Dinámicas complejas en el desarrollo del primer segmento tarsal de Drosophila melanogaster.
La interacción de grupos de genes, proteínas, y células es necesaria para el desarrollo de un organismo multicelular. Por tal motivo, la teoría de la complejidad puede ser una herramienta indispensable para entender cómo diversos procesos embriológicos y evolutivos suceden. Sin embargo, en la mayorí...
- Autores:
-
Malagon, Juan Nicolas
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/61174
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/61174
http://bdigital.unal.edu.co/59982/
- Palabra clave:
- 57 Ciencias de la vida; Biología / Life sciences; biology
rotation
sex combs
self-organization.
auto-organización
peines sexuales
rotación
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | La interacción de grupos de genes, proteínas, y células es necesaria para el desarrollo de un organismo multicelular. Por tal motivo, la teoría de la complejidad puede ser una herramienta indispensable para entender cómo diversos procesos embriológicos y evolutivos suceden. Sin embargo, en la mayoría de los programas de investigación estas áreas permanecen aisladas. En un esfuerzo por crear un punto de integración entre el Evo-Devo y las ciencias de la complejidad, en este documento propongo que las dinámicas celulares de epitelios pueden tener comportamientos que se asemejan a los encontrados en sistemas complejos. Dichas dinámicas celulares, además de regular la densidad celular de los epitelios, pueden conferir alta evolucionabilidad a estos tejidos. Para lograr este objetivo, utilizo como sistema el desarrollo del primer segmento tarsal de las patas anteriores de Drosophila melanogaster. Primero doy un ejemplo en el cual dinámicas aleatorias a nivel celular pueden generar la emergencia de patrones organizados a nivel del tejido. En seguida muestro como la modificación de características morfológicas del epitelio puede generar dinámicas celulares altamente organizadas o por el contrario aleatorios. Como resultado, planteó que el desarrollo de los epitelios muestra rasgos de comportamientos complejos y propone que la retro-alimentación entre tensión mecánica y procesos celulares son básicos para entender cómo se desarrollan y evolucionan los organismos multicelulares. Estos estudios ponen en evidencia las bases mecánicas de procesos complejos que conectan diversos niveles de organización. |
---|