertey, F., Appiah-Opong, R., Bagyour, G. K., Asare, K. O., Mbatcho, V. C., & Dabo, J. (2021). Intervention of standardized ethanol leaf extract of Annickia polycarpa, (DC.) Setten and Maas ex I.M. Turner. (Annonaceae), in Plasmodium berghei infested mice produced anti-malaria action and normalized gross hematological indices. Journal of Ethnopharmacology, 267, 113449. https://doi.org/10.1016/j.jep.2020.113449Kushwaha, S., Kushwaha, N., Maurya, N., & Rai, A. (2010). Role of Markers in the Standardization of Herbal Drugs: A Review. Archives of Applied Science Research, 2. https://www.researchgate.net/profile/SwaKvist, L. P., Christensen, S. B., Rasmussen, H. B., Mejia, K., & Gonzalez, A. (2006). Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. Journal of Ethnopharmacology, 106(3), 390-402. https://doi.org/10.1016/j.jep.2006.01.020Li, S., Han, Q., Qiao, C., Song, J., Lung Cheng, C., & Xu, H. (2008). Chemical markers for the quality control of herbal medicines: An overview. Chinese Medicine, 3, 7. https://doi.org/10.1186/1749-8546-3-7Li, Y., Ishibashi, M., Chen, X., & Ohizumi, Y. (2003). Littorachalcone, a new enhancer of NGF-mediated neurite outgrowth, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(7), 872-874. https://doi.org/10.1248/cpb.51.872Li, Y., Ishibashi, M., Satake, M., Oshima, Y., & Ohizumi, Y. (2003). A new iridoid glycoside with nerve growth factor-potentiating activity, gelsemiol 6’-trans-caffeoyl-1-glucoside, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(9), 1103-1105. https://doi.org/10.1248/cpb.51.1103Liu, Y., & Wang, M.-W. (2008). Botanical drugs: Challenges and opportunities: Contribution to Linnaeus Memorial Symposium 2007. Life Sciences, 82(9), 445-449. https://doi.org/10.1016/j.lfs.2007.11.007Lohombo-Ekomba, M.-L., Okusa, P. N., Penge, O., Kabongo, C., Choudhary, M. I., & Kasende, O. E. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2-3), 331-335. https://doi.org/10.1016/j.jep.2004.04.006Luenga-Caicedo, P. E., Braga, F. C., Brandão, G. C., & Braga de Oliveira, A. (2007). Seasonal and intraspecific varation of flavonoids and proanthocyanidins in Cecropia glaziovi sneth. Leaves from native and cultivated specimens. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 62(9-10), 701-709. https://doi.org/10.1515/znc-2007-9-1013Lv, J.-J., Xu, M., Wang, D., Zhu, H.-T., Yang, C.-R., Wang, Y.-F., Li, Y., & Zhang, Y.-J. (2013). Cytotoxic bisbenzylisoquinoline alkaloids from Stephania epigaea. Journal of Natural Products, 76(5), 926-932. https://doi.org/10.1021/np400084tLv, Y.-N., Yang, C.-Y., Shi, L.-C., Zhang, Z.-L., Xu, A.-S., Zhang, L.-X., Li, X.-L., & Li, H.-T. (2020). Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chinese Journal of Natural Medicines, 18(8), 594-605. https://doi.org/10.1016/S1875-5364(20)30071-6MacWilliam, I. C., & Wenn, R. V. (1972). Interpretation of colour tests for polyphenols and melanoidins. Journal of the Institute of Brewing, 78(4), 309-309. https://doi.org/10.1002/j.2050-0416.1972.tb03452.xMakler, M. T., Ries, J. M., Williams, J. A., Bancroft, J. E., Piper, R. C., Gibbins, B. L., & Hinrichs, D. J. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. The American Journal of Tropical Medicine and Hygiene, 48(6), 739-741. https://doi.org/10.4269/ajtmh.1993.48.739Malca Garcia, G. R., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015). Curare Alkaloids: Constituents of a Matis Dart Poison. Journal of Natural Products, 78(11), 2537-2544. https://doi.org/10.1021/acs.jnatprod.5b00457Mall, M., Verma, R. K., Gupta, M. M., Shasany, A. K., Khanuja, S. P. S., & Shukla, A. K. (2019). Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. South African Journal of Botany, 123, 98-104. https://doi.org/10.1016/j.sajb.2019.01.032Mambu, L., Martin, M. T., Razafimahefa, D., Ramanitrahasimbola, D., Rasoanaivo, P., & Frappier, F. (2000). Spectral characterisation and antiplasmodial activity of bisbenzylisoquinolines from Isolona ghesquiereina. Planta Medica, 66(6), 537-540. https://doi.org/10.1055/s-2000-8610Manzali de Sá, I., & Elisabetsky, E. (2012). Medical knowledge exchanges between Brazil and Portugal: An ethnopharmacological perspective. Journal of Ethnopharmacology, 142(3), 762-768. https://doi.org/10.1016/j.jep.2012.05.058Marsaioli, A. J., Rúveda, E. A., & Reis, F. de A. M. (1978). 13C NMR spectral analysis of some isoquinoline alkaloids. Phytochemistry, 17(9), 1655-1658. https://doi.org/10.1016/S0031-9422(00)94662-4Menachery, M. D. (1996). Chapter Three The alkaloids of south american menispermaceae. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 11, pp. 269-302). Pergamon. https://doi.org/10.1016/S0735-8210(96)80007-0Miller, L. H., Ackerman, H. C., Su, X., & Wellems, T. E. (2013). Malaria biology and disease pathogenesis: Insights for new treatments. Nature Medicine, 19(2), 156-167. https://doi.org/10.1038/nm.3073Ministerio de la protección Social, C. M. de la P. (2008). Vademécum Colombiano de Plantas Medicinales. Vademécum Colombiano de Plantas Medicinales, 241-241. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdfMinisterio de la salud y protección social. (2018, junio 6). Decreto 1156 de 2018. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87281Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4Murambiwa, P., Masola, B., Govender, T., Mukaratirwa, S., & Musabayane, C. T. (2011). Anti-malarial drug formulations and novel delivery systems: A review. Acta Tropica, 118(2), 71-79. https://doi.org/10.1016/j.actatropica.2011.03.005Murebwayire, S., Frédérich, M., Hannaert, V., Jonville, M.-C., & Duez, P. (2008). Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine, 15(9), 728-733. https://doi.org/10.1016/j.phymed.2007.10.005Ncube, B., Nair, J. J., Rárová, L., Strnad, M., Finnie, J. F., & Van Staden, J. (2015). Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 97, 69-76. https://doi.org/10.1016/j.sajb.2014.12.005Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461-477. https://doi.org/10.1021/np068054vNguta, J. M., & Mbaria, J. M. (2013). Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. Journal of Ethnopharmacology, 148(3), 988-992. https://doi.org/10.1016/j.jep.2013.05.053Nkhoma, S., Molyneux, M., & Ward, S. (2007). In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. The American Journal of Tropical Medicine and Hygiene, 76(6), 1107-1112.Nogueira, F., & Rosário, V. E. do. (2010). Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle. Revista Pan-Amazônica de Saúde, 1(3), 109-124. https://doi.org/10.5123/S2176-62232010000300015Ocampo, D. M., Valverde, C. L., Colmenares, A. J., & Isaza, J. H. (2014). Fenoles totales y actividad antioxidante en hojas de dos especies colombianas del género Meriania (melastomataceae). Revista Colombiana de Química, 43(2), 41-46. https://doi.org/10.15446/rev.colomb.quim.v43n2.53124OECD. (2002). OECD (2002), Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris [Text]. https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001O’Leary, N., Múlgura, M. E., & Morrone, O. (2007). Revisión taxonómica de las especies del género verbena (verbenaceae): serie pachystachyae1. Annals of the Missouri Botanical Garden, 94(3), 571-621. https://doi.org/10.3417/0026-6493(2007)94[571:RTDLED]2.0.CO;2Omole, R. A., Gathirwa, J., Akala, H., Malebo, H. M., Machocho, A. K., Hassanali, A., & Ndiege, I. O. (2014). Bisbenzylisoquinoline and hasubanane alkaloids from Stephania abyssinica (Dillon & A. Rich) (Menispermeceae). Phytochemistry, 103, 123-128. https://doi.org/10.1016/j.phytochem.2014.03.026OMS. (2021, octubre 6). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021OMS. (2022, diciembre 22). Expert committee on specifications for pharmaceutical preparations. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards-for-pharmaceuticals/expert-committee-on specifications-for-pharmaceutical-preparationsŌmura, S. (2015). From bacteria and plants to novel anti-parasite therapies. 5. http://www.nobelprizemedicine.org/wp-content/uploads/2013/10/press.pdfOPS. (2010). OPS/OMS Organización Panamericana de la Salud. https://www.paho.org/es/search/r?keys=tratamiento+para+malaria#gsc.tab=0&gsc.q=tratamiento%20para%20malariaOrtiz, R. del C. (2018). A taxonomic revision of Curarea Barneby & Krukoff (Menispermaceae). PhytoKeys, 100, 9-89. https://doi.org/10.3897/phytokeys.100.21828Osorio, E., Arango, G. J., García, E., Muñoz, K., Ruiz, G., Gutiérrez, D., Paco, M. A., & Giménez, A. (2005). Actividad antiplasmódica in vitro e inhibición de la formación de la β-Hematina de plantas colombianas de la familia Annonaceae. Acta Farmacéutica Bonaerense, 24, n.o 4. http://sedici.unlp.edu.ar/handle/10915/6773Osorio, E., Arango, G. J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M. A., Giménez, A., & Robledo, S. (2007). Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. Journal of Ethnopharmacology, 111(3), 630-635. https://doi.org/10.1016/j.jep.2007.01.015Otshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., Van Zeebroeck, A., Lauwers, S., Frédérich, M., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94. https://doi.org/10.1016/j.jep.2005.05.021Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 37, 27. https://doi.org/10.7705/biomedica.v37i0.3769Paganga, G., & Rice-Evans, C. A. (1997). The identification of flavonoids as glycosides in human plasma. FEBS Letters, 401(1), 78-82. https://doi.org/10.1016/s0014-5793(96)01442-1Paixao, A., Mancebo, B., Regalado, A. I., Chong, D., & Sánchez, L. M. (2017). Evaluación de la Toxicidad Aguda Oral del extracto etanólico de Tephrosia vogelii Hook (kalembe). Revista de Salud Animal, 39(2), 00-00.Pathak, A. (2017). Q-Markers or Chemical Markers: A New Insight towards Quality Control of Herbal Medicines. Organic & Medicinal Chemistry International Journal, 3(2), 62-63Pérez-Guerrero, C., Herrera, M. D., Ortiz, R., Alvarez de Sotomayor, M., & Fernández, M. A. (2001). A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. Journal of Ethnopharmacology, 76(3), 279-284. https://doi.org/10.1016/s0378-8741(01)00253-7Peters, W., Bafort, J., & Ramkaran, A. E. (1970). The chemotherapy of rodent malaria. XI. Cyclically transmitted, chloroquine-resistant variants of the Keyberg 173 strain of Plasmodium berghei. Annals of Tropical Medicine and Parasitology, 64(1), 41-51.Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews. Disease Primers, 3, 17050. https://doi.org/10.1038/nrdp.2017.50Rocha, T. D., de Brum Vieira, P., Gnoatto, S. C. B., Tasca, T., & Gosmann, G. (2012). Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research, 110(6), 2551-2556. https://doi.org/10.1007/s00436-011-2798-1Rodríguez Novoa, Y. V. (2016). Actividad antimalárica de una preparación tradicional indígena en combinación con fármacos de uso común en la enfermedad. https://repositorio.unal.edu.co/handle/unal/57962Rodriguez Parra, Z. (2015). Evaluación comparativa de la actividad antimalárica de un remedio tradicional frente a un extracto primario; profundización del estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/56695Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288-294. https://doi.org/10.1016/j.jep.2018.04.008Rodriguez, Z. J., Rodríguez, Y. V., García, J. O., Arias, M. H., Deharo, E., & Garavito, G. (2020). Comparison of the antimalarial activity of a Colombian traditional Uitoto remedy with laboratory preparations. Journal of Vector Borne Diseases, 57(2), 170-175. https://doi.org/10.4103/0972-9062.310868Rojas, L. C., Uribe, Y. H., Martínez, N. S., & Niño, D. R. (2009). Análisis Fitoquímico Preliminar De Hojas, Tallos Y Semillas De Cupatá (strych Nos Schultesiana Krukoff). Colombia Forestal, 12, 161-170. ISSN 0120-0739Roux, S., Sablé, E., & Porsolt, R. D. (2005). Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Current Protocols in Pharmacology, Chapter 10, Unit 10.10. https://doi.org/10.1002/0471141755.ph1010s27Ruiz, L., Ruiz, L., Maco, M., Cobos, M., Gutierrez-Choquevilca, A.-L., & Roumy, V. (2011). Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. Journal of Ethnopharmacology, 133(2), 917-921. https://doi.org/10.1016/j.jep.2010.10.039Sanz-Biset, J., Campos-de-la-Cruz, J., Epiquién-Rivera, M. A., & Cañigueral, S. (2009). A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). Journal of Ethnopharmacology, 122(2), 333-362. https://doi.org/10.1016/j.jep.2008.12.009Schiff, P. L. (1985). Bisbenzylisoquinoline Alkaloids. En J. D. Phillipson, M. F. Roberts, & M. H. Zenk (Eds.), The Chemistry and Biology of Isoquinoline Alkaloids (pp. 126-141). Springer. https://doi.org/10.1007/978-3-642-70128-3_8Schiff, P. L. (1999). Chapter One—The Bisbenzylisoquinoline Alkaloids – A Tabular Review. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 14, pp. 1-284). Pergamon. https://doi.org/10.1016/S0735-8210(99)80004-1Sharapin N, Pinzón RS, et al. (2000). Fundamentos de Tecnología de Productos Fitoterapéuticos, Santafé de Bogotá: Convenio Andrés Bello (CAB)—Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).Shu, J.-C., Liu, J.-Q., & Chou, G.-X. (2013). A new triterpenoid from Verbena officinalis L. Natural Product Research, 27(14), 1293-1297. https://doi.org/10.1080/14786419.2012.733391Souza, J. E. de, Nascimento, M. F. A. do, Borsodi, M. P. G., Almeida, A. P. de, Rossi-Bergmann, B., Oliveira, A. B. de, & Costa, S. S. (2018). Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 29, 1318-1327. https://doi.org/10.21577/0103-5053.20170228Srinivasan, V. S. (2006). Challenges and scientific issues in the standardization of botanicals and their preparations. United States Pharmacopeia’s dietary supplement verification program—A public health program. Life Sciences, 78(18), 2039-2043. https://doi.org/10.1016/j.lfs.2005.12.014Sun, S.-W., Lee, S.-S., Wu, A.-C., & Chen, C.-K. (1998). Determination of bisbenzylisoquinoline alkaloids by high-performance liquid chromatography. Journal of Chromatography A, 799(1), 337-342. https://doi.org/10.1016/S0021-9673(97)01065-0Tanae, M. M., Lima-Landman, M. T. R., De Lima, T. C. M., Souccar, C., & Lapa, A. J. (2007). Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antiacid secretion and antidepressant-like activities. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(5), 309-313. https://doi.org/10.1016/j.phymed.2007.03.002Tasso de Souza, T. J., Manfron, M. P., Zanetti, G. D., Hoelzel, S. C. da S. M., & Pagliarin, V. P. (2005). Análise morfo-histológica y fitoquímica de Verbena litoralis Kunth. Acta Farmacéutica Bonaerense, 24, n.o 2. http://sedici.unlp.edu.ar/handle/10915/6733Tavares, L. A., & Ferreira, A. G. (2006). Análises quali- e quantitativa de cafés comerciais via ressonância magnética nuclear. Química Nova, 29(5), 911-915. https://doi.org/10.1590/S0100-40422006000500005Thornber, C. W. (1970). Alkaloids of the menispermaceae. Phytochemistry, 9(1), 157-187. https://doi.org/10.1016/S0031-9422(00)86628-5Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., Cubillas-Tejeda, A. C., Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., & Cubillas-Tejeda, A. C. (2016). Evaluación de la toxicidad aguda in vivo del extracto etanólico y acuoso de Calea urticifolia. Botanical Sciences, 94(1), 133-140. https://doi.org/10.17129/botsci.191Tshibangu, J. N., Wright, A. D., & König, G. M. (2003). HPLC isolation of the anti-plasmodially active bisbenzylisoquinone alkaloids present in roots of Cissampelos mucronata. Phytochemical Analysis: PCA, 14(1), 13-22. https://doi.org/10.1002/pca.673Uche, F. I., Abed, M. N., Abdullah, M. I., Drijfhout, F. P., McCullagh, J., Claridge, T. W. D., Richardson, A., & Li, W.-W. (2017). Isochondodendrine and 2′-norcocsuline: Additional alkaloids from Triclisia subcordata induce cytotoxicity and apoptosis in ovarian cancer cell lines. RSC Advances, 7(70), 44154-44161. https://doi.org/10.1039/C7RA08032HUchôa, V. T., Paula, R. C. de, Krettli, L. G., Santana, A. E. G., & Krettli, A. U. (2010). Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Development Research, 71(1), 82-91. https://doi.org/10.1002/ddr.20351Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complementary and Alternative Medicine: ECAM, 2020, 8749083. https://doi.org/10.1155/2020/8749083Valadeau, C., Castillo, J. A., Sauvain, M., Lores, A. F., & Bourdy, G. (2010). The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. Journal of Ethnopharmacology, 127(1), 175-192. https://doi.org/10.1016/j.jep.2009.09.024Van Breemen, R. B., Fong, H. H. S., & Farnsworth, N. R. (2007). The role of quality assurance and standardization in the safety of botanical dietary supplements. Chemical Research in Toxicology, 20(4), 577-582. https://doi.org/10.1021/tx7000493Vestena, A., Piton, Y., de Loretto Bordignon, S. A., Garcia, S., Arbo, M. D., Zuanazzi, J. A., & von Poser, G. (2019). Hepatoprotective activity of Verbena litoralis, Verbena montevidensis and their main iridoid, brasoside. Journal of Ethnopharmacology, 239, 111906. https://doi.org/10.1016/j.jep.2019.111906Vispo, N. (2016, abril 30). Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. http://revistabionatura.com/plasmodium.htmlWagner, H., & Bladt, S. (1996). Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media. New York, USAWeathers, P. J., Jordan, N., Lasin, P., & Towler, M. J. (2014). Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria. Journal of ethnopharmacology, 151(2), 858-863. https://doi.org/10.1016/j.jep.2013.11.043Weber, C., & Opatz, T. (2019). Chapter One—Bisbenzylisoquinoline Alkaloids. En H.-J. Knölker (Ed.), The Alkaloids: Chemistry and Biology (Vol. 81, pp. 1-114). Academic Press. https://doi.org/10.1016/bs.alkal.2018.07.001Weniger, B., Robledo, S., Arango, G. J., Deharo, E., Aragón, R., Muñoz, V., Callapa, J., Lobstein, A., & Anton, R. (2001). Antiprotozoal activities of Colombian plants. Journal of Ethnopharmacology, 78(2-3), 193-200. https://doi.org/10.1016/s0378-8741(01)00346-4White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723-735. https://doi.org/10.1016/S0140-6736(13)60024-0WHO (Ed.). (2011). Quality control methods for herbal materials (Updated edition of Quality control methods for medicinal plant materials, 1998). World Health Organization.Willcox, M., Bodeker, G., Rasoanaivo, P., & Addae-Kyereme, J. (2004). Traditional Medicinal Plants and Malaria. CRC Press.Winstanley, P. A. (2000). Chemotherapy for falciparum malaria: The armoury, the problems and the prospects. Parasitology Today (Personal Ed.), 16(4), 146-153. https://doi.org/10.1016/s0169-4758(99)01622-1Wright, C. W. (2005). Traditional antimalarials and the development of novel antimalarial drugs. Journal of Ethnopharmacology, 100(1), 67-71. https://doi.org/10.1016/j.jep.2005.05.012Xian-Kai, W., Tong-Fang, Z., Sheng, L., Shizuri, Y., & Yamamura, S. (1993). Head-to-tail bisbenzylisoquinoline alkaloids from Cyclea sutchuenensis. Phytochemistry, 33(5), 1253-1256. https://doi.org/10.1016/0031-9422(93)85060-5Zhang, H., Wang, X., Guo, Y., Liu, X., Zhao, X., Teka, T., Lv, C., Han, L., Huang, Y., & Pan, G. (2021). Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. Journal of Ethnopharmacology, 268, 113566. https://doi.org/10.1016/j.jep.2020.113566Zuiderveen, G. H., Burkhart, E. P., & Lambert, J. D. (2021). Benzylisoquinoline alkaloid content in goldenseal (Hydrastis canadensis L.) is influenced by phenological stage, reproductive status, and time-of-day. Phytochemistry Letters, 42, 61-67. https://doi.org/10.1016/j.phytol.2021.02.006Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológicaUniversidad Nacional de Colombia Sede BogotáColciencias convocatoria 711 de 2015Colciencias beca apoyo a Doctorados Nacionales 727 de 2015EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84602/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL93397208.2023.pdf93397208.2023.pdfTesis de Doctorado en Ciencias Farmacéuticasapplication/pdf12458903https://repositorio.unal.edu.co/bitstream/unal/84602/2/93397208.2023.pdfb5a37a5d09c4cf41caae54129ae2d96eMD52THUMBNAIL93397208.2023.pdf.jpg93397208.2023.pdf.jpgGenerated Thumbnailimage/jpeg5459https://repositorio.unal.edu.co/bitstream/unal/84602/3/93397208.2023.pdf.jpg5ce7908f8f2a142552e5d65eac9bee17MD53unal/84602oai:repositorio.unal.edu.co:unal/846022024-08-11 01:06:50.806Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=