Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson
ilustraciones, gráficas, tablas
- Autores:
-
Forero Rodriguez, Lady Johanna
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84412
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
Parkinson Disease/pathology
Gastrointestinal Contents
Models, Theoretical
Contenido Digestivo
Enfermedad de Parkinson/patología
Modelos Teóricos
Enfermedad de Parkinson
Microbioma intestinal
Modelamiento computacional
Modelamiento metabólico
Dieta
Parkinson's disease
Diet
Gut microbiome
Computational modeling
Metabolic modeling
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_7506ae3094980b1b01a571532caa7ce4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84412 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
dc.title.translated.eng.fl_str_mv |
Computational modeling of intestinal bacterial composition in the context of Parkinson's disease |
title |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
spellingShingle |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson 610 - Medicina y salud::616 - Enfermedades 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados Parkinson Disease/pathology Gastrointestinal Contents Models, Theoretical Contenido Digestivo Enfermedad de Parkinson/patología Modelos Teóricos Enfermedad de Parkinson Microbioma intestinal Modelamiento computacional Modelamiento metabólico Dieta Parkinson's disease Diet Gut microbiome Computational modeling Metabolic modeling |
title_short |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
title_full |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
title_fullStr |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
title_full_unstemmed |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
title_sort |
Modelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de Parkinson |
dc.creator.fl_str_mv |
Forero Rodriguez, Lady Johanna |
dc.contributor.advisor.spa.fl_str_mv |
Pinzón Velasco, Andrés Mauricio |
dc.contributor.author.spa.fl_str_mv |
Forero Rodriguez, Lady Johanna |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Bioinformática y Biología de Sistemas |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Lady-Forero-Rodriguez |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados |
topic |
610 - Medicina y salud::616 - Enfermedades 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados Parkinson Disease/pathology Gastrointestinal Contents Models, Theoretical Contenido Digestivo Enfermedad de Parkinson/patología Modelos Teóricos Enfermedad de Parkinson Microbioma intestinal Modelamiento computacional Modelamiento metabólico Dieta Parkinson's disease Diet Gut microbiome Computational modeling Metabolic modeling |
dc.subject.decs.eng.fl_str_mv |
Parkinson Disease/pathology Gastrointestinal Contents Models, Theoretical |
dc.subject.decs.spa.fl_str_mv |
Contenido Digestivo Enfermedad de Parkinson/patología Modelos Teóricos |
dc.subject.proposal.spa.fl_str_mv |
Enfermedad de Parkinson Microbioma intestinal Modelamiento computacional Modelamiento metabólico Dieta |
dc.subject.proposal.eng.fl_str_mv |
Parkinson's disease Diet Gut microbiome Computational modeling Metabolic modeling |
description |
ilustraciones, gráficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-02T02:31:27Z |
dc.date.available.none.fl_str_mv |
2023-08-02T02:31:27Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84412 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84412 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
1. Lebouvier, T.; Chaumette, T.; Paillusson, S.; Duyckaerts, C.; Bruley des Varannes, S.; Neunlist, M.; Derkinderen, P. The Second Brain and Parkinson’s Disease. Eur J Neurosci 2009, 30, 735–741, doi:10.1111/j.1460-9568.2009.06873.x. 2. Orozco, J.L.; Valderrama-Chaparro, J.A.; Pinilla-Monsalve, G.D.; Molina-Echeverry, M.I.; Castaño, A.M.P.; Ariza-Araújo, Y.; Prada, S.I.; Takeuchi, Y. Parkinson’s Disease Prevalence, Colombiaage Distribution and Staging In. Neurol. Int. 2020, doi:10.4081/ni.2020.8401. 3. Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 through 2030. Neurology 2007, doi:10.1212/01.wnl.0000247740.47667.03. 4. Tran, J.; Anastacio, H.; Bardy, C. Genetic Predispositions of Parkinson’s Disease Revealed in Patient-Derived Brain Cells. Npj Park. Dis. 2020, 6, 1–18, doi:10.1038/s41531-020-0110-8. 5. Ball, N.; Teo, W.-P.; Chandra, S.; Chapman, J. Parkinson’s Disease and the Environment. Front. Neurol. 2019, doi:10.3389/fneur.2019.00218. 6. Maiti, P.; Manna, J.; Dunbar, G.L. Current Understanding of the Molecular Mechanisms in Parkinson’s Disease: Targets for Potential Treatments. Transl. Neurodegener. 2017, 6, 28, doi:10.1186/s40035-017-0099-z. 7. Surmeier, D.J. Determinants of Dopaminergic Neuron Loss in Parkinson’s Disease. FEBS J. 2018, 285, 3657–3668, doi:10.1111/febs.14607. 8. Munoz-Pinto, M.F.; Empadinhas, N.; Cardoso, S.M. The Neuromicrobiology of Parkinson’s Disease: A Unifying Theory. Ageing Res. Rev. 2021, doi:10.1016/j.arr.2021.101396. 9. Alexander, G.E. Biology of Parkinson’s Disease: Pathogenesis and Pathophysiology of a Multisystem Neurodegenerative Disorder. Dialogues Clin. Neurosci. 2004, 6, 259–280. 10. Pellicano, C.; Benincasa, D.; Pisani, V.; Buttarelli, F.R.; Giovannelli, M.; Pontieri, F.E. Prodromal Non-Motor Symptoms of Parkinson’s Disease. Neuropsychiatr. Dis. Treat. 2007, 3, 145–152. 11. Braak, H.; de Vos, R.A.; Bohl, J.; Del Tredici, K. Gastric Alpha-Synuclein Immunoreactive Inclusions in Meissner’s and Auerbach’s Plexuses in Cases Staged for Parkinson’s Disease-Related Brain Pathology. Neurosci Lett 2006, 396, 67–72, doi:10.1016/j.neulet.2005.11.012. 12. Braak, H.; Del Tredici, K.; Rüb, U.; De Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, doi:10.1016/S0197-4580(02)00065-9. 13. Schaeffer, E.; Kluge, A.; Böttner, M.; Zunke, F.; Cossais, F.; Berg, D.; Arnold, P.182 Alpha Synuclein Connects the Gut-Brain Axis in Parkinson’s Disease Patients – A View on Clinical Aspects, Cellular Pathology and Analytical Methodology. Front. Cell Dev. Biol. 2020, 8, 573696, doi:10.3389/fcell.2020.573696. 14. Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The Gut–Brain Axis and Its Relation to Parkinson’s Disease: A Review. Front. Aging Neurosci. 2022, 13, doi:10.3389/fnagi.2021.782082. 15. Romano, S.; Savva, G.M.; Bedarf, J.R.; Charles, I.G.; Hildebrand, F.; Narbad, A. Meta-Analysis of the Parkinson’s Disease Gut Microbiome Suggests Alterations Linked to Intestinal Inflammation. Npj Park. Dis. 2021, 7, 1–13, doi:10.1038/s41531-021-00156-z. 16. Toledo, A.R.L.; Monroy, G.R.; Salazar, F.E.; Lee, J.-Y.; Jain, S.; Yadav, H.; Borlongan, C.V. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, doi:10.3390/ijms23031184. 17. De Angelis, M.; Ferrocino, I.; Calabrese, F.M.; De Filippis, F.; Cavallo, N.; Siragusa, S.; Rampelli, S.; Di Cagno, R.; Rantsiou, K.; Vannini, L.; et al. Diet Influences the Functions of the Human Intestinal Microbiome. Sci. Rep. 2020, 10, 4247, doi:10.1038/s41598-020-61192-y. 18. Baert, F.; Matthys, C.; Mellaerts, R.; Lemaître, D.; Vlaemynck, G.; Foulon, V. Dietary Intake of Parkinson’s Disease Patients. Front. Nutr. 2020, doi:10.3389/fnut.2020.00105. 19. Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Burmann, J.; Fassbender, K.; Schwiertz, A.; Schafer, K.H. Short Chain Fatty Acids and Gut Microbiota Differ between Patients with Parkinson’s Disease and Age-Matched Controls. Park. Relat Disord 2016, 32, 66–72, doi:10.1016/j.parkreldis.2016.08.019. 20. Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wüllner, U. Functional Implications of Microbial and Viral Gut Metagenome Changes in Early Stage L-DOPA-Naïve Parkinson’s Disease Patients. Genome Med. 2017, doi:10.1186/s13073-017-0428-y. 21. Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic Bacterial Composition in Parkinson’s Disease. Mov. Disord. 2015, 30, 1351–1360, doi:10.1002/mds.26307 22. Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; et al. Parkinson’s Disease and Parkinson’s Disease Medications Have Distinct Signatures of the Gut Microbiome. Mov. Disord. 2017, 32, 739–749, doi:10.1002/mds.26942. 23. Heintz-Buschart, A.; Pandey, U.; Wicke, T.; Sixel-Döring, F.; Janzen, A.; Sittig-Wiegand, E.; Trenkwalder, C.; Oertel, W.H.; Mollenhauer, B.; Wilmes, P. The Nasal and Gut Microbiome in Parkinson’s Disease and Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2018, doi:10.1002/mds.27105. 24. Hopfner, F.; Künstner, A.; Müller, S.H.; Künzel, S.; Zeuner, K.E.; Margraf, N.G.; Deuschl, G.; Baines, J.F.; Kuhlenbäumer, G. Gut Microbiota in Parkinson Diseasein a Northern German Cohort. Brain Res. 2017, 1667, 41–45, doi:10.1016/j.brainres.2017.04.019. 25. Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut Microbiota Are Related to Parkinson’s Disease and Clinical Phenotype. Mov Disord 2015, 30, 350–358, doi:10.1002/mds.26069. 26. Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut Microbiota in Parkinson’s Disease: Temporal Stability and Relations to Disease Progression. EBioMedicine 2019, 44, 691–707, doi:10.1016/j.ebiom.2019.05.064. 27. Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Yu.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; et al. Analysis of Gut Microbiota in Patients with Parkinson’s Disease. Bull. Exp. Biol. Med. 2017, 162, 734–737, doi:10.1007/s10517-017-3700-7. 28. Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Song, Y.; Qin, N.; Chen, S.-D.; Xiao, Q. Alteration of the Fecal Microbiota in Chinese Patients with Parkinson’s Disease. Brain. Behav. Immun. 2018, 70, 194–202, doi:10.1016/j.bbi.2018.02.016. 29. Pietrucci, D.; Cerroni, R.; Unida, V.; Farcomeni, A.; Pierantozzi, M.; Mercuri, N.B.; Biocca, S.; Stefani, A.; Desideri, A. Dysbiosis of Gut Microbiota in a Selected Population of Parkinson’s Patients. Parkinsonism Relat. Disord. 2019, 65, 124–130, doi:10.1016/j.parkreldis.2019.06.003. 30. Jin, M.; Li, J.; Liu, F.; Lyu, N.; Wang, K.; Wang, L.; Liang, S.; Tao, H.; Zhu, B.; Alkasir, R. Analysis of the Gut Microflora in Patients With Parkinson’s Disease. Front. Neurosci. 2019, 13. 31. Hasegawa, S.; Goto, S.; Tsuji, H.; Okuno, T.; Asahara, T.; Nomoto, K.; Shibata, A.; Fujisawa, Y.; Minato, T.; Okamoto, A.; et al. Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease. PLOS ONE 2015, 10, e0142164, doi:10.1371/journal.pone.0142164. 32. Li, C.; Cui, L.; Yang, Y.; Miao, J.; Zhao, X.; Zhang, J.; Cui, G.; Zhang, Y. Gut Microbiota Differs Between Parkinson’s Disease Patients and Healthy Controls in Northeast China. Front. Mol. Neurosci. 2019, 12, 171, doi:10.3389/fnmol.2019.00171. 33. Li, F.; Wang, P.; Chen, Z.; Sui, X.; Xie, X.; Zhang, J. Alteration of the Fecal Microbiota in North-Eastern Han Chinese Population with Sporadic Parkinson’s Disease. Neurosci. Lett. 2019, 707, 134297, doi:10.1016/j.neulet.2019.134297. 34. Lin, C.H.; Chen, C.C.; Chiang, H.L.; Liou, J.M.; Chang, C.M.; Lu, T.P.; Chuang, E.Y.; Tai, Y.C.; Cheng, C.; Lin, H.Y.; et al. Altered Gut Microbiota and Inflammatory Cytokine Responses in Patients with Parkinson’s Disease. J. Neuroinflammation 2019, 16, 1–9, doi:10.1186/s12974-019-1528-y. 35. Li, W.; Wu, X.; Hu, X.; Wang, T.; Liang, S.; Duan, Y.; Jin, F.; Qin, B. Structural Changes of Gut Microbiota in Parkinson’s Disease and Its Correlation with Clinical Features. Sci. China Life Sci. 2017, doi:10.1007/s11427-016-9001-4. 36. Baldini, F.; Hertel, J.; Sandt, E.; Thinnes, C.C.; Neuberger-Castillo, L.; Pavelka, L.; Betsou, F.; Krüger, R.; Thiele, I. Parkinson’s Disease-Associated Alterations of the Gut Microbiome Predict Disease-Relevant Changes in Metabolic Functions. BMC Biol. 2020, 18, 62, doi:10.1186/s12915-020-00775-7. 37. Thiele, I.; Palsson, B.Ø. A Protocol for Generating a High-Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 2010, 5, 93–121, doi:10.1038/nprot.2009.203. 38. Magnúsdóttir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jäger, C.; Baginska, J.; Wilmes, P.; et al. Generation of Genome-Scale Metabolic Reconstructions for 773 Members of the Human Gut Microbiota. Nat. Biotechnol. 2016, 35, 81–89, doi:10.1038/nbt.3703. 39. Heinken, A.; Basile, A.; Thiele, I. Advances in Constraint-Based Modelling of Microbial Communities. Curr. Opin. Syst. Biol. 2021, 27, 100346, doi:10.1016/j.coisb.2021.05.007. 40. Bauer, E.; Thiele, I. From Metagenomic Data to Personalized in Silico Microbiotas: Predicting Dietary Supplements for Crohn’s Disease. Npj Syst. Biol. Appl. 2018, 4, doi:10.1038/s41540-018-0063-2. 41. Heinken, A.; Hertel, J.; Thiele, I. Metabolic Modelling Reveals Broad Changes in Gut Microbial Metabolism in Inflammatory Bowel Disease Patients with Dysbiosis. Npj Syst. Biol. Appl. 2021, 7, 1–11, doi:10.1038/s41540-021-00178-6. 42. de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s Disease. Lancet Neurol. 2006, 5, 525–535, doi:10.1016/S1474-4422(06)70471-9. 43. Lebouvier, T.; Chaumette, T.; Damier, P.; Coron, E.; Touchefeu, Y.; Vrignaud, S.; Naveilhan, P.; Galmiche, J.P.; Bruley des Varannes, S.; Derkinderen, P.; et al. Pathological Lesions in Colonic Biopsies during Parkinson’s Disease. Gut 2008, 57, 1741–1743, doi:10.1136/gut.2008.162503. 44. Mulak, A.; Bonaz, B. Brain-Gut-Microbiota Axis in Parkinson’s Disease. World J Gastroenterol 2015, 21, 10609–10620, doi:10.3748/wjg.v21.i37.10609. 45. Braak, H.; Del Tredici, K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson’s Disease: Separating the Wheat from the Chaff. J. Park. Dis. 2017, doi:10.3233/JPD-179001. 46. Hertel, J.; Harms, A.C.; Heinken, A.; Baldini, F.; Thinnes, C.C.; Glaab, E.; Vasco, D.A.; Pietzner, M.; Stewart, I.D.; Wareham, N.J.; et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease. Cell Rep. 2019, doi:10.1016/j.celrep.2019.10.035. 47. Marinos, G.; Kaleta, C.; Waschina, S. Defining the Nutritional Input for Genome-Scale Metabolic Models: A Roadmap. PLOS ONE 2020, 15, e0236890, doi:10.1371/journal.pone.0236890. 48. Raman, K.; Chandra, N. Flux Balance Analysis of Biological Systems: Applications and Challenges. Brief. Bioinform. 2009, 10, 435–449, doi:10.1093/bib/bbp011. 49. Heinken, A.; Ravcheev, D.A.; Baldini, F.; Heirendt, L.; Fleming, R.M.T.; Thiele, I. Personalized Modeling of the Human Gut Microbiome Reveals Distinct Bile Acid Deconjugation and Biotransformation Potential in Healthy and IBD Individuals. bioRxiv 2017, doi:10.1101/229138. 50. Heinken, A.; Thiele, I. Systems Biology of Host-Microbe Metabolomics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2015, 7, 195–219, doi:10.1002/wsbm.1301. 51. Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8. 52. Porras, A.M.; Shi, Q.; Zhou, H.; Callahan, R.; Montenegro-Bethancourt, G.; Solomons, N.; Brito, I.L. Geographic Differences in Gut Microbiota Composition Impact Susceptibility to Enteric Infection. Cell Rep. 2021, 36, 109457, doi:10.1016/j.celrep.2021.109457. 53. Suzuki, T.A.; Worobey, M. Geographical Variation of Human Gut Microbial Composition. Biol. Lett. 2014, 10, 20131037, doi:10.1098/rsbl.2013.1037. 54. Forero-Rodríguez, L.J.; Josephs-Spaulding, J.; Flor, S.; Pinzón, A.; Kaleta, C. Parkinson’s Disease and the Metal–Microbiome–Gut–Brain Axis: A Systems Toxicology Approach. Antioxidants 2022, 11, 71, doi:10.3390/antiox11010071. 55. Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s Disease. J. Neural Transm. 2017, 124, 901–905, doi:10.1007/s00702-017-1686-y. 56. Avendaño-Avendaño, S.B.; Bernal-Pacheco, O.; Esquivia-Pájaro, C.T. Caracterización funcional y calidad de vida en pacientes con enfermedad de Parkinson. Rev. Colomb. Med. Física Rehabil. 2019, 29, 93–102, doi:10.28957/rcmfr.v29n2a3. 57. Qamar, M.A.; Sauerbier, A.; Politis, M.; Carr, H.; Loehrer, P.; Chaudhuri, K.R. Presynaptic Dopaminergic Terminal Imaging & Non-Motor Symptoms Assessment of Parkinson’s Disease: Evidence for Dopaminergic Basis? Park. Dis. 2017, doi:10.1038/s41531-016-0006-9. 58. Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; 2018 ISBN 978-0-9944381-6-4. 59. Pfeiffer, R.F. Non-Motor Symptoms in Parkinson’s Disease. Parkinsonism Relat. Disord. 2016, doi:10.1016/j.parkreldis.2015.09.004. 60. Brudek, T. Inflammatory Bowel Diseases and Parkinson’s Disease. J. Park. Dis. 2019, doi:10.3233/JPD-191729. 61. Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P.A. Environmental Risk Factors and Parkinson’s Disease: An Umbrella Review of Meta-Analyses. Parkinsonism Relat. Disord. 2016, doi:10.1016/j.parkreldis.2015.12.008. 62. Chen, H.; Ritz, B. The Search for Environmental Causes of Parkinson’s Disease: Moving Forward. J. Park. Dis. 2018, doi:10.3233/JPD-181493. 63. Pang, S.Y.-Y.; Ho, P.W.-L.; Liu, H.-F.; Leung, C.-T.; Li, L.; Chang, E.E.S.; Ramsden, D.B.; Ho, S.-L. The Interplay of Aging, Genetics and Environmental Factors in the Pathogenesis of Parkinson’s Disease. Transl. Neurodegener. 2019, 8, 23, doi:10.1186/s40035-019-0165-9. 64. Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, Neuroinflammation and Biological Remodeling as Key Factors in Pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91, doi:10.1016/j.freeradbiomed.2017.10.379. 65. Hindle, J.V. Ageing, Neurodegeneration and Parkinson’s Disease. Age Ageing 2010, 39, 156–161, doi:10.1093/ageing/afp223. 66. Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s Disease: Why Is Advancing Age the Biggest Risk Factor? Ageing Res. Rev. 2014, 14, 19–30, doi:10.1016/j.arr.2014.01.004. 67. Liu, Y.; Yao, Z.; Zhang, L.; Zhu, H.; Deng, W.; Qin, C. Insulin Induces Neurite Outgrowth via SIRT1 in SH-SY5Y Cells. Neuroscience 2013, 238, 371–380, doi:10.1016/j.neuroscience.2013.01.034. 68. de Mello, N.P.; Orellana, A.M.; Mazucanti, C.H.; de Morais Lima, G.; Scavone, C.; Kawamoto, E.M. Insulin and Autophagy in Neurodegeneration. Front. Neurosci. 2019, 13. 69. Sekar, S.; Taghibiglou, C. Elevated Nuclear Phosphatase and Tensin Homolog (PTEN) and Altered Insulin Signaling in Substantia Nigral Region of Patients with Parkinson’s Disease. Neurosci. Lett. 2018, 666, 139–143, doi:10.1016/j.neulet.2017.12.049. 70. Yang, L.; Wang, H.; Liu, L.; Xie, A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front. Neurosci. 2018, 12, 73, doi:10.3389/fnins.2018.00073. 71. Salvatore, M.F.; McInnis, T.R.; Cantu, M.A.; Apple, D.M.; Pruett, B.S. Tyrosine Hydroxylase Inhibition in Substantia Nigra Decreases Movement Frequency. Mol. Neurobiol. 2019, 56, 2728–2740, doi:10.1007/s12035-018-1256-9. 72. Vila, M. Neuromelanin, Aging, and Neuronal Vulnerability in Parkinson’s Disease. Mov. Disord. 2019, 34, 1440–1451, doi:10.1002/mds.27776. 73. Wong, Y.; Luk, K.; Purtell, K.; Nanni, S.B.; Stoessl, A.J.; Trudeau, L.-E.; Yue, Z.; Krainc, D.; Oertel, W.; Obeso, J.A.; et al. Neuronal Vulnerability in Parkinson Disease and Putative Therapeutics: Should the Focus Be on Axonal and Synaptic Terminals? Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 1406–1422, doi:10.1002/mds.27823. 74. Diederich, N.J.; Surmeier, D.J.; Uchihara, T.; Grillner, S.; Goetz, C.G. Parkinson’s Disease: Is It a Consequence of Human Brain Evolution? Mov. Disord. 2019, 34, 453–459, doi:10.1002/mds.27628. 75. Gonzalez-Rodriguez, P.; Zampese, E.; Surmeier, D.J. Chapter 3 - Selective Neuronal Vulnerability in Parkinson’s Disease. In Progress in Brain Research; Björklund, A., Cenci, M.A., Eds.; Recent Advances in Parkinson’s Disease; Elsevier, 2020; Vol. 252, pp. 61–89. 76. Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective Neuronal Vulnerability in Parkinson Disease. Nat. Rev. Neurosci. 2017, 18, 101–113, doi:10.1038/nrn.2016.178. 77. Matuz-Mares, D.; González-Andrade, M.; Araiza-Villanueva, M.G.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxid. Basel Switz. 2022, 11, 801, doi:10.3390/antiox11050801. 78. Xu, J.; Minobe, E.; Kameyama, M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front. Cell. Neurosci. 2022, 16. 79. Wacquier, B.; Combettes, L.; Dupont, G. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb. Perspect. Biol. 2019, 11, a035139, doi:10.1101/cshperspect.a035139. 80. Santulli, G.; Xie, W.; Reiken, S.R.; Marks, A.R. Mitochondrial Calcium Overload Is a Key Determinant in Heart Failure. Proc. Natl. Acad. Sci. 2015, 112, 11389–11394, doi:10.1073/pnas.1513047112. 81. González-Rodríguez, P.; Zampese, E.; Stout, K.A.; Guzman, J.N.; Ilijic, E.; Yang, B.; Tkatch, T.; Stavarache, M.A.; Wokosin, D.L.; Gao, L.; et al. Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism. Nature 2021, 599, 650–656, doi:10.1038/s41586-021-04059-0. 82. Betzer, C.; Jensen, P.H. Reduced Cytosolic Calcium as an Early Decisive Cellular State in Parkinson’s Disease and Synucleinopathies. Front. Neurosci. 2018, 12. 83. Better to Keep in Touch: Investigating Inter‐organelle Cross‐talk - Rossini - 2021 - The FEBS Journal - Wiley Online Library Available online: https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15451 (accessed on 4 August 2022). 84. Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, E6127, doi:10.3390/ijms21176127. 85. Cai, Y.; Arikkath, J.; Yang, L.; Guo, M.L.; Periyasamy, P.; Buch, S. Interplay of Endoplasmic Reticulum Stress and Autophagy in Neurodegenerative Disorders. Autophagy 2016, 12, 225–244, doi:10.1080/15548627.2015.1121360. 86. Kinghorn, K.J.; Asghari, A.M.; Castillo-Quan, J.I. The Emerging Role of Autophagic-Lysosomal Dysfunction in Gaucher Disease and Parkinson’s Disease. Neural Regen. Res. 2017, 12, 380–384, doi:10.4103/1673-5374.202934. 87. Lin, K.-J.; Lin, K.-L.; Chen, S.-D.; Liou, C.-W.; Chuang, Y.-C.; Lin, H.-Y.; Lin, T.-K. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, E5312, doi:10.3390/ijms20215312. 88. Ray, B.; Bhat, A.; Mahalakshmi, A.M.; Tuladhar, S.; Bishir, M.; Mohan, S.K.; Veeraraghavan, V.P.; Chandra, R.; Essa, M.M.; Chidambaram, S.B.; et al. Mitochondrial and Organellar Crosstalk in Parkinson’s Disease. ASN Neuro 2021, 13, 17590914211028364, doi:10.1177/17590914211028364. 89. Shulman, J.M.; De Jager, P.L.; Feany, M.B. Parkinson’s Disease: Genetics and Pathogenesis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 193–224, doi:10.1146/annurev-pathol-011110-130242. 90. Paganini-Hill, A. Risk Factors for Parkinson’s Disease: The Leisure World Cohort Study. Neuroepidemiology 2001, 20, 118–124, doi:10.1159/000054770. 91. Hernán, M.A.; Zhang, S.M.; Rueda-deCastro, A.M.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Cigarette Smoking and the Incidence of Parkinson’s Disease in Two Prospective Studies. Ann. Neurol. 2001, 50, 780–786, doi:10.1002/ana.10028. 92. Hernán, M.A.; Takkouche, B.; Caamaño-Isorna, F.; Gestal-Otero, J.J. A Meta-Analysis of Coffee Drinking, Cigarette Smoking, and the Risk of Parkinson’s Disease. Ann. Neurol. 2002, 52, 276–284, doi:10.1002/ana.10277. 93. Ritz, B.; Ascherio, A.; Checkoway, H.; Marder, K.S.; Nelson, L.M.; Rocca, W.A.; Ross, G.W.; Strickland, D.; Van Den Eeden, S.K.; Gorell, J. Pooled Analysis of Tobacco Use and Risk of Parkinson Disease. Arch. Neurol. 2007, 64, 990–997, doi:10.1001/archneur.64.7.990. 94. Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken, R.L.; Mandel, J.S. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PloS One 2016, 11, e0151841, doi:10.1371/journal.pone.0151841. 95. Lewis, A.; Miller, J.H.; Lea, R.A. Monoamine Oxidase and Tobacco Dependence. Neurotoxicology 2007, 28, 182–195, doi:10.1016/j.neuro.2006.05.019. 96. Krause, K.-H.; Dresel, S.H.; Krause, J.; Kung, H.F.; Tatsch, K.; Ackenheil, M. Stimulant-like Action of Nicotine on Striatal Dopamine Transporter in the Brain of Adults with Attention Deficit Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2002, 5, 111–113, doi:10.1017/S1461145702002821. 97. Wang, C.; Zhou, C.; Guo, T.; Huang, P.; Xu, X.; Zhang, M. Association between Cigarette Smoking and Parkinson’s Disease: A Neuroimaging Study. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221092566, doi:10.1177/17562864221092566. 98. Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe? Nutrients 2021, 13, 3088, doi:10.3390/nu13093088. 99. Ren, X.; Chen, J.-F. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Front. Neurosci. 2020, 14. 100. Ross, G.W.; Abbott, R.D.; Petrovitch, H.; Morens, D.M.; Grandinetti, A.; Tung, K.H.; Tanner, C.M.; Masaki, K.H.; Blanchette, P.L.; Curb, J.D.; et al. Association of Coffee and Caffeine Intake with the Risk of Parkinson Disease. JAMA 2000, 283, 2674–2679, doi:10.1001/jama.283.20.2674. 101. Chen, J.F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y.H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K.; Castagnoli, N.; Schwarzschild, M.A. Neuroprotection by Caffeine and A(2A) Adenosine Receptor Inactivation in a Model of Parkinson’s Disease. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, RC143. 102. Ascherio, A.; Zhang, S.M.; Hernán, M.A.; Kawachi, I.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Prospective Study of Caffeine Consumption and Risk of Parkinson’s Disease in Men and Women. Ann. Neurol. 2001, 50, 56–63, doi:10.1002/ana.1052. 103. Benedetti, M.D.; Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Peterson, B.J.; Ahlskog, J.E.; Schaid, D.J.; Rocca, W.A. Smoking, Alcohol, and Coffee Consumption Preceding Parkinson’s Disease: A Case-Control Study. Neurology 2000, 55, 1350–1358, doi:10.1212/wnl.55.9.1350. 104. Ribeiro, J.A.; Sebastião, A.M. Caffeine and Adenosine. J. Alzheimers Dis. JAD 2010, 20 Suppl 1, S3-15, doi:10.3233/JAD-2010-1379. 105. Kong, H.; Jones, P.P.; Koop, A.; Zhang, L.; Duff, H.J.; Chen, S.R.W. Caffeine Induces Ca2+ Release by Reducing the Threshold for Luminal Ca2+ Activation of the Ryanodine Receptor. Biochem. J. 2008, 414, 441–452, doi:10.1042/BJ20080489. 106. Yang, J.Y.; Yang, G.; Ren, J.; Zhao, J.; Li, Sh. Caffeine Suppresses GABA Receptor-Mediated Current in Rat Primary Sensory Neurons via Inhibition of Intracellular Phosphodiesterase. Neurophysiology 2015, 47, 108–114, doi:10.1007/s11062-015-9506-1. 107. Madeira, M.H.; Boia, R.; Ambrósio, A.F.; Santiago, A.R. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators Inflamm. 2017, 2017, 4761081, doi:10.1155/2017/4761081. 108. Zhou, S.-J.; Zhu, M.-E.; Shu, D.; Du, X.-P.; Song, X.-H.; Wang, X.-T.; Zheng, R.-Y.; Cai, X.-H.; Chen, J.-F.; He, J.-C. Preferential Enhancement of Working Memory in Mice Lacking Adenosine A(2A) Receptors. Brain Res. 2009, 1303, 74–83, doi:10.1016/j.brainres.2009.09.082. 109. Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; et al. Caffeine Stimulates Hepatic Lipid Metabolism by the Autophagy-Lysosomal Pathway in Mice. Hepatol. Baltim. Md 2014, 59, 1366–1380, doi:10.1002/hep.26667. 110. Liu, Y.-W.; Yang, T.; Zhao, L.; Ni, Z.; Yang, N.; He, F.; Dai, S.-S. Activation of Adenosine 2A Receptor Inhibits Neutrophil Apoptosis in an Autophagy-Dependent Manner in Mice with Systemic Inflammatory Response Syndrome. Sci. Rep. 2016, 6, 33614, doi:10.1038/srep33614. 111. Scheperjans, F.; Pekkonen, E.; Kaakkola, S.; Auvinen, P. Linking Smoking, Coffee, Urate, and Parkinson’s Disease-a Role for Gut Microbiota? J. Park. Dis. 2015, 5, 255–262, doi:10.3233/JPD-150557. 112. Sian-Hülsmann, J.; Mandel, S.; Youdim, M.B.H.; Riederer, P. The Relevance of Iron in the Pathogenesis of Parkinson’s Disease. J. Neurochem. 2011, doi:10.1111/j.1471-4159.2010.07132.x. 113. Muñoz, P.; Humeres, A. Iron Deficiency on Neuronal Function. BioMetals 2012, doi:10.1007/s10534-012-9550-x. 114. Savica, R.; Grossardt, B.R.; Carlin, J.M.; Icen, M.; Bower, J.H.; Ahlskog, J.E.; Maraganore, D.M.; Steensma, D.P.; Rocca, W.A. Anemia or Low Hemoglobin Levels Preceding Parkinson Disease: A Case-Control Study. Neurology 2009, doi:10.1212/WNL.0b013e3181bd80c1. 115. Dev, S.; Babitt, J.L. Overview of Iron Metabolism in Health and Disease. Hemodial. Int. 2017, doi:10.1111/hdi.12542. 116. Hare, D.J.; Arora, M.; Jenkins, N.L.; Finkelstein, D.I.; Doble, P.A.; Bush, A.I. Is Early-Life Iron Exposure Critical in Neurodegeneration? Nat. Rev. Neurol. 2015, doi:10.1038/nrneurol.2015.100. 117. Hare, D.J.; Cardoso, B.R.; Raven, E.P.; Double, K.L.; Finkelstein, D.I.; Szymlek-Gay, E.A.; Biggs, B.A. Excessive Early-Life Dietary Exposure: A Potential Source of Elevated Brain Iron and a Risk Factor for Parkinson’s Disease. Npj Park. Dis. 2017, doi:10.1038/s41531-016-0004-y. 118. Anzai, Y.; Gatenby, C.; Friend, S.; Maravilla, K.R.; Hu, S.C.; Cain, K.C.; Agarwal, P. Brain Iron Concentrations in Regions of Interest and Relation with Serum Iron Levels in Parkinson Disease. J. Neurol. Sci. 2017, doi:10.1016/j.jns.2017.04.035. 119. Logroscino, G.; Marder, K.; Graziano, J.; Freyer, G.; Slavkovich, V.; LoIacono, N.; Cote, L.; Mayeux, R. Altered Systemic Iron Metabolism in Parkinson’s Disease. Neurology 1997, doi:10.1212/WNL.49.3.714. 120. Fasano, M.; Bergamasco, B.; Lopiano, L. Modifications of the Iron-Neuromelanin System in Parkinson’s Disease. J. Neurochem. 2006, doi:10.1111/j.1471-4159.2005.03638.x. 121. Gerlach, M.; Double, K.L.; Youdim, M.B.H.; Riederer, P. Potential Sources of Increased Iron in the Substantia Nigra of Parkinsonian Patients. In Proceedings of the Journal of Neural Transmission, Supplement; 2006. 122. Lotfipour, A.K.; Wharton, S.; Schwarz, S.T.; Gontu, V.; Schäfer, A.; Peters, A.M.; Bowtell, R.W.; Auer, D.P.; Gowland, P.A.; Bajaj, N.P.S. High Resolution Magnetic Susceptibility Mapping of the Substantia Nigra in Parkinson’s Disease. J. Magn. Reson. Imaging 2012, doi:10.1002/jmri.22752. 123. Levi, S.; Finazzi, D. Neurodegeneration with Brain Iron Accumulation: Update on Pathogenic Mechanisms. Front. Pharmacol. 2014, doi:10.3389/fphar.2014.00099. 124. Xuan, M.; Guan, X.; Gu, Q.; Shen, Z.; Yu, X.; Qiu, T.; Luo, X.; Song, R.; Jiaerken, Y.; Xu, X.; et al. Different Iron Deposition Patterns in Early- and Middle-Late-Onset Parkinson’s Disease. Parkinsonism Relat. Disord. 2017, doi:10.1016/j.parkreldis.2017.08.013. 125. Dexter, D.T.; Wells, F.R.; Lee, A.J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C.D. Increased Nigral Iron Content and Alterations in Other Metal Ions Occurring in Brain in Parkinson’s Disease. J. Neurochem. 1989, doi:10.1111/j.1471-4159.1989.tb07264.x. 126. Ottman, N.; Reunanen, J.; Meijerink, M.; Pietila, T.E.; Kainulainen, V.; Klievink, J.; Huuskonen, L.; Aalvink, S.; Skurnik, M.; Boeren, S.; et al. Pili-like Proteins of Akkermansia Muciniphila Modulate Host Immune Responses and Gut Barrier Function. PLoS ONE 2017, doi:10.1371/journal.pone.0173004. 127. Ulla, M.; Bonny, J.M.; Ouchchane, L.; Rieu, I.; Claise, B.; Durif, F. Is R2* a New MRI Biomarker for the Progression of Parkinson’s Disease? A Longitudinal Follow-Up. PLoS ONE 2013, doi:10.1371/journal.pone.0057904. 128. Yu, X.; Du, T.; Song, N.; He, Q.; Shen, Y.; Jiang, H.; Xie, J. Decreased Iron Levels in the Temporal Cortex in Postmortem Human Brains with Parkinson Disease. Neurology 2013, doi:10.1212/WNL.0b013e31827f0ebb. 129. Bonetto, J.; Villaamil-Lepori, E. Update on the Oxidative Stress Associated with Arsenic Exposure. Curr. Top. Toxicol. 2014. 130. Branca, J.J.V.; Morucci, G.; Pacini, A. Cadmium-Induced Neurotoxicity: Still Much Ado. Neural Regen. Res. 2018, doi:10.4103/1673-5374.239434. 131. Baranowska-Bosiacka, I.; Gutowska, I.; Rybicka, M.; Nowacki, P.; Chlubek, D. Neurotoxicity of Lead. Hypothetical Molecular Mechanisms of Synaptic Function Disorders. Neurol. Neurochir. Pol. 2012, doi:10.5114/ninp.2012.31607. 132. Aschner, M.; Erikson, K.M.; Hernández, E.H.; Tjalkens, R. Manganese and Its Role in Parkinson’s Disease: From Transport to Neuropathology. NeuroMolecular Med. 2009, 11, doi:10.1007/s12017-009-8083-0. 133. Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coord. Chem. Rev. 2012, doi:10.1016/j.ccr.2012.03.013. 134. Martí, Y.; Matthaeus, F.; Lau, T.; Schloss, P. Methyl-4-Phenylpyridinium (MPP+) Differentially Affects Monoamine Release and Re-Uptake in Murine Embryonic Stem Cell-Derived Dopaminergic and Serotonergic Neurons. Mol. Cell. Neurosci. 2017, 83, 37–45, doi:10.1016/j.mcn.2017.06.009. 135. Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; et al. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872, doi:10.1289/ehp.1002839. 136. Henchcliffe, C.; Beal, M.F. Mitochondrial Biology and Oxidative Stress in Parkinson Disease Pathogenesis. Nat. Clin. Pract. Neurol. 2008, 4, 600–609, doi:10.1038/ncpneuro0924. 137. See, W.Z.C.; Naidu, R.; Tang, K.S. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Mol. Neurobiol. 2022, 59, 3353–3369, doi:10.1007/s12035-022-02799-2. 138. Dinis-Oliveira, R.J.; Remião, F.; Carmo, H.; Duarte, J.A.; Navarro, A.S.; Bastos, M.L.; Carvalho, F. Paraquat Exposure as an Etiological Factor of Parkinson’s Disease. Neurotoxicology 2006, 27, 1110–1122, doi:10.1016/j.neuro.2006.05.012. 139. Kuter, K.; Nowak, P.; Gołembiowska, K.; Ossowska, K. Increased Reactive Oxygen Species Production in the Brain after Repeated Low-Dose Pesticide Paraquat Exposure in Rats. A Comparison with Peripheral Tissues. Neurochem. Res. 2010, 35, 1121–1130, doi:10.1007/s11064-010-0163-x. 140. McCormack, A.L.; Thiruchelvam, M.; Manning-Bog, A.B.; Thiffault, C.; Langston, J.W.; Cory-Slechta, D.A.; Di Monte, D.A. Environmental Risk Factors and Parkinson’s Disease: Selective Degeneration of Nigral Dopaminergic Neurons Caused by the Herbicide Paraquat. Neurobiol. Dis. 2002, 10, 119–127, doi:10.1006/nbdi.2002.0507. 141. Wang, G.; Fan, X.-N.; Tan, Y.-Y.; Cheng, Q.; Chen, S.-D. Parkinsonism after Chronic Occupational Exposure to Glyphosate. Parkinsonism Relat. Disord. 2011, 17, 486–487, doi:10.1016/j.parkreldis.2011.02.003. 142. Kim, Y.; Kim, I.; Sung, J.-M.; Song, J. Parkinson’s Disease in a Worker Exposed to Insecticides at a Greenhouse. Ann. Occup. Environ. Med. 2021, 33, e6, doi:10.35371/aoem.2021.33.e6. 143. Cattani, D.; de Liz Oliveira Cavalli, V.L.; Heinz Rieg, C.E.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Mena Barreto Silva, F.R.; Zamoner, A. Mechanisms Underlying the Neurotoxicity Induced by Glyphosate-Based Herbicide in Immature Rat Hippocampus: Involvement of Glutamate Excitotoxicity. Toxicology 2014, 320, 34–45, doi:10.1016/j.tox.2014.03.001. 144. Caioni, G.; Cimini, A.; Benedetti, E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022, 14, 1467, doi:10.3390/nu14071467. 145. Deng, H.; Wang, P.; Jankovic, J. The Genetics of Parkinson Disease. Ageing Res. Rev. 2018, 42, 72–85, doi:10.1016/j.arr.2017.12.007. 146. Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson’s Disease. Science 1997, 276, 2045–2047, doi:10.1126/science.276.5321.2045. 147. Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; et al. Genome-Wide Association Study Identifies Common Variants at Four Loci as Genetic Risk Factors for Parkinson’s Disease. Nat. Genet. 2009, 41, 1303–1307, doi:10.1038/ng.485. 148. Foo, J.N.; Tan, L.C.; Irwan, I.D.; Au, W.-L.; Low, H.Q.; Prakash, K.-M.; Ahmad-Annuar, A.; Bei, J.; Chan, A.Y.; Chen, C.M.; et al. Genome-Wide Association Study of Parkinson’s Disease in East Asians. Hum. Mol. Genet. 2017, 26, 226–232, doi:10.1093/hmg/ddw379. 149. Imputation of Sequence Variants for Identification of Genetic Risks for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. The Lancet 2011, 377, 641–649, doi:10.1016/S0140-6736(10)62345-8. 150. Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-Wide Association Study Reveals Genetic Risk Underlying Parkinson’s Disease. Nat. Genet. 2009, 41, 1308–1312, doi:10.1038/ng.487. 151. Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-Scale Meta-Analysis of Genome-Wide Association Data Identifies Six New Risk Loci for Parkinson’s Disease. Nat. Genet. 2014, 46, 989–993, doi:10.1038/ng.3043. 152. Chang, D.; Nalls, M.A.; Hallgrímsdóttir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; International Parkinson’s Disease Genomics Consortium; 23andMe Research Team; Kerchner, G.A.; Ayalon, G.; et al. A Meta-Analysis of Genome-Wide Association Studies Identifies 17 New Parkinson’s Disease Risk Loci. Nat. Genet. 2017, 49, 1511–1516, doi:10.1038/ng.3955. 153. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet Neurol. 2019, 18, 1091–1102, doi:10.1016/S1474-4422(19)30320-5. 154. Li, W.; Fu, Y.; Halliday, G.M.; Sue, C.M. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9. 155. Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G.; Turroni, S.; Biagi, E.; Peano, C.; Severgnini, M.; et al. Gut Microbiome of the Hadza Hunter-Gatherers. Nat. Commun. 2014, 5, doi:10.1038/ncomms4654. 156. De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. 2010, 107, 14691–14696, doi:10.1073/pnas.1005963107. 157. Fragiadakis, G.K.; Smits, S.A.; Sonnenburg, E.D.; Van Treuren, W.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Dominguez-Bello, M.G.; Leach, J.; et al. Links between Environment, Diet, and the Hunter-Gatherer Microbiome. Gut Microbes 2019, 10, 216–227, doi:10.1080/19490976.2018.1494103. 415. Home - Souci • Fachmann • Kraut Datenbank Available online: https://www.sfk.online/#/home (accessed on 4 September 2022). 416. Diet History Questionnaire II (DHQ II) Paper Forms | EGRP/DCCPS/NCI/NIH Available online: https://epi.grants.cancer.gov/dhq2/forms/ (accessed on 4 September 2022). 417. Chumlea, W.C.; Roche, A.F.; Steinbaugh, M.L. Estimating Stature from Knee Height for Persons 60 to 90 Years of Age. J. Am. Geriatr. Soc. 1985, 33, 116–120, doi:10.1111/j.1532-5415.1985.tb02276.x. 418. CDC Defining Adult Overweight and Obesity Available online: https://www.cdc.gov/obesity/basics/adult-defining.html (accessed on 4 September 2022). 419. Dodd, K. BMI in the Elderly: What You Need to Know. Geriatr. Dietit. 2020. 420. NHANES III (1988-1994) Available online: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx (accessed on 4 September 2022). 421. Frisancho, A.R. New Norms of Upper Limb Fat and Muscle Areas for Assessment of Nutritional Status. Am. J. Clin. Nutr. 1981, 34, 2540–2545, doi:10.1093/ajcn/34.11.2540. 422. ATNF-AZA/Microbial_community_modellings at Master · Mucosimmunol/ATNF-AZA Available online: https://github.com/mucosimmunol/aTNF-AZA (accessed on 12 April 2023). 423. Effenberger, M.; Reider, S.; Waschina, S.; Bronowski, C.; Enrich, B.; Adolph, T.E.; Koch, R.; Moschen, A.R.; Rosenstiel, P.; Aden, K.; et al. Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. J. Crohns Colitis 2021, 15, 88–98, doi:10.1093/ecco-jcc/jjaa152. 424. Graspeuntner, S.; Waschina, S.; Künzel, S.; Twisselmann, N.; Rausch, T.K.; Cloppenborg-Schmidt, K.; Zimmermann, J.; Viemann, D.; Herting, E.; Göpel, W.; et al. Gut Dysbiosis with Bacilli Dominance and Accumulation of Fermentation Products Precedes Late-Onset Sepsis in Preterm Infants. Clin. Infect. Dis. 2019, doi:10.1093/cid/ciy882. 425. Azzouz, L.L.; Sharma, S. Physiology, Large Intestine. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023. 426. Islam, M.A.; Amin, M.N.; Siddiqui, S.A.; Hossain, M.P.; Sultana, F.; Kabir, M.R. Trans Fatty Acids and Lipid Profile: A Serious Risk Factor to Cardiovascular Disease, Cancer and Diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, doi:10.1016/j.dsx.2019.03.033. 427. Advanced Nutrition and Human Metabolism by Sareen Stepnick Gropper, Jack Smith | 9781133104070 | Get Textbooks | New Textbooks | Used Textbooks | College Textbooks - GetTextbooks.Com Available online: https://www.gettextbooks.com/isbn/9781133104070/ (accessed on 11 April 2023). 428. Ernährung des Menschen - Elmadfa, Ibrahim; Leitzmann, Claus: 9783825285524 - IberLibro Available online: https://www.iberlibro.com/9783825285524/Ern%C3%A4hrung-Menschen-Elmadfa-I brahim-Leitzmann-3825285529/plp (accessed on 11 April 2023). 429. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids - PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/25077263/ (accessed on 11 April 2023). 430. Akbulut, A.C.; Pavlic, A.; Petsophonsakul, P.; Halder, M.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020, 12, 1852, doi:10.3390/nu12061852. 431. Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the Western Diet: How We Got Here. Mo. Med. 2020, 117, 536–538. 432. Yeung, S.S.Y.; Kwan, M.; Woo, J. Healthy Diet for Healthy Aging. Nutrients 2021, 13, 4310, doi:10.3390/nu13124310. 433. Mischley, L.K.; Lau, R.C.; Bennett, R.D. Role of Diet and Nutritional Supplements in Parkinson’s Disease Progression. Oxid. Med. Cell. Longev. 2017, 2017, 6405278, doi:10.1155/2017/6405278. 434. Filippis, F.D.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; Storia, A.L.; Laghi, L.; Serrazanetti, D.I.; Cagno, R.D.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821, doi:10.1136/gutjnl-2015-309957. 435. Neyrinck, A.M.; Possemiers, S.; Verstraete, W.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Dietary Modulation of Clostridial Cluster XIVa Gut Bacteria (Roseburia Spp.) by Chitin-Glucan Fiber Improves Host Metabolic Alterations Induced by High-Fat Diet in Mice. J. Nutr. Biochem. 2012, 23, 51–59, doi:10.1016/j.jnutbio.2010.10.008. 436. Albani, G.; Albani, S.; Keshavarzian, A. Role of Diet, Physical Activity and Immune System in Parkinson’s Disease; Frontiers Media SA, 2021; ISBN 978-2-88966-441-2. 437. Zhang, H.; Wielen, N. van der; Hee, B. van der; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735, doi:10.3390/microorganisms8111735. 438. Zhang, C.; Yu, M.; Yang, Y.; Mu, C.; Su, Y.; Zhu, W. Effect of Early Antibiotic Administration on Cecal Bacterial Communities and Their Metabolic Profiles in Pigs Fed Diets with Different Protein Levels. Anaerobe 2016, 42, 188–196, doi:10.1016/j.anaerobe.2016.10.016. 439. Ma, D.; Wang, A.C.; Parikh, I.; Green, S.J.; Hoffman, J.D.; Chlipala, G.; Murphy, M.P.; Sokola, B.S.; Bauer, B.; Hartz, A.M.S.; et al. Ketogenic Diet Enhances Neurovascular Function with Altered Gut Microbiome in Young Healthy Mice. Sci. Rep. 2018, 8, 6670, doi:10.1038/s41598-018-25190-5. 440. Yu, H.; Qiu, N.; Meng, Y.; Keast, R. A Comparative Study of the Modulation of the Gut Microbiota in Rats by Dietary Intervention with Different Sources of Egg-White Proteins. J. Sci. Food Agric. 2020, 100, 3622–3629, doi:10.1002/jsfa.10387. 441. Kisuse, J.; La-ongkham, O.; Nakphaichit, M.; Therdtatha, P.; Momoda, R.; Tanaka, M.; Fukuda, S.; Popluechai, S.; Kespechara, K.; Sonomoto, K.; et al. Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Front. Microbiol. 2018, 9, 1345, doi:10.3389/fmicb.2018.01345. 442. Lee, C.B.; Chae, S.U.; Jo, S.J.; Jerng, U.M.; Bae, S.K. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 3566, doi:10.3390/ijms22073566. 443. Oteng, A.-B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. Bethesda Md 2020, 11, 697–708, doi:10.1093/advances/nmz125. 444. Uauy, R.; Aro, A.; Clarke, R.; Ghafoorunissa; L’Abbé, M.R.; Mozaffarian, D.; Skeaff, C.M.; Stender, S.; Tavella, M. Who Scientific Update on Trans Fatty Acids: Summary and Conclusions. Eur. J. Clin. Nutr. 2009, doi:10.1038/ejcn.2009.15. 445. Shannon, J.; King, I.B.; Moshofsky, R.; Lampe, J.W.; Li Gao, D.; Ray, R.M.; Thomas, D.B. Erythrocyte Fatty Acids and Breast Cancer Risk: A Case-Control Study in Shanghai, China. Am. J. Clin. Nutr. 2007, 85, 1090–1097, doi:10.1093/ajcn/85.4.1090. 446. Larsson, S.C.; Bergkvist, L.; Wolk, A. High-Fat Dairy Food and Conjugated Linoleic Acid Intakes in Relation to Colorectal Cancer Incidence in the Swedish Mammography Cohort. Am. J. Clin. Nutr. 2005, 82, 894–900, doi:10.1093/ajcn/82.4.894. 447. van Dam, R.M.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Dietary Patterns and Risk for Type 2 Diabetes Mellitus in U.S. Men. Ann. Intern. Med. 2002, 136, 201–209, doi:10.7326/0003-4819-136-3-200202050-00008. 448. Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Takakuwa, H.; Hamaguchi, M.; et al. Trans Fatty Acid Intake Induces Intestinal Inflammation and Impaired Glucose Tolerance. Front. Immunol. 2021, 12. 449. Ma, W.-W.; Zhao, L.; Yuan, L.-H.; Yu, H.-L.; Wang, H.; Gong, X.-Y.; Wei, F.; Xiao, R. Elaidic Acid Induces Cell Apoptosis through Induction of ROS Accumulation and Endoplasmic Reticulum Stress in SH‑SY5Y Cells. Mol. Med. Rep. 2017, 16, 9337–9346, doi:10.3892/mmr.2017.7830. 450. Artis, D.; Spits, H. The Biology of Innate Lymphoid Cells. Nature 2015, 517, 293–301, doi:10.1038/nature14189. 451. Chen, H.; Zhang, S.M.; Hernán, M.A.; Willett, W.C.; Ascherio, A. Dietary Intakes of Fat and Risk of Parkinson’s Disease. Am. J. Epidemiol. 2003, 157, 1007–1014, doi:10.1093/aje/kwg073. 452. Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Schneider, J.; Wilson, R.S. Dietary Fats and the Risk of Incident Alzheimer Disease. Arch. Neurol. 2003, 60, 194–200, doi:10.1001/archneur.60.2.194. 453. Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, doi:10.1007/s00394-017-1445-8. 454. Blaak, E.E.; Riccardi, G.; Cho, L. Carbohydrates: Separating Fact from Fiction. Atherosclerosis 2021, doi:10.1016/j.atherosclerosis.2021.03.025. 455. Thompson, M.E.; Noel, M.B. Issues in Nutrition: Carbohydrates. FP Essent. 2017, 452, 26–30. 456. Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2014, 7, 17–44, doi:10.3390/nu7010017. 457. Deehan, E.C.; Duar, R.M.; Armet, A.M.; Perez-Muñoz, M.E.; Jin, M.; Walter, J. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiol. Spectr. 2017, doi:10.1128/microbiolspec.bad-0019-2017. 458. Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; et al. Effects of a Medium-Chain Triglyceride-Based Ketogenic Formula on Cognitive Function in Patients with Mild-to-Moderate Alzheimer’s Disease. Neurosci. Lett. 2019, 690, 232–236, doi:10.1016/j.neulet.2018.10.048. 459. Barichella, M.; Cereda, E.; Cassani, E.; Pinelli, G.; Iorio, L.; Ferri, V.; Privitera, G.; Pasqua, M.; Valentino, A.; Monajemi, F.; et al. Dietary Habits and Neurological Features of Parkinson’s Disease Patients: Implications for Practice. Clin. Nutr. Edinb. Scotl. 2017, 36, 1054–1061, doi:10.1016/j.clnu.2016.06.020. 460. Wurtman, R.J.; Wurtman, J.J.; Regan, M.M.; McDermott, J.M.; Tsay, R.H.; Breu, J.J. Effects of Normal Meals Rich in Carbohydrates or Proteins on Plasma Tryptophan and Tyrosine Ratios. Am. J. Clin. Nutr. 2003, 77, 128–132, doi:10.1093/ajcn/77.1.128. 461. Murakami, K.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Fukushima, W.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; et al. Dietary Glycemic Index Is Inversely Associated with the Risk of Parkinson’s Disease: A Case-Control Study in Japan. Nutr. Burbank Los Angel. Cty. Calif 2010, 26, 515–521, doi:10.1016/j.nut.2009.05.021. 462. Schapira, A.H.; Cooper, J.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 1990, 54, 823–827, doi:10.1111/j.1471-4159.1990.tb02325.x. 463. Parker, W.D.; Parks, J.K.; Swerdlow, R.H. Complex I Deficiency in Parkinson’s Disease Frontal Cortex. Brain Res. 2008, 1189, 215–218, doi:10.1016/j.brainres.2007.10.061. 464. Tieu, K.; Perier, C.; Caspersen, C.; Teismann, P.; Wu, D.-C.; Yan, S.-D.; Naini, A.; Vila, M.; Jackson-Lewis, V.; Ramasamy, R.; et al. D-Beta-Hydroxybutyrate Rescues Mitochondrial Respiration and Mitigates Features of Parkinson Disease. J. Clin. Invest. 2003, 112, 892–901, doi:10.1172/JCI18797. 465. Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial Biogenesis in the Anticonvulsant Mechanism of the Ketogenic Diet. Ann. Neurol. 2006, 60, 223–235, doi:10.1002/ana.20899. 466. Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, doi:10.3390/nu10121833. 467. Yang, J.; Wang, H.P.; Zhou, L.; Xu, C.F. Effect of Dietary Fiber on Constipation: A Meta Analysis. World J. Gastroenterol. 2012, doi:10.3748/wjg.v18.i48.7378. 468. Schulz, R.; Slavin, J. Perspective: Defining Carbohydrate Quality for Human Health and Environmental Sustainability. Adv. Nutr. 2021, doi:10.1093/advances/nmab050. 469. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, doi:10.1016/j.cell.2016.05.041. 470. Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, doi:10.1080/19490976.2017.1290756. 471. Naismith, D.J.; Braschi, A. An Investigation into the Bioaccessibility of Potassium in Unprocessed Fruits and Vegetables. Int. J. Food Sci. Nutr. 2008, doi:10.1080/09637480701690519. 472. Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, doi:10.3389/fnut.2020.00101. 473. Afridi, H.I.; Rajput, K.; Kazi, T.G.; Talpur, F.N.; Baig, J.A. Evaluate the Correlation of Electrolytes with Biochemical Parameters in Biological Samples of Parkinson’s Disease Patients at Different Stages. 2020, doi:10.21203/rs.3.rs-22404/v1. 474. Wu, H.; Huang, R.; Fan, J.; Luo, N.; Yang, X. Low Potassium Disrupt Intestinal Barrier and Result in Bacterial Translocation. J. Transl. Med. 2022, 20, 309, doi:10.1186/s12967-022-03499-0. 475. Follett, J.; Darlow, B.; Wong, M.B.; Goodwin, J.; Pountney, D.L. Potassium Depolarization and Raised Calcium Induces α-Synuclein Aggregates. Neurotox. Res. 2013, doi:10.1007/s12640-012-9366-z. 476. Ha, Y.; Jeong, J.A.; Kim, Y.; Churchill, D.G. Sodium and Potassium Relating to Parkinson’s Disease and Traumatic Brain Injury. In Metal Ions in Life Sciences; 2016. 477. Ahmed, S.S.S.J.; Santosh, W. Metallomic Profiling and Linkage Map Analysis of Early Parkinson’s Disease: A New Insight to Aluminum Marker for the Possible Diagnosis. PLoS ONE 2010, doi:10.1371/journal.pone.0011252. 478. Aronson, P.S.; Giebisch, G. Effects of PH on Potassium: New Explanations for Old Observations. J. Am. Soc. Nephrol. 2011, doi:10.1681/ASN.2011040414. 479. Redondo-Useros, N.; Nova, E.; González-Zancada, N.; Díaz, L.E.; Gómez-Martínez, S.; Marcos, A. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients 2020, 12, 1776, doi:10.3390/nu12061776. 480. Yu, J.S.L.; Correia-Melo, C.; Zorrilla, F.; Herrera-Dominguez, L.; Wu, M.Y.; Hartl, J.; Campbell, K.; Blasche, S.; Kreidl, M.; Egger, A.-S.; et al. Microbial Communities Form Rich Extracellular Metabolomes That Foster Metabolic Interactions and Promote Drug Tolerance. Nat. Microbiol. 2022, 7, 542–555, doi:10.1038/s41564-022-01072-5. 481. Blasche, S.; Kim, Y.; Mars, R.; Machado, D.; Maansson, M.; Kafkia, E.; Milanese, A.; Zeller, G.; Teusink, B.; Nielsen, J.; et al. Metabolic Cooperation and Spatiotemporal Niche Partitioning in a Kefir Microbial Community. Nat. Microbiol. 2021, 6, 196–208, doi:10.1038/s41564-020-00816-5. 482. Keely, S.J. Decoding Host–Microbiota Communication in the Gut – Now We’re Flying! J. Physiol. 2017, 595, 417–418, doi:10.1113/JP272980. 483. Price, N.D.; Reed, J.L.; Palsson, B.Ø. Genome-Scale Models of Microbial Cells: Evaluating the Consequences of Constraints. Nat. Rev. Microbiol. 2004, 2, 886–897, doi:10.1038/nrmicro1023. 484. ILOG CPLEX Optimization Studio - Get Started Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio/get-started (accessed on 11 May 2022). 485. R: The R Project for Statistical Computing Available online: https://www.r-project.org/ (accessed on 11 May 2022). 486. Bauer, Eugen. Package BacArena 2016. 487. SybilSBML Source: R/SybilSBML.R Available online: https://rdrr.io/cran/sybilSBML/src/R/sybilSBML.R (accessed on 11 May 2022). 488. CPLEX Optimizer | IBM Available online: https://www.ibm.com/analytics/cplex-optimizer (accessed on 11 May 2022). 489. CRAN Package Check Results for Package CplexAPI Available online: https://cran-archive.r-project.org/web/checks/2021/2021-11-05_check_results_cple xAPI.html (accessed on 11 May 2022). 490. Daniel, F.; Analytics, R.; Weston, S. DoMC: Foreach Parallel Adaptor for “Parallel” 2022. 491. Daniel, F.; Corporation, M.; Weston, S. DoSNOW: Foreach Parallel Adaptor for the “snow” Package 2022. 492. Daniel, F.; Ooi, H.; Calaway, R.; Microsoft; Weston, S. Foreach: Provides Foreach Looping Construct 2022. 493. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688, doi:10.1038/s41587-020-0548-6. 494. Rivera-Chávez, F.; Lopez, C.A.; Bäumler, A.J. Oxygen as a Driver of Gut Dysbiosis. Free Radic. Biol. Med. 2017, 105, 93–101, doi:10.1016/j.freeradbiomed.2016.09.022. 495. Summary of MetaCyc, Version 26.1 Available online: https://biocyc.org/META/organism-summary (accessed on 21 September 2022). 496. Yu, D.; Yang, Y.; Long, J.; Xu, W.; Cai, Q.; Wu, J.; Cai, H.; Zheng, W.; Shu, X.O. Long-Term Diet Quality and Gut Microbiome Functionality: A Prospective, Shotgun Metagenomic Study among Urban Chinese Adults. Curr. Dev. Nutr. 2021, doi:10.1093/cdn/nzab026. 497. Zheng, Y.; Bek, M.K.; Prince, N.Z.; Peralta Marzal, L.N.; Garssen, J.; Perez Pardo, P.; Kraneveld, A.D. The Role of Bacterial-Derived Aromatic Amino Acids Metabolites Relevant in Autism Spectrum Disorders: A Comprehensive Review. Front. Neurosci. 2021, 15. 498. Persico, A.M.; Napolioni, V. Urinary P-Cresol in Autism Spectrum Disorder. Neurotoxicol. Teratol. 2013, 36, 82–90, doi:10.1016/j.ntt.2012.09.002. 499. Pedersen, G.; Brynskov, J.; Saermark, T. Phenol Toxicity and Conjugation in Human Colonic Epithelial Cells. Scand. J. Gastroenterol. 2002, 37, 74–79, doi:10.1080/003655202753387392. 500. McCall, I.C.; Betanzos, A.; Weber, D.A.; Nava, P.; Miller, G.W.; Parkos, C.A. Effects of Phenol on Barrier Function of a Human Intestinal Epithelial Cell Line Correlate with Altered Tight Junction Protein Localization. Toxicol. Appl. Pharmacol. 2009, 241, 61–70, doi:10.1016/j.taap.2009.08.002. 501. Russell, W.R.; Duncan, S.H.; Scobbie, L.; Duncan, G.; Cantlay, L.; Calder, A.G.; Anderson, S.E.; Flint, H.J. Major Phenylpropanoid-Derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Mol. Nutr. Food Res. 2013, doi:10.1002/mnfr.201200594. 502. Rekdal, V.M.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and Inhibition of an Interspecies Gut Bacterial Pathway for Levodopa Metabolism. Science 2019, 364, doi:10.1126/science.aau6323. 503. van Kessel, S.P.; Auvinen, P.; Scheperjans, F.; El Aidy, S. Gut Bacterial Tyrosine Decarboxylase Associates with Clinical Variables in a Longitudinal Cohort Study of Parkinsons Disease. Npj Park. Dis. 2021, 7, 1–8, doi:10.1038/s41531-021-00260-0. 504. van Kessel, S.P.; de Jong, H.R.; Winkel, S.L.; van Leeuwen, S.S.; Nelemans, S.A.; Permentier, H.; Keshavarzian, A.; El Aidy, S. Gut Bacterial Deamination of Residual Levodopa Medication for Parkinson’s Disease. BMC Biol. 2020, doi:10.1186/s12915-020-00876-3. 505. Rekdal, V.M.; Bernadino, P.N.; Luescher, M.U.; Kiamehr, S.; Le, C.; Bisanz, J.E.; Turnbaugh, P.J.; Bess, E.N.; Balskus, E.P. A Widely Distributed Metalloenzyme Class Enables Gut Microbial Metabolism of Host-and Diet-Derived Catechols. eLife 2020, doi:10.7554/eLife.50845. 506. Li, X.; Zhang, B.; Hu, Y.; Zhao, Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front. Pharmacol. 2021, 12, 769501–769501, doi:10.3389/fphar.2021.769501. 507. Pappolla, M.A.; Perry, G.; Fang, X.; Zagorski, M.; Sambamurti, K.; Poeggeler, B. Indoles as Essential Mediators in the Gut-Brain Axis. Their Role in Alzheimer’s Disease. Neurobiol. Dis. 2021, 156, 105403, doi:10.1016/j.nbd.2021.105403. 508. Sonowal Robert; Swimm Alyson; Sahoo Anusmita; Luo Liping; Matsunaga Yohei; Wu Ziqi; Bhingarde Jui A.; Ejzak Elizabeth A.; Ranawade Ayush; Qadota Hiroshi; et al. Indoles from Commensal Bacteria Extend Healthspan. Proc. Natl. Acad. Sci. 2017, 114, E7506–E7515, doi:10.1073/pnas.1706464114. 509. Powell, D.N.; Swimm, A.; Sonowal, R.; Bretin, A.; Gewirtz, A.T.; Jones, R.M.; Kalman, D. Indoles from the Commensal Microbiota Act via the AHR and IL-10 to Tune the Cellular Composition of the Colonic Epithelium during Aging. Proc. Natl. Acad. Sci. 2020, 117, 21519–21526, doi:10.1073/pnas.2003004117. 510. Yang, W.; Yu, T.; Huang, X.; Bilotta, A.J.; Xu, L.; Lu, Y.; Sun, J.; Pan, F.; Zhou, J.; Zhang, W.; et al. Intestinal Microbiota-Derived Short-Chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nat. Commun. 2020, 11, 4457–4457, doi:10.1038/s41467-020-18262-6. 511. Delzenne, N.M.; Knudsen, C.; Beaumont, M.; Rodriguez, J.; Neyrinck, A.M.; Bindels, L.B. Contribution of the Gut Microbiota to the Regulation of Host Metabolism and Energy Balance: A Focus on the Gut-Liver Axis. In Proceedings of the Proceedings of the Nutrition Society; 2019. 512. Caussy, C.; Loomba, R. Gut Microbiome, Microbial Metabolites and the Development of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2018, doi:10.1038/s41575-018-0058-x. 513. He, L.H.; Yao, D.H.; Wang, L.Y.; Zhang, L.; Bai, X.L. Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-Alcoholic Fatty Liver Disease. Front. Microbiol. 2021, doi:10.3389/fmicb.2021.761836. 514. Laughlin, M.R. Normal Roles for Dietary Fructose in Carbohydrate Metabolism. Nutrients 2014, doi:10.3390/nu6083117. 515. Meyers, A.M.; Mourra, D.; Beeler, J.A. High Fructose Corn Syrup Induces Metabolic Dysregulation and Altered Dopamine Signaling in the Absence of Obesity. PLoS ONE 2017, doi:10.1371/journal.pone.0190206. 516. Ueno, M.; Bezerra, R.M.N.; Silva, M.S.; Tavares, D.Q.; Carvalho, C.R.; Saad, M.J.A. A High-Fructose Diet Induces Changes in Pp185 Phosphorylation in Muscle and Liver of Rats. Braz. J. Med. Biol. Res. 2000, 33, 1421–1427, doi:10.1590/S0100-879X2000001200004. 517. Montrose, D.C.; Nishiguchi, R.; Basu, S.; Staab, H.A.; Zhou, X.K.; Wang, H.; Meng, L.; Johncilla, M.; Cubillos-Ruiz, J.R.; Morales, D.K.; et al. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. CMGH 2021, doi:10.1016/j.jcmgh.2020.09.008. 518. Beisner, J.; Gonzalez-Granda, A.; Basrai, M.; Damms-Machado, A.; Bischoff, S.C. Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients 2020, doi:10.3390/nu12113444. 519. Benatar, J.R.; Stewart, R.A. The Effects of Changing Dairy Intake on Trans and Saturated Fatty Acid Levels- Results from a Randomized Controlled Study. Nutr. J. 2014, 13, 32, doi:10.1186/1475-2891-13-32. 520. Dabadie, H.; Motta, C.; Peuchant, E.; LeRuyet, P.; Mendy, F. Variations in Daily Intakes of Myristic and α-Linolenic Acids in Sn-2 Position Modify Lipid Profile and Red Blood Cell Membrane Fluidity. Br. J. Nutr. 2006, doi:10.1079/bjn20061813. 521. Russo, S.B.; Baicu, C.F.; Van Laer, A.; Geng, T.; Kasiganesan, H.; Zile, M.R.; Cowart, L.A. Ceramide Synthase 5 Mediates Lipid-Induced Autophagy and Hypertrophy in Cardiomyocytes. J. Clin. Invest. 2012, 122, 3919–3930, doi:10.1172/JCI63888. 522. Martínez, L.; Torres, S.; Baulies, A.; Alarcón-Vila, C.; Elena, M.; Fabriàs, G.; Casas, J.; Caballeria, J.; Fernandez-Checa, J.C.; García-Ruiz, C. Myristic Acid Potentiates Palmitic Acid-Induced Lipotoxicity and Steatohepatitis Associated with Lipodystrophy by Sustaning de Novo Ceramide Synthesis. Oncotarget 2015, 6, 41479–41496. 523. Vos, M.; Dulovic-Mahlow, M.; Mandik, F.; Frese, L.; Kanana, Y.; Haissatou Diaw, S.; Depperschmidt, J.; Böhm, C.; Rohr, J.; Lohnau, T.; et al. Ceramide Accumulation Induces Mitophagy and Impairs β-Oxidation in PINK1 Deficiency. Proc. Natl. Acad. Sci. 2021, 118, e2025347118, doi:10.1073/pnas.2025347118. 524. Plotegher, N.; Bubacco, L.; Greggio, E.; Civiero, L. Ceramides in Parkinson’s Disease: From Recent Evidence to New Hypotheses. Front. Neurosci. 2019, 13. 525. Walton, C.; Fowler, D.P.; Turner, C.; Jia, W.; Whitehead, R.N.; Griffiths, L.; Dawson, C.; Waring, R.H.; Ramsden, D.B.; Cole, J.A.; et al. Analysis of Volatile Organic Compounds of Bacterial Origin in Chronic Gastrointestinal Diseases. Inflamm. Bowel Dis. 2013, 19, 2069–2078, doi:10.1097/MIB.0b013e31829a91f6. 526. Walker, A.; Schmitt-Kopplin, P. The Role of Fecal Sulfur Metabolome in Inflammatory Bowel Diseases. Int. J. Med. Microbiol. 2021, 311, 151513, doi:10.1016/j.ijmm.2021.151513. 527. Levitt, M.D.; Furne, J.; Springfield, J.; Suarez, F.; DeMaster, E. Detoxification of Hydrogen Sulfide and Methanethiol in the Cecal Mucosa. J. Clin. Invest. 1999, 104, 1107–1114. 528. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230, doi:10.1038/nature11550. 529. Novotný, M.; Klimova, B.; Valis, M. Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way? Front. Aging Neurosci. 2019, 11. 530. Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29, doi:10.1093/advances/nmx009. 531. Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of Human Colonic Butyrate-Producing Bacteria Revealed by Analysis of the Butyryl-CoA:Acetate CoA-Transferase Gene. Environ. Microbiol. 2010, 12, 304–314, doi:10.1111/j.1462-2920.2009.02066.x. 532. Jeffery, I.B.; O’Toole, P.W. Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients 2013, 5, 234–252, doi:10.3390/nu5010234. 533. Tan, R.; Jin, M.; Shao, Y.; Yin, J.; Li, H.; Chen, T.; Shi, D.; Zhou, S.; Li, J.; Yang, D. High-Sugar, High-Fat, and High-Protein Diets Promote Antibiotic Resistance Gene Spreading in the Mouse Intestinal Microbiota. Gut Microbes 14, 2022442, doi:10.1080/19490976.2021.2022442. 534. Volynets, V.; Louis, S.; Pretz, D.; Lang, L.; Ostaff, M.J.; Wehkamp, J.; Bischoff, S.C. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. J. Nutr. 2017, 147, 770–780, doi:10.3945/jn.116.242859. 535. Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73, doi:10.1186/s12967-017-1175-y. 536. Cassani, E.; Privitera, G.; Pezzoli, G.; Pusani, C.; Madio, C.; Iorio, L.; Barichella, M. Use of Probiotics for the Treatment of Constipation in Parkinson’s Disease Patients. Minerva Gastroenterol. Dietol. 2011. 537. Gao, K.; Mu, C.; Farzi, A.; Zhu, W. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723, doi:10.1093/advances/nmz127. 538. Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56, doi:10.3390/nu8010056. 539. Hubbard, T.D.; Murray, I.A.; Perdew, G.H. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab. Dispos. 2015, 43, 1522–1535, doi:10.1124/dmd.115.064246. 540. Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward Personalized Medicine. Mass Spectrom. Rev. 2019, 38, 221–238, doi:10.1002/mas.21548. 541. Cassani, E.; Barichella, M.; Ferri, V.; Pinelli, G.; Iorio, L.; Bolliri, C.; Caronni, S.; Faierman, S.A.; Mottolese, A.; Pusani, C.; et al. Dietary Habits in Parkinson’s Disease: Adherence to Mediterranean Diet. Parkinsonism Relat. Disord. 2017, 42, 40–46, doi:10.1016/j.parkreldis.2017.06.007. 542. Sun, J.; Li, H.; Jin, Y.; Yu, J.; Mao, S.; Su, K.P.; Ling, Z.; Liu, J. Probiotic Clostridium Butyricum Ameliorated Motor Deficits in a Mouse Model of Parkinson’s Disease via Gut Microbiota-GLP-1 Pathway. Brain. Behav. Immun. 2021, 91, 703–715, doi:10.1016/j.bbi.2020.10.014. 543. Zacharias, H.U.; Kaleta, C.; Cossais, F.; Schaeffer, E.; Berndt, H.; Best, L.; Dost, T.; Glüsing, S.; Groussin, M.; Poyet, M.; et al. Microbiome and Metabolome Insights into the Role of the Gastrointestinal–Brain Axis in Parkinson’s and Alzheimer’s Disease: Unveiling Potential Therapeutic Targets. Metabolites 2022, 12, 1222, doi:10.3390/metabo12121222. 544. Gough, E.; Shaikh, H.; Manges, A.R. Systematic Review of Intestinal Microbiota Transplantation (Fecal Bacteriotherapy) for Recurrent Clostridium Difficile Infection. Clin. Infect. Dis. 2011, 53, 994–1002, doi:10.1093/cid/cir632. 545. Xue, L.J.; Yang, X.Z.; Tong, Q.; Shen, P.; Ma, S.J.; Wu, S.N.; Zheng, J.L.; Wang, H.G. Fecal Microbiota Transplantation Therapy for Parkinson’s Disease: A Preliminary Study. Medicine (Baltimore) 2020, 99, e22035–e22035, doi:10.1097/MD.0000000000022035. 546. Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The Gut–Brain Axis and Its Relation to Parkinson’s Disease: A Review. Front. Aging Neurosci. 2022, 13, 782082, doi:10.3389/fnagi.2021.782082. 547. Nganga, R.; Oleinik, N.; Ogretmen, B. Mechanisms of Ceramide-Dependent Cancer Cell Death. Adv. Cancer Res. 2018, 140, 1–25, doi:10.1016/bs.acr.2018.04.007. 548. Field, B.C.; Gordillo, R.; Scherer, P.E. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front. Endocrinol. 2020, 11. 549. Lyn-Cook, L.E.; Lawton, M.; Tong, M.; Silbermann, E.; Longato, L.; Jiao, P.; Mark, P.; Wands, J.R.; Xu, H.; de la Monte, S.M. Hepatic Ceramide May Mediate Brain Insulin Resistance and Neurodegeneration in Type 2 Diabetes and Non-Alcoholic Steatohepatitis. J. Alzheimers Dis. JAD 2009, 16, 715–729, doi:10.3233/JAD-2009-0984. 550. Custodia, A.; Aramburu-Núñez, M.; Correa-Paz, C.; Posado-Fernández, A.; Gómez-Larrauri, A.; Castillo, J.; Gómez-Muñoz, A.; Sobrino, T.; Ouro, A. Ceramide Metabolism and Parkinson’s Disease-Therapeutic Targets. Biomolecules 2021, 11, 945, doi:10.3390/biom11070945. 551. Xing, Y.; Tang, Y.; Zhao, L.; Wang, Q.; Qin, W.; Ji, X.; Zhang, J.; Jia, J. Associations between Plasma Ceramides and Cognitive and Neuropsychiatric Manifestations in Parkinson’s Disease Dementia. J. Neurol. Sci. 2016, 370, 82–87, doi:10.1016/j.jns.2016.09.028. 552. Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364, doi:10.3390/cells8040364. 553. de Wit, N.M.; den Hoedt, S.; Martinez-Martinez, P.; Rozemuller, A.J.; Mulder, M.T.; de Vries, H.E. Astrocytic Ceramide as Possible Indicator of Neuroinflammation. J. Neuroinflammation 2019, 16, 48, doi:10.1186/s12974-019-1436-1. 554. Hebbar, S.; Sahoo, I.; Matysik, A.; Argudo Garcia, I.; Osborne, K.A.; Papan, C.; Torta, F.; Narayanaswamy, P.; Fun, X.H.; Wenk, M.R.; et al. Ceramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila Blue Cheese (Bchs) Mutants. Sci. Rep. 2015, 5, 15926, doi:10.1038/srep15926. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
283 páginas +1 anexo |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Doctorado en Ciencias Biomédicas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84412/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84412/2/1018441690.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84412/3/1018441690.2023.Anexos_L_M_N_O.xlsx https://repositorio.unal.edu.co/bitstream/unal/84412/4/1018441690.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 81ddb227641c104017d52b938f45781c 1aacf4dab676d50f9867ae3c33ef61f6 c4614071f26fe03d68fec461a0ce258c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089849928417280 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pinzón Velasco, Andrés Mauricio366c2eddf6aa24434ee55e57da235448Forero Rodriguez, Lady Johanna56439fd19ae816d16bd06a82c54a76efGrupo de Investigación en Bioinformática y Biología de Sistemashttps://www.researchgate.net/profile/Lady-Forero-Rodriguez2023-08-02T02:31:27Z2023-08-02T02:31:27Z2023https://repositorio.unal.edu.co/handle/unal/84412Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa Enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa de carácter progresivo y crónico, principal causa de pérdida de coordinación de los movimientos (alteraciones motoras) y de alteraciones no motoras, entre las que se incluyen los síntomas gastrointestinales. Clínicamente es definida como la pérdida de neuronas dopaminérgicas en el mesencéfalo. Alteraciones características en la composición de la microbiota intestinal han sido reportadas en pacientes con EP vs controles sanos, sin embargo no se ha caracterizado la composición en pacientes vs controles en latinoamérica y su función aún no es clara en el contexto de esta enfermedad. Para abordar dicha problemática se obtuvo materia fecal de participantes Colombianos (n =25 EP casos idiopáticos, n =25 controles) para el análisis de información de 16S rRNA y su posterior modelado computacional. Los participantes con EP fueron evaluados por un neurólogo experto en desórdenes del movimiento y todos los individuos respondieron a cuestionarios de consumo. Las muestras de heces de estos individuos fueron analizadas a través de la secuenciación del gen 16S rRNA. Se hizo análisis de diversidad, composición diferencial y modelamiento computacional individualizado teniendo en cuenta la dieta y composición bacteriana fecal de cada participante. Nuestros resultados más importantes incluyen lo siguiente: tres metabolitos de la dieta fueron diferentes entre pacientes con PD y controles, tales como Ácidos grasos trans, Carbohidratos y Potasio. Seis zOTUs cambiaron significativamente en sus abundancias relativas entre pacientes con EP ycontroles sanos. Familias Verrucomicrobioaceae, Lachnospiraceae, Peptostreptococcaceae, Lactobacilliaceae, y Streptococcaceae. Además, el modelado metabólico personalizado de los microbiomas intestinales reveló patrones metabólicos que pueden asociarse a la enfermedad, particularmente la particularmente la producción de cinco metabolitos (Ácido fenilacético , Indol , L-triptófano, D-Fructosa y Ácido Mirístico), relacionados al metabolismo de aminoácidos aromáticos y la dieta. Por tanto, los resultados sugieren que la dieta y la composición bacteriana intestinal podrían afectar el metabolismo del huésped y así mismo relacionarse con la enfermedad. (Texto tomado de la fuente).Parkinson's Disease (PD) is a progressive and chronic neurodegenerative disease that is the main cause of loss of coordination of movements (motor disorders) and non-motor disorders, including gastrointestinal symptoms. Clinically it is defined as the loss of dopaminergic neurons in the midbrain. Alterations in the composition of the intestinal microbiota have been reported in patients with PD vs healthy controls, however the composition in patients vs. controls in Latin America has not been characterized and its function is still unclear in the context of this disease. To address this problem, fecal matter was obtained from Colombian participants (n = 25 PD idiopathic cases, n = 25 controls) for the analysis of rRNA16S information. Participants with PD were evaluated by a neurologist with expertise in movement disorders, and all individuals answered consumer questionnaires. All this formation was therefore used for further personalized computational analysis. Stool samples from these individuals were analyzed through 16S rRNA gene sequencing. An analysis of diversity, differential composition and individualized computational modeling was carried out, taking into account the diet and fecal bacterial composition of each participant. Our most important results include the following: three dietary metabolites were different between PD patients and controls such as Trans Fatty Acids, Carbohydrates and Potassium. Six zOTUs changed significantly in their relative abundances between PD patients and healthy controls. Families Verrucomicrobioaceae, Lachnospiraceae, Peptostreptococcaceae, Lactobacilliaceae, and Streptococcaceae. Furthermore, individualized metabolic modeling of gut microbiomes revealed metabolic patterns that may be associated with disease, production of five metabolites (Phenylacetic Acid, Indole, L-Tryptophan, D-Fructose, and Myristic Acid), related to the metabolism of aromatic amino acids, and the diet. Therefore, the results suggest that the diet and the intestinal bacterial composition could affect the metabolism of the host and therefore relate to the disease.DoctoradoDoctor en Ciencias BiomédicasSujetos de estudio Originalmente se reclutaron 56 sujetos de edad (con una diferencia máxima de + 2 años) y sexo emparejados (31 pacientes con EP, 25 sujetos de control) para participar en el estudio. Se excluyeron 6 participantes en base a los criterios de inclusión/exclusión, con lo que el número total de sujetos fue de 50 (25 pacientes con EP, 25 sujetos de control). El estudio fue aprobado por el comité de ética de la Universidad Nacional de Colombia y todos los participantes dieron su consentimiento informado (Anexo A). El diagnóstico de los pacientes fue realizado por un neurólogo especialista con amplia experiencia en trastornos del movimiento, utilizando los datos obtenidos de historias clínicas y la escala de deterioro de Webster para la enfermedad de Parkinson, la cual cuantifica el grado de inhabilidad de un paciente, determinando así la severidad de la enfermedad. Los criterios de exclusión utilizados fueron: 1) uso regular de probióticos o antibióticos los últimos 3 meses antes de la toma de la muestra. 2) Parkinsonismo secundario, 3) Parkinson familiar, 3) Parkinson familiar, 3) enfermedades primarias gastrointestinales, 4) otras alteraciones neurológicas o psiquiátricas, 5) cambios en los hábitos dietarios. Para los controles los criterios de exclusión fueron 1) uso regular de probióticos o antibióticos los últimos 3 meses antes de la toma de muestras. 2)50 enfermedades primarias gastrointestinales, 3) alteraciones neurológicas o psiquiátricas, 4) cambios en los hábitos dietarios. Toma de muestras y extracción de ADN Las muestras fecales se recogieron en casa con las indicaciones del médico en recipientes estériles desechables. Las muestras fecales se recogieron en horas de la mañana, se congelaron y se almacenaron a -20°C para su posterior procesamiento (máximo 3 días después). Se utilizó el ZymoBIOMICS DNA Miniprep Kit (Zymo Research) según las instrucciones del fabricante y ciertos perfeccionamientos del protocolo en casa (Anexo 2). Tras la extracción del ADN (3 réplicas técnicas por muestra), se cuantificó mediante Nanodrop ND-1000 (Thermo Fisher Scientific, Wilmington, DE), Qubit Invitrogen (Life Technologies, CA) y se evaluó la integridad del ADN mediante electroforesis en gel de agarosa al 0,8%. Amplicón del gen 16S rRNA y secuenciación Los extractos de ADN se transfirieron a placas de 96 pocillos. Los servicios de secuenciación de la Universidad de Iowa (Iowa State University DNA Facility, Estados Unidos) se encargaron de la preparación y secuenciación del ADN. Las regiones hipervariables del gen 16S rRNA bacteriano V4-V5 se amplificaron utilizando el cebador universal 16S forward (515F: GTGYCAGCMGCCGCGTAA) y el cebador reverse (926R:CCGYCAATTYMTTTRAGTTT). De este modo, las bibliotecas de ADN se multiplexaron para su secuenciación en la plataforma Illumina MiSeq (2 × 250 fines pareados) en un solo carril de la celda de flujo. Bioinformática y análisis estadístico Se obtuvieron los datos ya demultiplexados, las réplicas fueron concatenadas, se filtraron con el programa prinseq-lite-0.20.4. Se cortaron las bases por debajo de Q-score 24 al principio y al final de las lecturas (Secuencias almacenadas en la base de datos SRA del geneBank con el número de acceso BioProject ; PRJNA975118, disponibles a partir del51 24 de Mayo de 2024). Tras el procesamiento, se obtuvieron las secuencias únicas para la eliminación de quimeras y la agrupación en unidades taxonómicas operativas de radio cero (zOTUs) utilizando el algoritmo unoise3 encontrado en Usearch [336–340]. Las secuencias con menos de 400 pb se eliminaron de los datos brutos. Las asignaciones taxonómicas se obtuvieron utilizando el conjunto de secuencias de entrenamiento de la base de datos RDP v16 con un nivel de confianza del 80%. Las comparaciones estadísticas y la visualización de los datos se realizaron mediante R (versión 4.1.0). Para considerar las comparaciones significativas se tuvieron en cuenta los valores p < 0,05, o los valores p ajustados < 0,05. En las comparaciones, para evaluar variables clínicas potencialmente confusas, se utilizó la prueba t de Student, la prueba de rangos con signo de Wilcoxon o la prueba exacta de Fisher, dependiendo del tipo y la distribución de cada variable. Las figuras se trazaron con ggplot2 (v. 2_3.3.5) principalmente. El análisis de la estructura y composición de la comunidad bacteriana se realizó mediante el paquete R phyloseq [349] (v. 1.36.0). El tamaño de la biblioteca de cada muestra se normalizó utilizando la rarefacción para igualar la profundidad de la secuencia y excluir los taxones presentes en menos del 20% de todas las muestras. La diversidad y la riqueza bacteriana se analizaron utilizando Phyloseq con los índices de diversidad alfa (riqueza observada, índice de Shannon e índice de Simpson inverso). Se utilizó la prueba de suma de rangos de Wilcoxon para evaluar las diferencias de diversidad alfa. Para evaluar la diversidad beta, se utilizó phyloseq (v. 1.36.0). Se utilizaron medidas de distancia como la métrica de distancia ponderada y no ponderada de UniFrac para la ordenación sin restricciones de las proporciones de géneros entre los grupos de EP y controles. El análisis multivariado permutado de la varianza PERMANOVA, se ejecutó con el comando ANOSIM (Análisis de similitudes) y Adonis (Permutational Multivariate Analysis of variance using Distance Matrices) parámetro perm = 9999 implementado en vegan (v. 2.5-7) [341]. Estos fueron trazados por el escalamiento multidimensional no métrico (NMDS) utilizando ggplot2 (v. 2_3.3.5) paquetes en el software R.52 Evaluamos la abundancia diferencial entre los grupos de EP y controles mediante la prueba de expresión diferencial basada en un modelo que utiliza la distribución binomial negativa DESeq2 (v. 1.32.0) utilizando el paquete Phyloseq. Este análisis realiza una normalización de las bibliotecas, tiene en cuenta sólo las zOTUs comunes de los dos grupos y obtiene un valor corregido de diferencias significativas [342]. Para la elección de los géneros se toman aquellas zOTUs que se encuentran entre las 100 primeras más abundantes, es decir, se tomaron aquellas zOTUs que están por encima de una abundancia relativa de 0.1. Y realizamos comparaciones en tres niveles taxonómicos (zOTU, género y familia), entre los grupos de EP y controles. Obtención de datos nutricionales y de la enfermedad Con base en los mismos sujetos de estudio y toma de muestras detallada en el capítulo 1 una nutricionista diplomada desarrolló una evaluación nutricional completa adaptada a los fines de la investigación en los 50 sujetos (25 casos y 25 controles) mediante una visita domiciliaria entre junio de 2018 y febrero de 2019. Se obtuvo información sobre diferentes datos clínicos entre los que se incluyen Deposiciones por semana, Escala de Bristol (evaluar de forma descriptiva y gráfica siete tipos de heces, según su forma y consistencia [408]), Escala de Webster, Perímetro de pantorrilla, Escala de gravedad de la enfermedad, la cual es basada en la Escala de Hoehn y Yahr que es utilizada para medir la progresión de los síntomas de la enfermedad y el nivel de discapacidad [409], medicamentos consumidos, otras patologías, entre otras.76 Obtención de componentes de los alimentos La evaluación nutricional incluyó un test de screening de desnutrición con la herramienta de screening de Ferguson [410], la historia nutricional, la evaluación antropométrica, el patrón alimentario y la ingesta nutricional. Se evaluó la ingesta de alimentos con dos recordatorios de 24 horas de los Pasos Múltiples diseñados por el Departamento de Agricultura de los Estados Unidos (USDA). El patrón alimentario de los últimos seis meses se identificó mediante un Cuestionario de Frecuencia Alimentaria cualitativo modificado según la Encuesta Nacional de Situación Nutricional de 2005 y 2010 [411], las Guías Alimentarias para los Estadounidenses y los nutrientes trazadores de riesgo relativos a la composición de la microbiota y la enfermedad de Parkinson. Cada alimento fue codificado y analizado utilizando tanto la Tabla Colombiana de Composición de Alimentos - 2015 [412], como la Lista de Composición de Alimentos del USDA [413], Finlandia [414] y Alemania [415], que comprende 60 nutrientes. Adicionalmente, se evaluó el cuestionario de frecuencia de alimentos según la periodicidad en una escala de 10 puntos avalada por el USDA [416]. Evaluación de datos nutricionales En la evaluación antropométrica se utilizó el peso, la estatura o la estimación de la altura del talón de la rodilla con la ecuación desarrollada para Chumlea [417] . Se evaluó la masa muscular con las circunferencias del brazo y la pantorrilla y la masa grasa con la circunferencia del pliegue cutáneo del tríceps. En el análisis se añadió el IMC estratificado por el punto de corte para adultos [418] y adultos mayores [419]. Estimación de la masa muscular y grasa según los puntos de corte establecidos en la Tercera Encuesta Nacional de Salud y Nutrición (NHANES) [420] y Frisancho [421] para la circunferencia muscular del brazo.77 Adicionalmente, se contrastó la ingesta de nutrientes siguiendo las recomendaciones dietéticas establecidas en la Resolución colombiana 3803 de 2016. Para ello se tomaron las Recomendaciones de Ingesta de Energía y Nutrientes (RIEN), que es la adaptación de las Ingestas Dietéticas de Referencia (DRI). El valor de la ingesta de cada nutriente se comparó con los siguientes valores: Rango de Distribución de Macronutrientes Adecuado (RDA), EAR (Requerimiento Medio Estimado), Cantidades Dietéticas Recomendadas (RDA), AI (Ingesta Adecuada) o UL (Nivel de Ingesta Superior Tolerable) para establecer si la ingesta de cada nutriente era deficit o supera el valor recomendado. Sólo se tomaron para el análisis los nutrientes indicados en las recomendaciones. Análisis estadístico Las comparaciones estadísticas y la visualización de los datos se realizaron mediante R (versión 4.1.0). Para considerar las comparaciones significativas se tuvieron en cuenta los valores p < 0,05, o los valores p ajustados < 0,05. En las comparaciones para evaluar variables clínicas potencialmente confusas, se utilizó la prueba t de Student, la prueba de rangos con signo de Wilcoxon o la prueba exacta de Fisher, dependiendo del tipo y la distribución de cada variable. Las figuras se trazaron con ggplot2 (v. 2_3.3.5). Las variables de nutrientes (metabolitos o elementos alimentarios) de la dieta de los pacientes y los controles se ajustaron por la ingesta energética (dividida por la ingesta energética total en kilocalorías y multiplicada por la media de kilocalorías o dividida por la ingesta energética total en kilocalorías y multiplicada por 1000 ). A partir de los cuestionarios de consumo de 24 H se obtuvo la información correspondiente de cada participante, la cantidad de cada alimento y nutrientes pertenecientes a cada alimento (metabolitos de la dieta). Con el fin de explorar posibles patrones dietarios, se utilizó el Análisis de Componentes Principales (PCA) de la energía ajustada. La correlación entre las variables se calculó utilizando la correlación de rangos de Spearman y la prueba de rangos con signo de Wilcoxon.78 Reconstrucción de la comunidad bacteriana personalizada Para predecir los procesos metabólicos de la comunidad microbiana, integramos la información de abundancia de cada individuo basada en la colección AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) (Versión 1.02). La colección AGORA está compuesta por 818 reconstrucciones metabólicas de especies microbianas comunes del intestino humano. Estos modelos se utilizan para el análisis del flujo metabólico como el FBA (Flux Balance Analysis). Así, tomamos las secuencias filtradas del gen 16S rRNA pertenecientes a las zOTUs obtenidas y las mapeamos a los modelos correspondientes contenidos en una colección refinada de los modelos publicados originalmente en la colección AGORA usando el paquete MicrobiomeAGORA [477,478,479]. Para ello tomamos el 97% como identidad de secuencia mínima y así encontramos el vecino más cercano basado en las secuencias 16S. Análisis individualizado de reconstrucción de la comunidad bacteriana Para predecir la composición funcional del microbioma intestinal a partir de los datos del 16S, utilizamos PICRUSt2 (v 2-2.3.0-6) entre los grupos de EP y de control.108 Como se ha dicho antes, para modelar el comportamiento de la comunidad de la composición del microbioma previamente identificada, utilizamos el paquete de R llamado BacArena [314], aquí las bacterias se representan como individuos situados en rejillas, un lugar donde pueden moverse aleatoriamente y son capaces de tomar e intercambiar metabolitos que se producen/consumen o se encuentran en el entorno. El entorno se compone de 3600 celdas de rejilla donde los modelos de microbios pueden crecer y cerca de 300-500 reconstrucciones de microbios añadidos inicialmente en función de las abundancias relativas. Con un total de 12H pasos de tiempo de crecimiento de cada uno de los modelos microbianos, esto teniendo en cuenta que existe una aproximación del ritmo de alimentación y ayuno durante el día de 12 h. Realizamos el modelado basado en restricciones utilizando el paquete de R Sybil [323] donde la biomasa es el objetivo de la optimización en el FBA [318] y ILOG CPLEX [484] como solucionador de programación lineal. Esta simulación se realizó utilizando 10 réplicas en paralelo (Anexo P). En estos modelos de comunidad intestinal bacteriana específica para cada individuo, obtuvimos la concentración de productos metabólicos finales como los AGCCs al final de la simulación y las diferencias significativas entre el control sano y el modelado personalizado de los pacientes con EP fueron probadas usando el modelo lineal generalizado. Software Las simulaciones y su análisis se realizaron en el entorno R (4.1.0 y 3.6.1) [485]. Se utilizaron los paquetes BacArena [486] y sybil (versión 2.2.0 ) [323]. Además se utilizaron los paquetes: sybilSBML (versión 3.1.2) [487], el solucionador de programación lineal CPLEX (versión 12.7.1) [488], el paquete R cplexAPI (versión 1.4.0) [489]. Para la computación en paralelo, se utilizó el software parallel, con el paquete foreach (versión 1.5.2 ), doParallel (versión 1.0.17) [490–492].Reconstrucción y análisis de redes biológicas Investigación283 páginas +1 anexoapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Doctorado en Ciencias BiomédicasFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - Enfermedades600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosParkinson Disease/pathologyGastrointestinal ContentsModels, TheoreticalContenido DigestivoEnfermedad de Parkinson/patologíaModelos TeóricosEnfermedad de ParkinsonMicrobioma intestinalModelamiento computacionalModelamiento metabólicoDietaParkinson's diseaseDietGut microbiomeComputational modelingMetabolic modelingModelado computacional de la composición bacteriana intestinal en el contexto de la enfermedad de ParkinsonComputational modeling of intestinal bacterial composition in the context of Parkinson's diseaseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBireme1. Lebouvier, T.; Chaumette, T.; Paillusson, S.; Duyckaerts, C.; Bruley des Varannes, S.; Neunlist, M.; Derkinderen, P. The Second Brain and Parkinson’s Disease. Eur J Neurosci 2009, 30, 735–741, doi:10.1111/j.1460-9568.2009.06873.x.2. Orozco, J.L.; Valderrama-Chaparro, J.A.; Pinilla-Monsalve, G.D.; Molina-Echeverry, M.I.; Castaño, A.M.P.; Ariza-Araújo, Y.; Prada, S.I.; Takeuchi, Y. Parkinson’s Disease Prevalence, Colombiaage Distribution and Staging In. Neurol. Int. 2020, doi:10.4081/ni.2020.8401.3. Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 through 2030. Neurology 2007, doi:10.1212/01.wnl.0000247740.47667.03.4. Tran, J.; Anastacio, H.; Bardy, C. Genetic Predispositions of Parkinson’s Disease Revealed in Patient-Derived Brain Cells. Npj Park. Dis. 2020, 6, 1–18, doi:10.1038/s41531-020-0110-8.5. Ball, N.; Teo, W.-P.; Chandra, S.; Chapman, J. Parkinson’s Disease and the Environment. Front. Neurol. 2019, doi:10.3389/fneur.2019.00218.6. Maiti, P.; Manna, J.; Dunbar, G.L. Current Understanding of the Molecular Mechanisms in Parkinson’s Disease: Targets for Potential Treatments. Transl. Neurodegener. 2017, 6, 28, doi:10.1186/s40035-017-0099-z.7. Surmeier, D.J. Determinants of Dopaminergic Neuron Loss in Parkinson’s Disease. FEBS J. 2018, 285, 3657–3668, doi:10.1111/febs.14607.8. Munoz-Pinto, M.F.; Empadinhas, N.; Cardoso, S.M. The Neuromicrobiology of Parkinson’s Disease: A Unifying Theory. Ageing Res. Rev. 2021, doi:10.1016/j.arr.2021.101396.9. Alexander, G.E. Biology of Parkinson’s Disease: Pathogenesis and Pathophysiology of a Multisystem Neurodegenerative Disorder. Dialogues Clin. Neurosci. 2004, 6, 259–280.10. Pellicano, C.; Benincasa, D.; Pisani, V.; Buttarelli, F.R.; Giovannelli, M.; Pontieri, F.E. Prodromal Non-Motor Symptoms of Parkinson’s Disease. Neuropsychiatr. Dis. Treat. 2007, 3, 145–152.11. Braak, H.; de Vos, R.A.; Bohl, J.; Del Tredici, K. Gastric Alpha-Synuclein Immunoreactive Inclusions in Meissner’s and Auerbach’s Plexuses in Cases Staged for Parkinson’s Disease-Related Brain Pathology. Neurosci Lett 2006, 396, 67–72, doi:10.1016/j.neulet.2005.11.012.12. Braak, H.; Del Tredici, K.; Rüb, U.; De Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, doi:10.1016/S0197-4580(02)00065-9.13. Schaeffer, E.; Kluge, A.; Böttner, M.; Zunke, F.; Cossais, F.; Berg, D.; Arnold, P.182 Alpha Synuclein Connects the Gut-Brain Axis in Parkinson’s Disease Patients – A View on Clinical Aspects, Cellular Pathology and Analytical Methodology. Front. Cell Dev. Biol. 2020, 8, 573696, doi:10.3389/fcell.2020.573696.14. Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The Gut–Brain Axis and Its Relation to Parkinson’s Disease: A Review. Front. Aging Neurosci. 2022, 13, doi:10.3389/fnagi.2021.782082.15. Romano, S.; Savva, G.M.; Bedarf, J.R.; Charles, I.G.; Hildebrand, F.; Narbad, A. Meta-Analysis of the Parkinson’s Disease Gut Microbiome Suggests Alterations Linked to Intestinal Inflammation. Npj Park. Dis. 2021, 7, 1–13, doi:10.1038/s41531-021-00156-z.16. Toledo, A.R.L.; Monroy, G.R.; Salazar, F.E.; Lee, J.-Y.; Jain, S.; Yadav, H.; Borlongan, C.V. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, doi:10.3390/ijms23031184.17. De Angelis, M.; Ferrocino, I.; Calabrese, F.M.; De Filippis, F.; Cavallo, N.; Siragusa, S.; Rampelli, S.; Di Cagno, R.; Rantsiou, K.; Vannini, L.; et al. Diet Influences the Functions of the Human Intestinal Microbiome. Sci. Rep. 2020, 10, 4247, doi:10.1038/s41598-020-61192-y.18. Baert, F.; Matthys, C.; Mellaerts, R.; Lemaître, D.; Vlaemynck, G.; Foulon, V. Dietary Intake of Parkinson’s Disease Patients. Front. Nutr. 2020, doi:10.3389/fnut.2020.00105.19. Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Burmann, J.; Fassbender, K.; Schwiertz, A.; Schafer, K.H. Short Chain Fatty Acids and Gut Microbiota Differ between Patients with Parkinson’s Disease and Age-Matched Controls. Park. Relat Disord 2016, 32, 66–72, doi:10.1016/j.parkreldis.2016.08.019.20. Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wüllner, U. Functional Implications of Microbial and Viral Gut Metagenome Changes in Early Stage L-DOPA-Naïve Parkinson’s Disease Patients. Genome Med. 2017, doi:10.1186/s13073-017-0428-y.21. Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic Bacterial Composition in Parkinson’s Disease. Mov. Disord. 2015, 30, 1351–1360, doi:10.1002/mds.2630722. Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; et al. Parkinson’s Disease and Parkinson’s Disease Medications Have Distinct Signatures of the Gut Microbiome. Mov. Disord. 2017, 32, 739–749, doi:10.1002/mds.26942.23. Heintz-Buschart, A.; Pandey, U.; Wicke, T.; Sixel-Döring, F.; Janzen, A.; Sittig-Wiegand, E.; Trenkwalder, C.; Oertel, W.H.; Mollenhauer, B.; Wilmes, P. The Nasal and Gut Microbiome in Parkinson’s Disease and Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2018, doi:10.1002/mds.27105.24. Hopfner, F.; Künstner, A.; Müller, S.H.; Künzel, S.; Zeuner, K.E.; Margraf, N.G.; Deuschl, G.; Baines, J.F.; Kuhlenbäumer, G. Gut Microbiota in Parkinson Diseasein a Northern German Cohort. Brain Res. 2017, 1667, 41–45, doi:10.1016/j.brainres.2017.04.019.25. Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut Microbiota Are Related to Parkinson’s Disease and Clinical Phenotype. Mov Disord 2015, 30, 350–358, doi:10.1002/mds.26069.26. Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut Microbiota in Parkinson’s Disease: Temporal Stability and Relations to Disease Progression. EBioMedicine 2019, 44, 691–707, doi:10.1016/j.ebiom.2019.05.064.27. Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Yu.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; et al. Analysis of Gut Microbiota in Patients with Parkinson’s Disease. Bull. Exp. Biol. Med. 2017, 162, 734–737, doi:10.1007/s10517-017-3700-7.28. Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Song, Y.; Qin, N.; Chen, S.-D.; Xiao, Q. Alteration of the Fecal Microbiota in Chinese Patients with Parkinson’s Disease. Brain. Behav. Immun. 2018, 70, 194–202, doi:10.1016/j.bbi.2018.02.016.29. Pietrucci, D.; Cerroni, R.; Unida, V.; Farcomeni, A.; Pierantozzi, M.; Mercuri, N.B.; Biocca, S.; Stefani, A.; Desideri, A. Dysbiosis of Gut Microbiota in a Selected Population of Parkinson’s Patients. Parkinsonism Relat. Disord. 2019, 65, 124–130, doi:10.1016/j.parkreldis.2019.06.003.30. Jin, M.; Li, J.; Liu, F.; Lyu, N.; Wang, K.; Wang, L.; Liang, S.; Tao, H.; Zhu, B.; Alkasir, R. Analysis of the Gut Microflora in Patients With Parkinson’s Disease. Front. Neurosci. 2019, 13.31. Hasegawa, S.; Goto, S.; Tsuji, H.; Okuno, T.; Asahara, T.; Nomoto, K.; Shibata, A.; Fujisawa, Y.; Minato, T.; Okamoto, A.; et al. Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease. PLOS ONE 2015, 10, e0142164, doi:10.1371/journal.pone.0142164.32. Li, C.; Cui, L.; Yang, Y.; Miao, J.; Zhao, X.; Zhang, J.; Cui, G.; Zhang, Y. Gut Microbiota Differs Between Parkinson’s Disease Patients and Healthy Controls in Northeast China. Front. Mol. Neurosci. 2019, 12, 171, doi:10.3389/fnmol.2019.00171.33. Li, F.; Wang, P.; Chen, Z.; Sui, X.; Xie, X.; Zhang, J. Alteration of the Fecal Microbiota in North-Eastern Han Chinese Population with Sporadic Parkinson’s Disease. Neurosci. Lett. 2019, 707, 134297, doi:10.1016/j.neulet.2019.134297.34. Lin, C.H.; Chen, C.C.; Chiang, H.L.; Liou, J.M.; Chang, C.M.; Lu, T.P.; Chuang, E.Y.; Tai, Y.C.; Cheng, C.; Lin, H.Y.; et al. Altered Gut Microbiota and Inflammatory Cytokine Responses in Patients with Parkinson’s Disease. J. Neuroinflammation 2019, 16, 1–9, doi:10.1186/s12974-019-1528-y.35. Li, W.; Wu, X.; Hu, X.; Wang, T.; Liang, S.; Duan, Y.; Jin, F.; Qin, B. Structural Changes of Gut Microbiota in Parkinson’s Disease and Its Correlation with Clinical Features. Sci. China Life Sci. 2017, doi:10.1007/s11427-016-9001-4.36. Baldini, F.; Hertel, J.; Sandt, E.; Thinnes, C.C.; Neuberger-Castillo, L.; Pavelka, L.; Betsou, F.; Krüger, R.; Thiele, I. Parkinson’s Disease-Associated Alterations of the Gut Microbiome Predict Disease-Relevant Changes in Metabolic Functions. BMC Biol. 2020, 18, 62, doi:10.1186/s12915-020-00775-7.37. Thiele, I.; Palsson, B.Ø. A Protocol for Generating a High-Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 2010, 5, 93–121, doi:10.1038/nprot.2009.203.38. Magnúsdóttir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jäger, C.; Baginska, J.; Wilmes, P.; et al. Generation of Genome-Scale Metabolic Reconstructions for 773 Members of the Human Gut Microbiota. Nat. Biotechnol. 2016, 35, 81–89, doi:10.1038/nbt.3703.39. Heinken, A.; Basile, A.; Thiele, I. Advances in Constraint-Based Modelling of Microbial Communities. Curr. Opin. Syst. Biol. 2021, 27, 100346, doi:10.1016/j.coisb.2021.05.007.40. Bauer, E.; Thiele, I. From Metagenomic Data to Personalized in Silico Microbiotas: Predicting Dietary Supplements for Crohn’s Disease. Npj Syst. Biol. Appl. 2018, 4, doi:10.1038/s41540-018-0063-2.41. Heinken, A.; Hertel, J.; Thiele, I. Metabolic Modelling Reveals Broad Changes in Gut Microbial Metabolism in Inflammatory Bowel Disease Patients with Dysbiosis. Npj Syst. Biol. Appl. 2021, 7, 1–11, doi:10.1038/s41540-021-00178-6.42. de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s Disease. Lancet Neurol. 2006, 5, 525–535, doi:10.1016/S1474-4422(06)70471-9.43. Lebouvier, T.; Chaumette, T.; Damier, P.; Coron, E.; Touchefeu, Y.; Vrignaud, S.; Naveilhan, P.; Galmiche, J.P.; Bruley des Varannes, S.; Derkinderen, P.; et al. Pathological Lesions in Colonic Biopsies during Parkinson’s Disease. Gut 2008, 57, 1741–1743, doi:10.1136/gut.2008.162503.44. Mulak, A.; Bonaz, B. Brain-Gut-Microbiota Axis in Parkinson’s Disease. World J Gastroenterol 2015, 21, 10609–10620, doi:10.3748/wjg.v21.i37.10609.45. Braak, H.; Del Tredici, K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson’s Disease: Separating the Wheat from the Chaff. J. Park. Dis. 2017, doi:10.3233/JPD-179001.46. Hertel, J.; Harms, A.C.; Heinken, A.; Baldini, F.; Thinnes, C.C.; Glaab, E.; Vasco, D.A.; Pietzner, M.; Stewart, I.D.; Wareham, N.J.; et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease. Cell Rep. 2019, doi:10.1016/j.celrep.2019.10.035.47. Marinos, G.; Kaleta, C.; Waschina, S. Defining the Nutritional Input for Genome-Scale Metabolic Models: A Roadmap. PLOS ONE 2020, 15, e0236890, doi:10.1371/journal.pone.0236890.48. Raman, K.; Chandra, N. Flux Balance Analysis of Biological Systems: Applications and Challenges. Brief. Bioinform. 2009, 10, 435–449, doi:10.1093/bib/bbp011.49. Heinken, A.; Ravcheev, D.A.; Baldini, F.; Heirendt, L.; Fleming, R.M.T.; Thiele, I. Personalized Modeling of the Human Gut Microbiome Reveals Distinct Bile Acid Deconjugation and Biotransformation Potential in Healthy and IBD Individuals. bioRxiv 2017, doi:10.1101/229138.50. Heinken, A.; Thiele, I. Systems Biology of Host-Microbe Metabolomics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2015, 7, 195–219, doi:10.1002/wsbm.1301.51. Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8.52. Porras, A.M.; Shi, Q.; Zhou, H.; Callahan, R.; Montenegro-Bethancourt, G.; Solomons, N.; Brito, I.L. Geographic Differences in Gut Microbiota Composition Impact Susceptibility to Enteric Infection. Cell Rep. 2021, 36, 109457, doi:10.1016/j.celrep.2021.109457.53. Suzuki, T.A.; Worobey, M. Geographical Variation of Human Gut Microbial Composition. Biol. Lett. 2014, 10, 20131037, doi:10.1098/rsbl.2013.1037.54. Forero-Rodríguez, L.J.; Josephs-Spaulding, J.; Flor, S.; Pinzón, A.; Kaleta, C. Parkinson’s Disease and the Metal–Microbiome–Gut–Brain Axis: A Systems Toxicology Approach. Antioxidants 2022, 11, 71, doi:10.3390/antiox11010071.55. Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s Disease. J. Neural Transm. 2017, 124, 901–905, doi:10.1007/s00702-017-1686-y.56. Avendaño-Avendaño, S.B.; Bernal-Pacheco, O.; Esquivia-Pájaro, C.T. Caracterización funcional y calidad de vida en pacientes con enfermedad de Parkinson. Rev. Colomb. Med. Física Rehabil. 2019, 29, 93–102, doi:10.28957/rcmfr.v29n2a3.57. Qamar, M.A.; Sauerbier, A.; Politis, M.; Carr, H.; Loehrer, P.; Chaudhuri, K.R. Presynaptic Dopaminergic Terminal Imaging & Non-Motor Symptoms Assessment of Parkinson’s Disease: Evidence for Dopaminergic Basis? Park. Dis. 2017, doi:10.1038/s41531-016-0006-9.58. Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; 2018 ISBN 978-0-9944381-6-4.59. Pfeiffer, R.F. Non-Motor Symptoms in Parkinson’s Disease. Parkinsonism Relat. Disord. 2016, doi:10.1016/j.parkreldis.2015.09.004.60. Brudek, T. Inflammatory Bowel Diseases and Parkinson’s Disease. J. Park. Dis. 2019, doi:10.3233/JPD-191729.61. Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P.A. Environmental Risk Factors and Parkinson’s Disease: An Umbrella Review of Meta-Analyses. Parkinsonism Relat. Disord. 2016, doi:10.1016/j.parkreldis.2015.12.008.62. Chen, H.; Ritz, B. The Search for Environmental Causes of Parkinson’s Disease: Moving Forward. J. Park. Dis. 2018, doi:10.3233/JPD-181493.63. Pang, S.Y.-Y.; Ho, P.W.-L.; Liu, H.-F.; Leung, C.-T.; Li, L.; Chang, E.E.S.; Ramsden, D.B.; Ho, S.-L. The Interplay of Aging, Genetics and Environmental Factors in the Pathogenesis of Parkinson’s Disease. Transl. Neurodegener. 2019, 8, 23, doi:10.1186/s40035-019-0165-9.64. Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, Neuroinflammation and Biological Remodeling as Key Factors in Pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91, doi:10.1016/j.freeradbiomed.2017.10.379.65. Hindle, J.V. Ageing, Neurodegeneration and Parkinson’s Disease. Age Ageing 2010, 39, 156–161, doi:10.1093/ageing/afp223.66. Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s Disease: Why Is Advancing Age the Biggest Risk Factor? Ageing Res. Rev. 2014, 14, 19–30, doi:10.1016/j.arr.2014.01.004.67. Liu, Y.; Yao, Z.; Zhang, L.; Zhu, H.; Deng, W.; Qin, C. Insulin Induces Neurite Outgrowth via SIRT1 in SH-SY5Y Cells. Neuroscience 2013, 238, 371–380, doi:10.1016/j.neuroscience.2013.01.034.68. de Mello, N.P.; Orellana, A.M.; Mazucanti, C.H.; de Morais Lima, G.; Scavone, C.; Kawamoto, E.M. Insulin and Autophagy in Neurodegeneration. Front. Neurosci. 2019, 13.69. Sekar, S.; Taghibiglou, C. Elevated Nuclear Phosphatase and Tensin Homolog (PTEN) and Altered Insulin Signaling in Substantia Nigral Region of Patients with Parkinson’s Disease. Neurosci. Lett. 2018, 666, 139–143, doi:10.1016/j.neulet.2017.12.049.70. Yang, L.; Wang, H.; Liu, L.; Xie, A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front. Neurosci. 2018, 12, 73, doi:10.3389/fnins.2018.00073.71. Salvatore, M.F.; McInnis, T.R.; Cantu, M.A.; Apple, D.M.; Pruett, B.S. Tyrosine Hydroxylase Inhibition in Substantia Nigra Decreases Movement Frequency. Mol. Neurobiol. 2019, 56, 2728–2740, doi:10.1007/s12035-018-1256-9.72. Vila, M. Neuromelanin, Aging, and Neuronal Vulnerability in Parkinson’s Disease. Mov. Disord. 2019, 34, 1440–1451, doi:10.1002/mds.27776.73. Wong, Y.; Luk, K.; Purtell, K.; Nanni, S.B.; Stoessl, A.J.; Trudeau, L.-E.; Yue, Z.; Krainc, D.; Oertel, W.; Obeso, J.A.; et al. Neuronal Vulnerability in Parkinson Disease and Putative Therapeutics: Should the Focus Be on Axonal and Synaptic Terminals? Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 1406–1422, doi:10.1002/mds.27823.74. Diederich, N.J.; Surmeier, D.J.; Uchihara, T.; Grillner, S.; Goetz, C.G. Parkinson’s Disease: Is It a Consequence of Human Brain Evolution? Mov. Disord. 2019, 34, 453–459, doi:10.1002/mds.27628.75. Gonzalez-Rodriguez, P.; Zampese, E.; Surmeier, D.J. Chapter 3 - Selective Neuronal Vulnerability in Parkinson’s Disease. In Progress in Brain Research; Björklund, A., Cenci, M.A., Eds.; Recent Advances in Parkinson’s Disease; Elsevier, 2020; Vol. 252, pp. 61–89.76. Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective Neuronal Vulnerability in Parkinson Disease. Nat. Rev. Neurosci. 2017, 18, 101–113, doi:10.1038/nrn.2016.178.77. Matuz-Mares, D.; González-Andrade, M.; Araiza-Villanueva, M.G.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxid. Basel Switz. 2022, 11, 801, doi:10.3390/antiox11050801.78. Xu, J.; Minobe, E.; Kameyama, M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front. Cell. Neurosci. 2022, 16.79. Wacquier, B.; Combettes, L.; Dupont, G. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb. Perspect. Biol. 2019, 11, a035139, doi:10.1101/cshperspect.a035139.80. Santulli, G.; Xie, W.; Reiken, S.R.; Marks, A.R. Mitochondrial Calcium Overload Is a Key Determinant in Heart Failure. Proc. Natl. Acad. Sci. 2015, 112, 11389–11394, doi:10.1073/pnas.1513047112.81. González-Rodríguez, P.; Zampese, E.; Stout, K.A.; Guzman, J.N.; Ilijic, E.; Yang, B.; Tkatch, T.; Stavarache, M.A.; Wokosin, D.L.; Gao, L.; et al. Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism. Nature 2021, 599, 650–656, doi:10.1038/s41586-021-04059-0.82. Betzer, C.; Jensen, P.H. Reduced Cytosolic Calcium as an Early Decisive Cellular State in Parkinson’s Disease and Synucleinopathies. Front. Neurosci. 2018, 12.83. Better to Keep in Touch: Investigating Inter‐organelle Cross‐talk - Rossini - 2021 - The FEBS Journal - Wiley Online Library Available online: https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15451 (accessed on 4 August 2022).84. Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, E6127, doi:10.3390/ijms21176127.85. Cai, Y.; Arikkath, J.; Yang, L.; Guo, M.L.; Periyasamy, P.; Buch, S. Interplay of Endoplasmic Reticulum Stress and Autophagy in Neurodegenerative Disorders. Autophagy 2016, 12, 225–244, doi:10.1080/15548627.2015.1121360.86. Kinghorn, K.J.; Asghari, A.M.; Castillo-Quan, J.I. The Emerging Role of Autophagic-Lysosomal Dysfunction in Gaucher Disease and Parkinson’s Disease. Neural Regen. Res. 2017, 12, 380–384, doi:10.4103/1673-5374.202934.87. Lin, K.-J.; Lin, K.-L.; Chen, S.-D.; Liou, C.-W.; Chuang, Y.-C.; Lin, H.-Y.; Lin, T.-K. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, E5312, doi:10.3390/ijms20215312.88. Ray, B.; Bhat, A.; Mahalakshmi, A.M.; Tuladhar, S.; Bishir, M.; Mohan, S.K.; Veeraraghavan, V.P.; Chandra, R.; Essa, M.M.; Chidambaram, S.B.; et al. Mitochondrial and Organellar Crosstalk in Parkinson’s Disease. ASN Neuro 2021, 13, 17590914211028364, doi:10.1177/17590914211028364.89. Shulman, J.M.; De Jager, P.L.; Feany, M.B. Parkinson’s Disease: Genetics and Pathogenesis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 193–224, doi:10.1146/annurev-pathol-011110-130242.90. Paganini-Hill, A. Risk Factors for Parkinson’s Disease: The Leisure World Cohort Study. Neuroepidemiology 2001, 20, 118–124, doi:10.1159/000054770.91. Hernán, M.A.; Zhang, S.M.; Rueda-deCastro, A.M.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Cigarette Smoking and the Incidence of Parkinson’s Disease in Two Prospective Studies. Ann. Neurol. 2001, 50, 780–786, doi:10.1002/ana.10028.92. Hernán, M.A.; Takkouche, B.; Caamaño-Isorna, F.; Gestal-Otero, J.J. A Meta-Analysis of Coffee Drinking, Cigarette Smoking, and the Risk of Parkinson’s Disease. Ann. Neurol. 2002, 52, 276–284, doi:10.1002/ana.10277.93. Ritz, B.; Ascherio, A.; Checkoway, H.; Marder, K.S.; Nelson, L.M.; Rocca, W.A.; Ross, G.W.; Strickland, D.; Van Den Eeden, S.K.; Gorell, J. Pooled Analysis of Tobacco Use and Risk of Parkinson Disease. Arch. Neurol. 2007, 64, 990–997, doi:10.1001/archneur.64.7.990.94. Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken, R.L.; Mandel, J.S. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PloS One 2016, 11, e0151841, doi:10.1371/journal.pone.0151841.95. Lewis, A.; Miller, J.H.; Lea, R.A. Monoamine Oxidase and Tobacco Dependence. Neurotoxicology 2007, 28, 182–195, doi:10.1016/j.neuro.2006.05.019.96. Krause, K.-H.; Dresel, S.H.; Krause, J.; Kung, H.F.; Tatsch, K.; Ackenheil, M. Stimulant-like Action of Nicotine on Striatal Dopamine Transporter in the Brain of Adults with Attention Deficit Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2002, 5, 111–113, doi:10.1017/S1461145702002821.97. Wang, C.; Zhou, C.; Guo, T.; Huang, P.; Xu, X.; Zhang, M. Association between Cigarette Smoking and Parkinson’s Disease: A Neuroimaging Study. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221092566, doi:10.1177/17562864221092566.98. Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe? Nutrients 2021, 13, 3088, doi:10.3390/nu13093088.99. Ren, X.; Chen, J.-F. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Front. Neurosci. 2020, 14.100. Ross, G.W.; Abbott, R.D.; Petrovitch, H.; Morens, D.M.; Grandinetti, A.; Tung, K.H.; Tanner, C.M.; Masaki, K.H.; Blanchette, P.L.; Curb, J.D.; et al. Association of Coffee and Caffeine Intake with the Risk of Parkinson Disease. JAMA 2000, 283, 2674–2679, doi:10.1001/jama.283.20.2674.101. Chen, J.F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y.H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K.; Castagnoli, N.; Schwarzschild, M.A. Neuroprotection by Caffeine and A(2A) Adenosine Receptor Inactivation in a Model of Parkinson’s Disease. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, RC143.102. Ascherio, A.; Zhang, S.M.; Hernán, M.A.; Kawachi, I.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Prospective Study of Caffeine Consumption and Risk of Parkinson’s Disease in Men and Women. Ann. Neurol. 2001, 50, 56–63, doi:10.1002/ana.1052.103. Benedetti, M.D.; Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Peterson, B.J.; Ahlskog, J.E.; Schaid, D.J.; Rocca, W.A. Smoking, Alcohol, and Coffee Consumption Preceding Parkinson’s Disease: A Case-Control Study. Neurology 2000, 55, 1350–1358, doi:10.1212/wnl.55.9.1350.104. Ribeiro, J.A.; Sebastião, A.M. Caffeine and Adenosine. J. Alzheimers Dis. JAD 2010, 20 Suppl 1, S3-15, doi:10.3233/JAD-2010-1379.105. Kong, H.; Jones, P.P.; Koop, A.; Zhang, L.; Duff, H.J.; Chen, S.R.W. Caffeine Induces Ca2+ Release by Reducing the Threshold for Luminal Ca2+ Activation of the Ryanodine Receptor. Biochem. J. 2008, 414, 441–452, doi:10.1042/BJ20080489.106. Yang, J.Y.; Yang, G.; Ren, J.; Zhao, J.; Li, Sh. Caffeine Suppresses GABA Receptor-Mediated Current in Rat Primary Sensory Neurons via Inhibition of Intracellular Phosphodiesterase. Neurophysiology 2015, 47, 108–114, doi:10.1007/s11062-015-9506-1.107. Madeira, M.H.; Boia, R.; Ambrósio, A.F.; Santiago, A.R. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators Inflamm. 2017, 2017, 4761081, doi:10.1155/2017/4761081.108. Zhou, S.-J.; Zhu, M.-E.; Shu, D.; Du, X.-P.; Song, X.-H.; Wang, X.-T.; Zheng, R.-Y.; Cai, X.-H.; Chen, J.-F.; He, J.-C. Preferential Enhancement of Working Memory in Mice Lacking Adenosine A(2A) Receptors. Brain Res. 2009, 1303, 74–83, doi:10.1016/j.brainres.2009.09.082.109. Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; et al. Caffeine Stimulates Hepatic Lipid Metabolism by the Autophagy-Lysosomal Pathway in Mice. Hepatol. Baltim. Md 2014, 59, 1366–1380, doi:10.1002/hep.26667.110. Liu, Y.-W.; Yang, T.; Zhao, L.; Ni, Z.; Yang, N.; He, F.; Dai, S.-S. Activation of Adenosine 2A Receptor Inhibits Neutrophil Apoptosis in an Autophagy-Dependent Manner in Mice with Systemic Inflammatory Response Syndrome. Sci. Rep. 2016, 6, 33614, doi:10.1038/srep33614.111. Scheperjans, F.; Pekkonen, E.; Kaakkola, S.; Auvinen, P. Linking Smoking, Coffee, Urate, and Parkinson’s Disease-a Role for Gut Microbiota? J. Park. Dis. 2015, 5, 255–262, doi:10.3233/JPD-150557.112. Sian-Hülsmann, J.; Mandel, S.; Youdim, M.B.H.; Riederer, P. The Relevance of Iron in the Pathogenesis of Parkinson’s Disease. J. Neurochem. 2011, doi:10.1111/j.1471-4159.2010.07132.x.113. Muñoz, P.; Humeres, A. Iron Deficiency on Neuronal Function. BioMetals 2012, doi:10.1007/s10534-012-9550-x.114. Savica, R.; Grossardt, B.R.; Carlin, J.M.; Icen, M.; Bower, J.H.; Ahlskog, J.E.; Maraganore, D.M.; Steensma, D.P.; Rocca, W.A. Anemia or Low Hemoglobin Levels Preceding Parkinson Disease: A Case-Control Study. Neurology 2009, doi:10.1212/WNL.0b013e3181bd80c1.115. Dev, S.; Babitt, J.L. Overview of Iron Metabolism in Health and Disease. Hemodial. Int. 2017, doi:10.1111/hdi.12542.116. Hare, D.J.; Arora, M.; Jenkins, N.L.; Finkelstein, D.I.; Doble, P.A.; Bush, A.I. Is Early-Life Iron Exposure Critical in Neurodegeneration? Nat. Rev. Neurol. 2015, doi:10.1038/nrneurol.2015.100.117. Hare, D.J.; Cardoso, B.R.; Raven, E.P.; Double, K.L.; Finkelstein, D.I.; Szymlek-Gay, E.A.; Biggs, B.A. Excessive Early-Life Dietary Exposure: A Potential Source of Elevated Brain Iron and a Risk Factor for Parkinson’s Disease. Npj Park. Dis. 2017, doi:10.1038/s41531-016-0004-y.118. Anzai, Y.; Gatenby, C.; Friend, S.; Maravilla, K.R.; Hu, S.C.; Cain, K.C.; Agarwal, P. Brain Iron Concentrations in Regions of Interest and Relation with Serum Iron Levels in Parkinson Disease. J. Neurol. Sci. 2017, doi:10.1016/j.jns.2017.04.035.119. Logroscino, G.; Marder, K.; Graziano, J.; Freyer, G.; Slavkovich, V.; LoIacono, N.; Cote, L.; Mayeux, R. Altered Systemic Iron Metabolism in Parkinson’s Disease. Neurology 1997, doi:10.1212/WNL.49.3.714.120. Fasano, M.; Bergamasco, B.; Lopiano, L. Modifications of the Iron-Neuromelanin System in Parkinson’s Disease. J. Neurochem. 2006, doi:10.1111/j.1471-4159.2005.03638.x.121. Gerlach, M.; Double, K.L.; Youdim, M.B.H.; Riederer, P. Potential Sources of Increased Iron in the Substantia Nigra of Parkinsonian Patients. In Proceedings of the Journal of Neural Transmission, Supplement; 2006.122. Lotfipour, A.K.; Wharton, S.; Schwarz, S.T.; Gontu, V.; Schäfer, A.; Peters, A.M.; Bowtell, R.W.; Auer, D.P.; Gowland, P.A.; Bajaj, N.P.S. High Resolution Magnetic Susceptibility Mapping of the Substantia Nigra in Parkinson’s Disease. J. Magn. Reson. Imaging 2012, doi:10.1002/jmri.22752.123. Levi, S.; Finazzi, D. Neurodegeneration with Brain Iron Accumulation: Update on Pathogenic Mechanisms. Front. Pharmacol. 2014, doi:10.3389/fphar.2014.00099.124. Xuan, M.; Guan, X.; Gu, Q.; Shen, Z.; Yu, X.; Qiu, T.; Luo, X.; Song, R.; Jiaerken, Y.; Xu, X.; et al. Different Iron Deposition Patterns in Early- and Middle-Late-Onset Parkinson’s Disease. Parkinsonism Relat. Disord. 2017, doi:10.1016/j.parkreldis.2017.08.013.125. Dexter, D.T.; Wells, F.R.; Lee, A.J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C.D. Increased Nigral Iron Content and Alterations in Other Metal Ions Occurring in Brain in Parkinson’s Disease. J. Neurochem. 1989, doi:10.1111/j.1471-4159.1989.tb07264.x.126. Ottman, N.; Reunanen, J.; Meijerink, M.; Pietila, T.E.; Kainulainen, V.; Klievink, J.; Huuskonen, L.; Aalvink, S.; Skurnik, M.; Boeren, S.; et al. Pili-like Proteins of Akkermansia Muciniphila Modulate Host Immune Responses and Gut Barrier Function. PLoS ONE 2017, doi:10.1371/journal.pone.0173004.127. Ulla, M.; Bonny, J.M.; Ouchchane, L.; Rieu, I.; Claise, B.; Durif, F. Is R2* a New MRI Biomarker for the Progression of Parkinson’s Disease? A Longitudinal Follow-Up. PLoS ONE 2013, doi:10.1371/journal.pone.0057904.128. Yu, X.; Du, T.; Song, N.; He, Q.; Shen, Y.; Jiang, H.; Xie, J. Decreased Iron Levels in the Temporal Cortex in Postmortem Human Brains with Parkinson Disease. Neurology 2013, doi:10.1212/WNL.0b013e31827f0ebb.129. Bonetto, J.; Villaamil-Lepori, E. Update on the Oxidative Stress Associated with Arsenic Exposure. Curr. Top. Toxicol. 2014.130. Branca, J.J.V.; Morucci, G.; Pacini, A. Cadmium-Induced Neurotoxicity: Still Much Ado. Neural Regen. Res. 2018, doi:10.4103/1673-5374.239434.131. Baranowska-Bosiacka, I.; Gutowska, I.; Rybicka, M.; Nowacki, P.; Chlubek, D. Neurotoxicity of Lead. Hypothetical Molecular Mechanisms of Synaptic Function Disorders. Neurol. Neurochir. Pol. 2012, doi:10.5114/ninp.2012.31607.132. Aschner, M.; Erikson, K.M.; Hernández, E.H.; Tjalkens, R. Manganese and Its Role in Parkinson’s Disease: From Transport to Neuropathology. NeuroMolecular Med. 2009, 11, doi:10.1007/s12017-009-8083-0.133. Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coord. Chem. Rev. 2012, doi:10.1016/j.ccr.2012.03.013.134. Martí, Y.; Matthaeus, F.; Lau, T.; Schloss, P. Methyl-4-Phenylpyridinium (MPP+) Differentially Affects Monoamine Release and Re-Uptake in Murine Embryonic Stem Cell-Derived Dopaminergic and Serotonergic Neurons. Mol. Cell. Neurosci. 2017, 83, 37–45, doi:10.1016/j.mcn.2017.06.009.135. Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; et al. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872, doi:10.1289/ehp.1002839.136. Henchcliffe, C.; Beal, M.F. Mitochondrial Biology and Oxidative Stress in Parkinson Disease Pathogenesis. Nat. Clin. Pract. Neurol. 2008, 4, 600–609, doi:10.1038/ncpneuro0924.137. See, W.Z.C.; Naidu, R.; Tang, K.S. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Mol. Neurobiol. 2022, 59, 3353–3369, doi:10.1007/s12035-022-02799-2.138. Dinis-Oliveira, R.J.; Remião, F.; Carmo, H.; Duarte, J.A.; Navarro, A.S.; Bastos, M.L.; Carvalho, F. Paraquat Exposure as an Etiological Factor of Parkinson’s Disease. Neurotoxicology 2006, 27, 1110–1122, doi:10.1016/j.neuro.2006.05.012.139. Kuter, K.; Nowak, P.; Gołembiowska, K.; Ossowska, K. Increased Reactive Oxygen Species Production in the Brain after Repeated Low-Dose Pesticide Paraquat Exposure in Rats. A Comparison with Peripheral Tissues. Neurochem. Res. 2010, 35, 1121–1130, doi:10.1007/s11064-010-0163-x.140. McCormack, A.L.; Thiruchelvam, M.; Manning-Bog, A.B.; Thiffault, C.; Langston, J.W.; Cory-Slechta, D.A.; Di Monte, D.A. Environmental Risk Factors and Parkinson’s Disease: Selective Degeneration of Nigral Dopaminergic Neurons Caused by the Herbicide Paraquat. Neurobiol. Dis. 2002, 10, 119–127, doi:10.1006/nbdi.2002.0507.141. Wang, G.; Fan, X.-N.; Tan, Y.-Y.; Cheng, Q.; Chen, S.-D. Parkinsonism after Chronic Occupational Exposure to Glyphosate. Parkinsonism Relat. Disord. 2011, 17, 486–487, doi:10.1016/j.parkreldis.2011.02.003.142. Kim, Y.; Kim, I.; Sung, J.-M.; Song, J. Parkinson’s Disease in a Worker Exposed to Insecticides at a Greenhouse. Ann. Occup. Environ. Med. 2021, 33, e6, doi:10.35371/aoem.2021.33.e6.143. Cattani, D.; de Liz Oliveira Cavalli, V.L.; Heinz Rieg, C.E.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Mena Barreto Silva, F.R.; Zamoner, A. Mechanisms Underlying the Neurotoxicity Induced by Glyphosate-Based Herbicide in Immature Rat Hippocampus: Involvement of Glutamate Excitotoxicity. Toxicology 2014, 320, 34–45, doi:10.1016/j.tox.2014.03.001.144. Caioni, G.; Cimini, A.; Benedetti, E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022, 14, 1467, doi:10.3390/nu14071467.145. Deng, H.; Wang, P.; Jankovic, J. The Genetics of Parkinson Disease. Ageing Res. Rev. 2018, 42, 72–85, doi:10.1016/j.arr.2017.12.007.146. Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson’s Disease. Science 1997, 276, 2045–2047, doi:10.1126/science.276.5321.2045.147. Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; et al. Genome-Wide Association Study Identifies Common Variants at Four Loci as Genetic Risk Factors for Parkinson’s Disease. Nat. Genet. 2009, 41, 1303–1307, doi:10.1038/ng.485.148. Foo, J.N.; Tan, L.C.; Irwan, I.D.; Au, W.-L.; Low, H.Q.; Prakash, K.-M.; Ahmad-Annuar, A.; Bei, J.; Chan, A.Y.; Chen, C.M.; et al. Genome-Wide Association Study of Parkinson’s Disease in East Asians. Hum. Mol. Genet. 2017, 26, 226–232, doi:10.1093/hmg/ddw379.149. Imputation of Sequence Variants for Identification of Genetic Risks for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. The Lancet 2011, 377, 641–649, doi:10.1016/S0140-6736(10)62345-8.150. Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-Wide Association Study Reveals Genetic Risk Underlying Parkinson’s Disease. Nat. Genet. 2009, 41, 1308–1312, doi:10.1038/ng.487.151. Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-Scale Meta-Analysis of Genome-Wide Association Data Identifies Six New Risk Loci for Parkinson’s Disease. Nat. Genet. 2014, 46, 989–993, doi:10.1038/ng.3043.152. Chang, D.; Nalls, M.A.; Hallgrímsdóttir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; International Parkinson’s Disease Genomics Consortium; 23andMe Research Team; Kerchner, G.A.; Ayalon, G.; et al. A Meta-Analysis of Genome-Wide Association Studies Identifies 17 New Parkinson’s Disease Risk Loci. Nat. Genet. 2017, 49, 1511–1516, doi:10.1038/ng.3955.153. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet Neurol. 2019, 18, 1091–1102, doi:10.1016/S1474-4422(19)30320-5.154. Li, W.; Fu, Y.; Halliday, G.M.; Sue, C.M. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9.155. Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G.; Turroni, S.; Biagi, E.; Peano, C.; Severgnini, M.; et al. Gut Microbiome of the Hadza Hunter-Gatherers. Nat. Commun. 2014, 5, doi:10.1038/ncomms4654.156. De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. 2010, 107, 14691–14696, doi:10.1073/pnas.1005963107.157. Fragiadakis, G.K.; Smits, S.A.; Sonnenburg, E.D.; Van Treuren, W.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Dominguez-Bello, M.G.; Leach, J.; et al. Links between Environment, Diet, and the Hunter-Gatherer Microbiome. Gut Microbes 2019, 10, 216–227, doi:10.1080/19490976.2018.1494103.415. Home - Souci • Fachmann • Kraut Datenbank Available online: https://www.sfk.online/#/home (accessed on 4 September 2022).416. Diet History Questionnaire II (DHQ II) Paper Forms | EGRP/DCCPS/NCI/NIH Available online: https://epi.grants.cancer.gov/dhq2/forms/ (accessed on 4 September 2022).417. Chumlea, W.C.; Roche, A.F.; Steinbaugh, M.L. Estimating Stature from Knee Height for Persons 60 to 90 Years of Age. J. Am. Geriatr. Soc. 1985, 33, 116–120, doi:10.1111/j.1532-5415.1985.tb02276.x.418. CDC Defining Adult Overweight and Obesity Available online: https://www.cdc.gov/obesity/basics/adult-defining.html (accessed on 4 September 2022).419. Dodd, K. BMI in the Elderly: What You Need to Know. Geriatr. Dietit. 2020.420. NHANES III (1988-1994) Available online: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx (accessed on 4 September 2022).421. Frisancho, A.R. New Norms of Upper Limb Fat and Muscle Areas for Assessment of Nutritional Status. Am. J. Clin. Nutr. 1981, 34, 2540–2545, doi:10.1093/ajcn/34.11.2540.422. ATNF-AZA/Microbial_community_modellings at Master · Mucosimmunol/ATNF-AZA Available online: https://github.com/mucosimmunol/aTNF-AZA (accessed on 12 April 2023).423. Effenberger, M.; Reider, S.; Waschina, S.; Bronowski, C.; Enrich, B.; Adolph, T.E.; Koch, R.; Moschen, A.R.; Rosenstiel, P.; Aden, K.; et al. Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. J. Crohns Colitis 2021, 15, 88–98, doi:10.1093/ecco-jcc/jjaa152.424. Graspeuntner, S.; Waschina, S.; Künzel, S.; Twisselmann, N.; Rausch, T.K.; Cloppenborg-Schmidt, K.; Zimmermann, J.; Viemann, D.; Herting, E.; Göpel, W.; et al. Gut Dysbiosis with Bacilli Dominance and Accumulation of Fermentation Products Precedes Late-Onset Sepsis in Preterm Infants. Clin. Infect. Dis. 2019, doi:10.1093/cid/ciy882.425. Azzouz, L.L.; Sharma, S. Physiology, Large Intestine. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023.426. Islam, M.A.; Amin, M.N.; Siddiqui, S.A.; Hossain, M.P.; Sultana, F.; Kabir, M.R. Trans Fatty Acids and Lipid Profile: A Serious Risk Factor to Cardiovascular Disease, Cancer and Diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, doi:10.1016/j.dsx.2019.03.033.427. Advanced Nutrition and Human Metabolism by Sareen Stepnick Gropper, Jack Smith | 9781133104070 | Get Textbooks | New Textbooks | Used Textbooks | College Textbooks - GetTextbooks.Com Available online: https://www.gettextbooks.com/isbn/9781133104070/ (accessed on 11 April 2023).428. Ernährung des Menschen - Elmadfa, Ibrahim; Leitzmann, Claus: 9783825285524 - IberLibro Available online: https://www.iberlibro.com/9783825285524/Ern%C3%A4hrung-Menschen-Elmadfa-I brahim-Leitzmann-3825285529/plp (accessed on 11 April 2023).429. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids - PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/25077263/ (accessed on 11 April 2023).430. Akbulut, A.C.; Pavlic, A.; Petsophonsakul, P.; Halder, M.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020, 12, 1852, doi:10.3390/nu12061852.431. Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the Western Diet: How We Got Here. Mo. Med. 2020, 117, 536–538.432. Yeung, S.S.Y.; Kwan, M.; Woo, J. Healthy Diet for Healthy Aging. Nutrients 2021, 13, 4310, doi:10.3390/nu13124310.433. Mischley, L.K.; Lau, R.C.; Bennett, R.D. Role of Diet and Nutritional Supplements in Parkinson’s Disease Progression. Oxid. Med. Cell. Longev. 2017, 2017, 6405278, doi:10.1155/2017/6405278.434. Filippis, F.D.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; Storia, A.L.; Laghi, L.; Serrazanetti, D.I.; Cagno, R.D.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821, doi:10.1136/gutjnl-2015-309957.435. Neyrinck, A.M.; Possemiers, S.; Verstraete, W.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Dietary Modulation of Clostridial Cluster XIVa Gut Bacteria (Roseburia Spp.) by Chitin-Glucan Fiber Improves Host Metabolic Alterations Induced by High-Fat Diet in Mice. J. Nutr. Biochem. 2012, 23, 51–59, doi:10.1016/j.jnutbio.2010.10.008.436. Albani, G.; Albani, S.; Keshavarzian, A. Role of Diet, Physical Activity and Immune System in Parkinson’s Disease; Frontiers Media SA, 2021; ISBN 978-2-88966-441-2.437. Zhang, H.; Wielen, N. van der; Hee, B. van der; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735, doi:10.3390/microorganisms8111735.438. Zhang, C.; Yu, M.; Yang, Y.; Mu, C.; Su, Y.; Zhu, W. Effect of Early Antibiotic Administration on Cecal Bacterial Communities and Their Metabolic Profiles in Pigs Fed Diets with Different Protein Levels. Anaerobe 2016, 42, 188–196, doi:10.1016/j.anaerobe.2016.10.016.439. Ma, D.; Wang, A.C.; Parikh, I.; Green, S.J.; Hoffman, J.D.; Chlipala, G.; Murphy, M.P.; Sokola, B.S.; Bauer, B.; Hartz, A.M.S.; et al. Ketogenic Diet Enhances Neurovascular Function with Altered Gut Microbiome in Young Healthy Mice. Sci. Rep. 2018, 8, 6670, doi:10.1038/s41598-018-25190-5.440. Yu, H.; Qiu, N.; Meng, Y.; Keast, R. A Comparative Study of the Modulation of the Gut Microbiota in Rats by Dietary Intervention with Different Sources of Egg-White Proteins. J. Sci. Food Agric. 2020, 100, 3622–3629, doi:10.1002/jsfa.10387.441. Kisuse, J.; La-ongkham, O.; Nakphaichit, M.; Therdtatha, P.; Momoda, R.; Tanaka, M.; Fukuda, S.; Popluechai, S.; Kespechara, K.; Sonomoto, K.; et al. Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Front. Microbiol. 2018, 9, 1345, doi:10.3389/fmicb.2018.01345.442. Lee, C.B.; Chae, S.U.; Jo, S.J.; Jerng, U.M.; Bae, S.K. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 3566, doi:10.3390/ijms22073566.443. Oteng, A.-B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. Bethesda Md 2020, 11, 697–708, doi:10.1093/advances/nmz125.444. Uauy, R.; Aro, A.; Clarke, R.; Ghafoorunissa; L’Abbé, M.R.; Mozaffarian, D.; Skeaff, C.M.; Stender, S.; Tavella, M. Who Scientific Update on Trans Fatty Acids: Summary and Conclusions. Eur. J. Clin. Nutr. 2009, doi:10.1038/ejcn.2009.15.445. Shannon, J.; King, I.B.; Moshofsky, R.; Lampe, J.W.; Li Gao, D.; Ray, R.M.; Thomas, D.B. Erythrocyte Fatty Acids and Breast Cancer Risk: A Case-Control Study in Shanghai, China. Am. J. Clin. Nutr. 2007, 85, 1090–1097, doi:10.1093/ajcn/85.4.1090.446. Larsson, S.C.; Bergkvist, L.; Wolk, A. High-Fat Dairy Food and Conjugated Linoleic Acid Intakes in Relation to Colorectal Cancer Incidence in the Swedish Mammography Cohort. Am. J. Clin. Nutr. 2005, 82, 894–900, doi:10.1093/ajcn/82.4.894.447. van Dam, R.M.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Dietary Patterns and Risk for Type 2 Diabetes Mellitus in U.S. Men. Ann. Intern. Med. 2002, 136, 201–209, doi:10.7326/0003-4819-136-3-200202050-00008.448. Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Takakuwa, H.; Hamaguchi, M.; et al. Trans Fatty Acid Intake Induces Intestinal Inflammation and Impaired Glucose Tolerance. Front. Immunol. 2021, 12.449. Ma, W.-W.; Zhao, L.; Yuan, L.-H.; Yu, H.-L.; Wang, H.; Gong, X.-Y.; Wei, F.; Xiao, R. Elaidic Acid Induces Cell Apoptosis through Induction of ROS Accumulation and Endoplasmic Reticulum Stress in SH‑SY5Y Cells. Mol. Med. Rep. 2017, 16, 9337–9346, doi:10.3892/mmr.2017.7830.450. Artis, D.; Spits, H. The Biology of Innate Lymphoid Cells. Nature 2015, 517, 293–301, doi:10.1038/nature14189.451. Chen, H.; Zhang, S.M.; Hernán, M.A.; Willett, W.C.; Ascherio, A. Dietary Intakes of Fat and Risk of Parkinson’s Disease. Am. J. Epidemiol. 2003, 157, 1007–1014, doi:10.1093/aje/kwg073.452. Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Schneider, J.; Wilson, R.S. Dietary Fats and the Risk of Incident Alzheimer Disease. Arch. Neurol. 2003, 60, 194–200, doi:10.1001/archneur.60.2.194.453. Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, doi:10.1007/s00394-017-1445-8.454. Blaak, E.E.; Riccardi, G.; Cho, L. Carbohydrates: Separating Fact from Fiction. Atherosclerosis 2021, doi:10.1016/j.atherosclerosis.2021.03.025.455. Thompson, M.E.; Noel, M.B. Issues in Nutrition: Carbohydrates. FP Essent. 2017, 452, 26–30.456. Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2014, 7, 17–44, doi:10.3390/nu7010017.457. Deehan, E.C.; Duar, R.M.; Armet, A.M.; Perez-Muñoz, M.E.; Jin, M.; Walter, J. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiol. Spectr. 2017, doi:10.1128/microbiolspec.bad-0019-2017.458. Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; et al. Effects of a Medium-Chain Triglyceride-Based Ketogenic Formula on Cognitive Function in Patients with Mild-to-Moderate Alzheimer’s Disease. Neurosci. Lett. 2019, 690, 232–236, doi:10.1016/j.neulet.2018.10.048.459. Barichella, M.; Cereda, E.; Cassani, E.; Pinelli, G.; Iorio, L.; Ferri, V.; Privitera, G.; Pasqua, M.; Valentino, A.; Monajemi, F.; et al. Dietary Habits and Neurological Features of Parkinson’s Disease Patients: Implications for Practice. Clin. Nutr. Edinb. Scotl. 2017, 36, 1054–1061, doi:10.1016/j.clnu.2016.06.020.460. Wurtman, R.J.; Wurtman, J.J.; Regan, M.M.; McDermott, J.M.; Tsay, R.H.; Breu, J.J. Effects of Normal Meals Rich in Carbohydrates or Proteins on Plasma Tryptophan and Tyrosine Ratios. Am. J. Clin. Nutr. 2003, 77, 128–132, doi:10.1093/ajcn/77.1.128.461. Murakami, K.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Fukushima, W.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; et al. Dietary Glycemic Index Is Inversely Associated with the Risk of Parkinson’s Disease: A Case-Control Study in Japan. Nutr. Burbank Los Angel. Cty. Calif 2010, 26, 515–521, doi:10.1016/j.nut.2009.05.021.462. Schapira, A.H.; Cooper, J.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 1990, 54, 823–827, doi:10.1111/j.1471-4159.1990.tb02325.x.463. Parker, W.D.; Parks, J.K.; Swerdlow, R.H. Complex I Deficiency in Parkinson’s Disease Frontal Cortex. Brain Res. 2008, 1189, 215–218, doi:10.1016/j.brainres.2007.10.061.464. Tieu, K.; Perier, C.; Caspersen, C.; Teismann, P.; Wu, D.-C.; Yan, S.-D.; Naini, A.; Vila, M.; Jackson-Lewis, V.; Ramasamy, R.; et al. D-Beta-Hydroxybutyrate Rescues Mitochondrial Respiration and Mitigates Features of Parkinson Disease. J. Clin. Invest. 2003, 112, 892–901, doi:10.1172/JCI18797.465. Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial Biogenesis in the Anticonvulsant Mechanism of the Ketogenic Diet. Ann. Neurol. 2006, 60, 223–235, doi:10.1002/ana.20899.466. Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, doi:10.3390/nu10121833.467. Yang, J.; Wang, H.P.; Zhou, L.; Xu, C.F. Effect of Dietary Fiber on Constipation: A Meta Analysis. World J. Gastroenterol. 2012, doi:10.3748/wjg.v18.i48.7378.468. Schulz, R.; Slavin, J. Perspective: Defining Carbohydrate Quality for Human Health and Environmental Sustainability. Adv. Nutr. 2021, doi:10.1093/advances/nmab050.469. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, doi:10.1016/j.cell.2016.05.041.470. Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, doi:10.1080/19490976.2017.1290756.471. Naismith, D.J.; Braschi, A. An Investigation into the Bioaccessibility of Potassium in Unprocessed Fruits and Vegetables. Int. J. Food Sci. Nutr. 2008, doi:10.1080/09637480701690519.472. Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, doi:10.3389/fnut.2020.00101.473. Afridi, H.I.; Rajput, K.; Kazi, T.G.; Talpur, F.N.; Baig, J.A. Evaluate the Correlation of Electrolytes with Biochemical Parameters in Biological Samples of Parkinson’s Disease Patients at Different Stages. 2020, doi:10.21203/rs.3.rs-22404/v1.474. Wu, H.; Huang, R.; Fan, J.; Luo, N.; Yang, X. Low Potassium Disrupt Intestinal Barrier and Result in Bacterial Translocation. J. Transl. Med. 2022, 20, 309, doi:10.1186/s12967-022-03499-0.475. Follett, J.; Darlow, B.; Wong, M.B.; Goodwin, J.; Pountney, D.L. Potassium Depolarization and Raised Calcium Induces α-Synuclein Aggregates. Neurotox. Res. 2013, doi:10.1007/s12640-012-9366-z.476. Ha, Y.; Jeong, J.A.; Kim, Y.; Churchill, D.G. Sodium and Potassium Relating to Parkinson’s Disease and Traumatic Brain Injury. In Metal Ions in Life Sciences; 2016.477. Ahmed, S.S.S.J.; Santosh, W. Metallomic Profiling and Linkage Map Analysis of Early Parkinson’s Disease: A New Insight to Aluminum Marker for the Possible Diagnosis. PLoS ONE 2010, doi:10.1371/journal.pone.0011252.478. Aronson, P.S.; Giebisch, G. Effects of PH on Potassium: New Explanations for Old Observations. J. Am. Soc. Nephrol. 2011, doi:10.1681/ASN.2011040414.479. Redondo-Useros, N.; Nova, E.; González-Zancada, N.; Díaz, L.E.; Gómez-Martínez, S.; Marcos, A. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients 2020, 12, 1776, doi:10.3390/nu12061776.480. Yu, J.S.L.; Correia-Melo, C.; Zorrilla, F.; Herrera-Dominguez, L.; Wu, M.Y.; Hartl, J.; Campbell, K.; Blasche, S.; Kreidl, M.; Egger, A.-S.; et al. Microbial Communities Form Rich Extracellular Metabolomes That Foster Metabolic Interactions and Promote Drug Tolerance. Nat. Microbiol. 2022, 7, 542–555, doi:10.1038/s41564-022-01072-5.481. Blasche, S.; Kim, Y.; Mars, R.; Machado, D.; Maansson, M.; Kafkia, E.; Milanese, A.; Zeller, G.; Teusink, B.; Nielsen, J.; et al. Metabolic Cooperation and Spatiotemporal Niche Partitioning in a Kefir Microbial Community. Nat. Microbiol. 2021, 6, 196–208, doi:10.1038/s41564-020-00816-5.482. Keely, S.J. Decoding Host–Microbiota Communication in the Gut – Now We’re Flying! J. Physiol. 2017, 595, 417–418, doi:10.1113/JP272980.483. Price, N.D.; Reed, J.L.; Palsson, B.Ø. Genome-Scale Models of Microbial Cells: Evaluating the Consequences of Constraints. Nat. Rev. Microbiol. 2004, 2, 886–897, doi:10.1038/nrmicro1023.484. ILOG CPLEX Optimization Studio - Get Started Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio/get-started (accessed on 11 May 2022).485. R: The R Project for Statistical Computing Available online: https://www.r-project.org/ (accessed on 11 May 2022).486. Bauer, Eugen. Package BacArena 2016.487. SybilSBML Source: R/SybilSBML.R Available online: https://rdrr.io/cran/sybilSBML/src/R/sybilSBML.R (accessed on 11 May 2022).488. CPLEX Optimizer | IBM Available online: https://www.ibm.com/analytics/cplex-optimizer (accessed on 11 May 2022).489. CRAN Package Check Results for Package CplexAPI Available online: https://cran-archive.r-project.org/web/checks/2021/2021-11-05_check_results_cple xAPI.html (accessed on 11 May 2022).490. Daniel, F.; Analytics, R.; Weston, S. DoMC: Foreach Parallel Adaptor for “Parallel” 2022.491. Daniel, F.; Corporation, M.; Weston, S. DoSNOW: Foreach Parallel Adaptor for the “snow” Package 2022.492. Daniel, F.; Ooi, H.; Calaway, R.; Microsoft; Weston, S. Foreach: Provides Foreach Looping Construct 2022.493. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688, doi:10.1038/s41587-020-0548-6.494. Rivera-Chávez, F.; Lopez, C.A.; Bäumler, A.J. Oxygen as a Driver of Gut Dysbiosis. Free Radic. Biol. Med. 2017, 105, 93–101, doi:10.1016/j.freeradbiomed.2016.09.022.495. Summary of MetaCyc, Version 26.1 Available online: https://biocyc.org/META/organism-summary (accessed on 21 September 2022).496. Yu, D.; Yang, Y.; Long, J.; Xu, W.; Cai, Q.; Wu, J.; Cai, H.; Zheng, W.; Shu, X.O. Long-Term Diet Quality and Gut Microbiome Functionality: A Prospective, Shotgun Metagenomic Study among Urban Chinese Adults. Curr. Dev. Nutr. 2021, doi:10.1093/cdn/nzab026.497. Zheng, Y.; Bek, M.K.; Prince, N.Z.; Peralta Marzal, L.N.; Garssen, J.; Perez Pardo, P.; Kraneveld, A.D. The Role of Bacterial-Derived Aromatic Amino Acids Metabolites Relevant in Autism Spectrum Disorders: A Comprehensive Review. Front. Neurosci. 2021, 15.498. Persico, A.M.; Napolioni, V. Urinary P-Cresol in Autism Spectrum Disorder. Neurotoxicol. Teratol. 2013, 36, 82–90, doi:10.1016/j.ntt.2012.09.002.499. Pedersen, G.; Brynskov, J.; Saermark, T. Phenol Toxicity and Conjugation in Human Colonic Epithelial Cells. Scand. J. Gastroenterol. 2002, 37, 74–79, doi:10.1080/003655202753387392.500. McCall, I.C.; Betanzos, A.; Weber, D.A.; Nava, P.; Miller, G.W.; Parkos, C.A. Effects of Phenol on Barrier Function of a Human Intestinal Epithelial Cell Line Correlate with Altered Tight Junction Protein Localization. Toxicol. Appl. Pharmacol. 2009, 241, 61–70, doi:10.1016/j.taap.2009.08.002.501. Russell, W.R.; Duncan, S.H.; Scobbie, L.; Duncan, G.; Cantlay, L.; Calder, A.G.; Anderson, S.E.; Flint, H.J. Major Phenylpropanoid-Derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Mol. Nutr. Food Res. 2013, doi:10.1002/mnfr.201200594.502. Rekdal, V.M.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and Inhibition of an Interspecies Gut Bacterial Pathway for Levodopa Metabolism. Science 2019, 364, doi:10.1126/science.aau6323.503. van Kessel, S.P.; Auvinen, P.; Scheperjans, F.; El Aidy, S. Gut Bacterial Tyrosine Decarboxylase Associates with Clinical Variables in a Longitudinal Cohort Study of Parkinsons Disease. Npj Park. Dis. 2021, 7, 1–8, doi:10.1038/s41531-021-00260-0.504. van Kessel, S.P.; de Jong, H.R.; Winkel, S.L.; van Leeuwen, S.S.; Nelemans, S.A.; Permentier, H.; Keshavarzian, A.; El Aidy, S. Gut Bacterial Deamination of Residual Levodopa Medication for Parkinson’s Disease. BMC Biol. 2020, doi:10.1186/s12915-020-00876-3.505. Rekdal, V.M.; Bernadino, P.N.; Luescher, M.U.; Kiamehr, S.; Le, C.; Bisanz, J.E.; Turnbaugh, P.J.; Bess, E.N.; Balskus, E.P. A Widely Distributed Metalloenzyme Class Enables Gut Microbial Metabolism of Host-and Diet-Derived Catechols. eLife 2020, doi:10.7554/eLife.50845.506. Li, X.; Zhang, B.; Hu, Y.; Zhao, Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front. Pharmacol. 2021, 12, 769501–769501, doi:10.3389/fphar.2021.769501.507. Pappolla, M.A.; Perry, G.; Fang, X.; Zagorski, M.; Sambamurti, K.; Poeggeler, B. Indoles as Essential Mediators in the Gut-Brain Axis. Their Role in Alzheimer’s Disease. Neurobiol. Dis. 2021, 156, 105403, doi:10.1016/j.nbd.2021.105403.508. Sonowal Robert; Swimm Alyson; Sahoo Anusmita; Luo Liping; Matsunaga Yohei; Wu Ziqi; Bhingarde Jui A.; Ejzak Elizabeth A.; Ranawade Ayush; Qadota Hiroshi; et al. Indoles from Commensal Bacteria Extend Healthspan. Proc. Natl. Acad. Sci. 2017, 114, E7506–E7515, doi:10.1073/pnas.1706464114.509. Powell, D.N.; Swimm, A.; Sonowal, R.; Bretin, A.; Gewirtz, A.T.; Jones, R.M.; Kalman, D. Indoles from the Commensal Microbiota Act via the AHR and IL-10 to Tune the Cellular Composition of the Colonic Epithelium during Aging. Proc. Natl. Acad. Sci. 2020, 117, 21519–21526, doi:10.1073/pnas.2003004117.510. Yang, W.; Yu, T.; Huang, X.; Bilotta, A.J.; Xu, L.; Lu, Y.; Sun, J.; Pan, F.; Zhou, J.; Zhang, W.; et al. Intestinal Microbiota-Derived Short-Chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nat. Commun. 2020, 11, 4457–4457, doi:10.1038/s41467-020-18262-6.511. Delzenne, N.M.; Knudsen, C.; Beaumont, M.; Rodriguez, J.; Neyrinck, A.M.; Bindels, L.B. Contribution of the Gut Microbiota to the Regulation of Host Metabolism and Energy Balance: A Focus on the Gut-Liver Axis. In Proceedings of the Proceedings of the Nutrition Society; 2019.512. Caussy, C.; Loomba, R. Gut Microbiome, Microbial Metabolites and the Development of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2018, doi:10.1038/s41575-018-0058-x.513. He, L.H.; Yao, D.H.; Wang, L.Y.; Zhang, L.; Bai, X.L. Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-Alcoholic Fatty Liver Disease. Front. Microbiol. 2021, doi:10.3389/fmicb.2021.761836.514. Laughlin, M.R. Normal Roles for Dietary Fructose in Carbohydrate Metabolism. Nutrients 2014, doi:10.3390/nu6083117.515. Meyers, A.M.; Mourra, D.; Beeler, J.A. High Fructose Corn Syrup Induces Metabolic Dysregulation and Altered Dopamine Signaling in the Absence of Obesity. PLoS ONE 2017, doi:10.1371/journal.pone.0190206.516. Ueno, M.; Bezerra, R.M.N.; Silva, M.S.; Tavares, D.Q.; Carvalho, C.R.; Saad, M.J.A. A High-Fructose Diet Induces Changes in Pp185 Phosphorylation in Muscle and Liver of Rats. Braz. J. Med. Biol. Res. 2000, 33, 1421–1427, doi:10.1590/S0100-879X2000001200004.517. Montrose, D.C.; Nishiguchi, R.; Basu, S.; Staab, H.A.; Zhou, X.K.; Wang, H.; Meng, L.; Johncilla, M.; Cubillos-Ruiz, J.R.; Morales, D.K.; et al. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. CMGH 2021, doi:10.1016/j.jcmgh.2020.09.008.518. Beisner, J.; Gonzalez-Granda, A.; Basrai, M.; Damms-Machado, A.; Bischoff, S.C. Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients 2020, doi:10.3390/nu12113444.519. Benatar, J.R.; Stewart, R.A. The Effects of Changing Dairy Intake on Trans and Saturated Fatty Acid Levels- Results from a Randomized Controlled Study. Nutr. J. 2014, 13, 32, doi:10.1186/1475-2891-13-32.520. Dabadie, H.; Motta, C.; Peuchant, E.; LeRuyet, P.; Mendy, F. Variations in Daily Intakes of Myristic and α-Linolenic Acids in Sn-2 Position Modify Lipid Profile and Red Blood Cell Membrane Fluidity. Br. J. Nutr. 2006, doi:10.1079/bjn20061813.521. Russo, S.B.; Baicu, C.F.; Van Laer, A.; Geng, T.; Kasiganesan, H.; Zile, M.R.; Cowart, L.A. Ceramide Synthase 5 Mediates Lipid-Induced Autophagy and Hypertrophy in Cardiomyocytes. J. Clin. Invest. 2012, 122, 3919–3930, doi:10.1172/JCI63888.522. Martínez, L.; Torres, S.; Baulies, A.; Alarcón-Vila, C.; Elena, M.; Fabriàs, G.; Casas, J.; Caballeria, J.; Fernandez-Checa, J.C.; García-Ruiz, C. Myristic Acid Potentiates Palmitic Acid-Induced Lipotoxicity and Steatohepatitis Associated with Lipodystrophy by Sustaning de Novo Ceramide Synthesis. Oncotarget 2015, 6, 41479–41496.523. Vos, M.; Dulovic-Mahlow, M.; Mandik, F.; Frese, L.; Kanana, Y.; Haissatou Diaw, S.; Depperschmidt, J.; Böhm, C.; Rohr, J.; Lohnau, T.; et al. Ceramide Accumulation Induces Mitophagy and Impairs β-Oxidation in PINK1 Deficiency. Proc. Natl. Acad. Sci. 2021, 118, e2025347118, doi:10.1073/pnas.2025347118.524. Plotegher, N.; Bubacco, L.; Greggio, E.; Civiero, L. Ceramides in Parkinson’s Disease: From Recent Evidence to New Hypotheses. Front. Neurosci. 2019, 13.525. Walton, C.; Fowler, D.P.; Turner, C.; Jia, W.; Whitehead, R.N.; Griffiths, L.; Dawson, C.; Waring, R.H.; Ramsden, D.B.; Cole, J.A.; et al. Analysis of Volatile Organic Compounds of Bacterial Origin in Chronic Gastrointestinal Diseases. Inflamm. Bowel Dis. 2013, 19, 2069–2078, doi:10.1097/MIB.0b013e31829a91f6.526. Walker, A.; Schmitt-Kopplin, P. The Role of Fecal Sulfur Metabolome in Inflammatory Bowel Diseases. Int. J. Med. Microbiol. 2021, 311, 151513, doi:10.1016/j.ijmm.2021.151513.527. Levitt, M.D.; Furne, J.; Springfield, J.; Suarez, F.; DeMaster, E. Detoxification of Hydrogen Sulfide and Methanethiol in the Cecal Mucosa. J. Clin. Invest. 1999, 104, 1107–1114.528. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230, doi:10.1038/nature11550.529. Novotný, M.; Klimova, B.; Valis, M. Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way? Front. Aging Neurosci. 2019, 11.530. Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29, doi:10.1093/advances/nmx009.531. Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of Human Colonic Butyrate-Producing Bacteria Revealed by Analysis of the Butyryl-CoA:Acetate CoA-Transferase Gene. Environ. Microbiol. 2010, 12, 304–314, doi:10.1111/j.1462-2920.2009.02066.x.532. Jeffery, I.B.; O’Toole, P.W. Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients 2013, 5, 234–252, doi:10.3390/nu5010234.533. Tan, R.; Jin, M.; Shao, Y.; Yin, J.; Li, H.; Chen, T.; Shi, D.; Zhou, S.; Li, J.; Yang, D. High-Sugar, High-Fat, and High-Protein Diets Promote Antibiotic Resistance Gene Spreading in the Mouse Intestinal Microbiota. Gut Microbes 14, 2022442, doi:10.1080/19490976.2021.2022442.534. Volynets, V.; Louis, S.; Pretz, D.; Lang, L.; Ostaff, M.J.; Wehkamp, J.; Bischoff, S.C. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. J. Nutr. 2017, 147, 770–780, doi:10.3945/jn.116.242859.535. Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73, doi:10.1186/s12967-017-1175-y.536. Cassani, E.; Privitera, G.; Pezzoli, G.; Pusani, C.; Madio, C.; Iorio, L.; Barichella, M. Use of Probiotics for the Treatment of Constipation in Parkinson’s Disease Patients. Minerva Gastroenterol. Dietol. 2011.537. Gao, K.; Mu, C.; Farzi, A.; Zhu, W. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723, doi:10.1093/advances/nmz127.538. Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56, doi:10.3390/nu8010056.539. Hubbard, T.D.; Murray, I.A.; Perdew, G.H. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab. Dispos. 2015, 43, 1522–1535, doi:10.1124/dmd.115.064246.540. Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward Personalized Medicine. Mass Spectrom. Rev. 2019, 38, 221–238, doi:10.1002/mas.21548.541. Cassani, E.; Barichella, M.; Ferri, V.; Pinelli, G.; Iorio, L.; Bolliri, C.; Caronni, S.; Faierman, S.A.; Mottolese, A.; Pusani, C.; et al. Dietary Habits in Parkinson’s Disease: Adherence to Mediterranean Diet. Parkinsonism Relat. Disord. 2017, 42, 40–46, doi:10.1016/j.parkreldis.2017.06.007.542. Sun, J.; Li, H.; Jin, Y.; Yu, J.; Mao, S.; Su, K.P.; Ling, Z.; Liu, J. Probiotic Clostridium Butyricum Ameliorated Motor Deficits in a Mouse Model of Parkinson’s Disease via Gut Microbiota-GLP-1 Pathway. Brain. Behav. Immun. 2021, 91, 703–715, doi:10.1016/j.bbi.2020.10.014.543. Zacharias, H.U.; Kaleta, C.; Cossais, F.; Schaeffer, E.; Berndt, H.; Best, L.; Dost, T.; Glüsing, S.; Groussin, M.; Poyet, M.; et al. Microbiome and Metabolome Insights into the Role of the Gastrointestinal–Brain Axis in Parkinson’s and Alzheimer’s Disease: Unveiling Potential Therapeutic Targets. Metabolites 2022, 12, 1222, doi:10.3390/metabo12121222.544. Gough, E.; Shaikh, H.; Manges, A.R. Systematic Review of Intestinal Microbiota Transplantation (Fecal Bacteriotherapy) for Recurrent Clostridium Difficile Infection. Clin. Infect. Dis. 2011, 53, 994–1002, doi:10.1093/cid/cir632.545. Xue, L.J.; Yang, X.Z.; Tong, Q.; Shen, P.; Ma, S.J.; Wu, S.N.; Zheng, J.L.; Wang, H.G. Fecal Microbiota Transplantation Therapy for Parkinson’s Disease: A Preliminary Study. Medicine (Baltimore) 2020, 99, e22035–e22035, doi:10.1097/MD.0000000000022035.546. Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The Gut–Brain Axis and Its Relation to Parkinson’s Disease: A Review. Front. Aging Neurosci. 2022, 13, 782082, doi:10.3389/fnagi.2021.782082.547. Nganga, R.; Oleinik, N.; Ogretmen, B. Mechanisms of Ceramide-Dependent Cancer Cell Death. Adv. Cancer Res. 2018, 140, 1–25, doi:10.1016/bs.acr.2018.04.007.548. Field, B.C.; Gordillo, R.; Scherer, P.E. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front. Endocrinol. 2020, 11.549. Lyn-Cook, L.E.; Lawton, M.; Tong, M.; Silbermann, E.; Longato, L.; Jiao, P.; Mark, P.; Wands, J.R.; Xu, H.; de la Monte, S.M. Hepatic Ceramide May Mediate Brain Insulin Resistance and Neurodegeneration in Type 2 Diabetes and Non-Alcoholic Steatohepatitis. J. Alzheimers Dis. JAD 2009, 16, 715–729, doi:10.3233/JAD-2009-0984.550. Custodia, A.; Aramburu-Núñez, M.; Correa-Paz, C.; Posado-Fernández, A.; Gómez-Larrauri, A.; Castillo, J.; Gómez-Muñoz, A.; Sobrino, T.; Ouro, A. Ceramide Metabolism and Parkinson’s Disease-Therapeutic Targets. Biomolecules 2021, 11, 945, doi:10.3390/biom11070945.551. Xing, Y.; Tang, Y.; Zhao, L.; Wang, Q.; Qin, W.; Ji, X.; Zhang, J.; Jia, J. Associations between Plasma Ceramides and Cognitive and Neuropsychiatric Manifestations in Parkinson’s Disease Dementia. J. Neurol. Sci. 2016, 370, 82–87, doi:10.1016/j.jns.2016.09.028.552. Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364, doi:10.3390/cells8040364.553. de Wit, N.M.; den Hoedt, S.; Martinez-Martinez, P.; Rozemuller, A.J.; Mulder, M.T.; de Vries, H.E. Astrocytic Ceramide as Possible Indicator of Neuroinflammation. J. Neuroinflammation 2019, 16, 48, doi:10.1186/s12974-019-1436-1.554. Hebbar, S.; Sahoo, I.; Matysik, A.; Argudo Garcia, I.; Osborne, K.A.; Papan, C.; Torta, F.; Narayanaswamy, P.; Fun, X.H.; Wenk, M.R.; et al. Ceramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila Blue Cheese (Bchs) Mutants. Sci. Rep. 2015, 5, 15926, doi:10.1038/srep15926.Universidad JaverianaUniversidad de Kiel AlemaniaEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84412/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018441690.2023.pdf1018441690.2023.pdfTesis de Doctorado en Ciencias Biomédicasapplication/pdf18686824https://repositorio.unal.edu.co/bitstream/unal/84412/2/1018441690.2023.pdf81ddb227641c104017d52b938f45781cMD521018441690.2023.Anexos_L_M_N_O.xlsx1018441690.2023.Anexos_L_M_N_O.xlsxAnexos M, N, Oapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet322779https://repositorio.unal.edu.co/bitstream/unal/84412/3/1018441690.2023.Anexos_L_M_N_O.xlsx1aacf4dab676d50f9867ae3c33ef61f6MD53THUMBNAIL1018441690.2023.pdf.jpg1018441690.2023.pdf.jpgGenerated Thumbnailimage/jpeg5311https://repositorio.unal.edu.co/bitstream/unal/84412/4/1018441690.2023.pdf.jpgc4614071f26fe03d68fec461a0ce258cMD54unal/84412oai:repositorio.unal.edu.co:unal/844122024-08-17 00:01:37.682Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |