Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón

ilustraciones, diagramas, tablas

Autores:
Beltrán Castañeda, Jeimy Yurani
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86730
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86730
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
INMUNORRESPUESTA
MICROBIOLOGIA-TECNICA
HISTOCOMPATIBILIDAD
ANTIGENOS DE HISTOCOMPATIBILIDAD
Immune response
Microbiology-technique
Histocompatibility
Histocompatibility antigens
Selección natural
Péptidos quiméricos
Plasmodium yoelii
Epítopos T
Epítopos B
Inmunogenicidad
Antigenicidad
Natural selection
T epitopes
B epitopes
Chimeric peptides
Immunogenicity
Antigenicity
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_74b1b5b11447ff3f91f292567c410b14
oai_identifier_str oai:repositorio.unal.edu.co:unal/86730
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
dc.title.translated.eng.fl_str_mv Evaluation of the protective immune response stimulated by B epitopes derived from the Plasmodium yoelii MSP-1 protein optimized for binding to mouse major histocompatibility complex class II molecules
title Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
spellingShingle Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
INMUNORRESPUESTA
MICROBIOLOGIA-TECNICA
HISTOCOMPATIBILIDAD
ANTIGENOS DE HISTOCOMPATIBILIDAD
Immune response
Microbiology-technique
Histocompatibility
Histocompatibility antigens
Selección natural
Péptidos quiméricos
Plasmodium yoelii
Epítopos T
Epítopos B
Inmunogenicidad
Antigenicidad
Natural selection
T epitopes
B epitopes
Chimeric peptides
Immunogenicity
Antigenicity
title_short Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
title_full Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
title_fullStr Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
title_full_unstemmed Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
title_sort Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón
dc.creator.fl_str_mv Beltrán Castañeda, Jeimy Yurani
dc.contributor.advisor.spa.fl_str_mv Díaz Arévalo, Diana
Patarroyo Gutiérrez, Manuel Alfonso
dc.contributor.author.spa.fl_str_mv Beltrán Castañeda, Jeimy Yurani
dc.contributor.educationalvalidator.spa.fl_str_mv Rodríguez Obediente, Kewin Jair
dc.subject.ddc.spa.fl_str_mv 570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
topic 570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
INMUNORRESPUESTA
MICROBIOLOGIA-TECNICA
HISTOCOMPATIBILIDAD
ANTIGENOS DE HISTOCOMPATIBILIDAD
Immune response
Microbiology-technique
Histocompatibility
Histocompatibility antigens
Selección natural
Péptidos quiméricos
Plasmodium yoelii
Epítopos T
Epítopos B
Inmunogenicidad
Antigenicidad
Natural selection
T epitopes
B epitopes
Chimeric peptides
Immunogenicity
Antigenicity
dc.subject.lemb.spa.fl_str_mv INMUNORRESPUESTA
MICROBIOLOGIA-TECNICA
HISTOCOMPATIBILIDAD
ANTIGENOS DE HISTOCOMPATIBILIDAD
dc.subject.lemb.eng.fl_str_mv Immune response
Microbiology-technique
Histocompatibility
Histocompatibility antigens
dc.subject.proposal.spa.fl_str_mv Selección natural
Péptidos quiméricos
Plasmodium yoelii
Epítopos T
Epítopos B
Inmunogenicidad
Antigenicidad
dc.subject.proposal.eng.fl_str_mv Natural selection
T epitopes
B epitopes
Chimeric peptides
Immunogenicity
Antigenicity
description ilustraciones, diagramas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-15T19:53:15Z
dc.date.available.none.fl_str_mv 2024-08-15T19:53:15Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86730
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86730
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology. 2022;149(6):1-22.
2. WHO. Geneva: World Malaria Report 2023. World Health Organization; 2023.
3. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia:
4. Quin SJ, Langhorne J. Different regions of the malaria merozoite surface protein 1 of Plasmodium chabaudi elicit distinct T-cell and antibody isotype responses. Infection and immunity. 2001;69(4):2245-51.
5. Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS One. 2015;10(4):e0123249.
6. Tinto H, Otieno W, Gesase S, Sorgho H, Otieno L, Liheluka E, et al. Long-term incidence of severe malaria following RTS, S/AS01 vaccination in children and infants in Africa: an open-label 3-year extension study of a phase 3 randomised controlled trial. The Lancet Infectious Diseases. 2019;19(8):821-32.
7. Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. The Lancet Infectious Diseases. 2022;22(12):1728-36.
8. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725-32.
9. Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. New England Journal of Medicine. 2016;374(26):2519-29.
10. Lima-Junior JdC, Pratt-Riccio LR. Major histocompatibility complex and malaria: focus on Plasmodium vivax infection. Frontiers in immunology. 2016;7:13.
11. Marussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. International immunology. 1997;9(12):1817-24.
12. Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 1995;60:105-49.
13. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum* S. Molecular & cellular proteomics. 2006;5(7):1286-99.
14. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, et al. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell host & microbe. 2015;18(4):433-44.
15. Holder A. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology. 2009;136(12):1445-56.
16. Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota J-i, et al. Merozoite surface protein 1-specific immune response is protective against exoerythrocytic forms of Plasmodium yoelii. Infection and immunity. 2002;70(11):6075-82
17. Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF. Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. The Journal of Immunology. 2002;169(2):944-51.
18. Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. Journal of immunology research. 2018;2018.
19. WHO. Geneva: World Malaria Report 2022. World Health Organization; 2022.
20. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia: Instituto Nacional de Salud - Sistema Nacional de Vigilancia en Salud Pública; 2023.
21. Khan SM, Jarra W, Preiser PR. The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: function at the junction. Molecular and Biochemical Parasitology. 2001;117(1):1-10.
22. Spencer LM, Mendoza E, Louro A. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles. Revista Bionatura. 2016;1(3):146-53
23. Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malaria journal. 2013;12(1):1-9.
24. Siddiqui WA, Tam LQ, Kramer KJ, Hui GS, Case SE, Yamaga KM, et al. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987;84(9):3014-8.
25. Tian J-H, Kumar S, Kaslow DC, Miller LH. Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infection and immunity. 1997;65(8):3032-6.
26. Ling I, Ogun S, Holder A. Immunization against malaria with a recombinant protein. Parasite immunology. 1994;16(2):63-7.
27. Rotman HL, Daly TM, Clynes R, Long CA. Fc receptors are not required for antibody-mediated protection against lethal malaria challenge in a mouse model. The Journal of Immunology. 1998;161(4):1908-12.
28. Combes V, Taylor TE, Juhan-Vague I, Mège J-L, Mwenechanya J, Tembo M, et al. Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. Jama. 2004;291(21):2542-4.
29. Deroost K, Pham T-T, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS microbiology reviews. 2016;40(2):208-57.
30. Bansal GP, Weinstein CS, Kumar N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line. Acta tropica. 2016;157:96-101.
31. Haque A, Best SE, De Oca MM, James KR, Ammerdorffer A, Edwards CL, et al. Type I IFN signaling in CD8–DCs impairs Th1-dependent malaria immunity. The Journal of clinical investigation. 2014;124(6):2483-96.
32. Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.
33. Yu X, Cai B, Wang M, Tan P, Ding X, Wu J, et al. Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity. 2016;45(5):1093-107.
34. McNab F, Mayer-Barber K, Sher A, Wack A, O'garra A. Type I interferons in infectious disease. Nature Reviews Immunology. 2015;15(2):87-103.
35. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542(7642):445-9.
36. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. The Journal of Immunology. 2010;184(11):6043-52.
37. Su Z, & Stevenson, M. M. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infection and immunity. 2000;68:4399-406.
38. Cai C, Hu Z, Yu X. Accelerator or brake: Immune regulators in malaria. Frontiers in Cellular and Infection Microbiology. 2020;10:610121.
39. Vinuesa CG, Cyster JG. How T cells earn the follicular rite of passage. Immunity. 2011;35(5):671-80.
40. Obeng-Adjei N, Portugal S, Tran TM, Yazew TB, Skinner J, Li S, et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell reports. 2015;13(2):425-39.
41. Ryg-Cornejo V, Ioannidis LJ, Ly A, Chiu CY, Tellier J, Hill DL, et al. Severe malaria infections impair germinal center responses by inhibiting T follicular helper cell differentiation. Cell reports. 2016;14(1):68-81.
42. Kuby Janis KT, Goldsby Richard Inmunología de Kuby 2007.
43. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. Immunobiology: The Immune System in Health and Disease 5th edition: Garland Science; 2001.
44. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. 2017;8:248429.
45. Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.
46. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution. 2005;22(5):1208-22.
47. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS genetics. 2012;8(7):e1002764
48. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Molecular biology and evolution. 2013;30(5):1196-205.
49. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution. 2017;34(12):3299-302.
50. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian protein metabolism. 1969;3:21-132.
51. Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infection, Genetics and Evolution. 2015;33:182-8.
52. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.
53. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.
54. Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.
55. Nillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Z Parasitenkd. 1981;64(3):279-84.
56. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.
57. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.
58. Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.
59. Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory and computation. 2014;10(10):4745-58.
60. Gorga JC, Horejsi V, Johnson DR, Raghupathy R, Strominger JL. Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. Journal of Biological Chemistry. 1987;262(33):16087-94.
61. Andrew SM, Titus JA. Purification of immunoglobulin G. Current Protocols in Cell Biology. 2000;5(1):16.3. 1-.3. 2.
62. Vargas LE, Parra CA, Salazar LM, Guzmán F, Pinto M, Patarroyo ME. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6. Biochemical and biophysical research communications. 2003;307(1):148-56.
63. Saravia C, Martinez P, Granados DS, Lopez C, Reyes C, Patarroyo MA. Identification and evaluation of universal epitopes in Plasmodium vivax Duffy binding protein. Biochemical and biophysical research communications. 2008;377(4):1279-83.
64. Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.
65. Cuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).
66. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.
67. RTS SCTP. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. New England Journal of Medicine. 2012;367(24):2284-95.
68. Espinosa AM, Sierra AY, Barrero CA, Cepeda LA, Cantor EM, Lombo TB, et al. Expression, polymorphism analysis, reticulocyte binding and serological reactivity of two Plasmodium vivax MSP-1 protein recombinant fragments. Vaccine. 2003;21(11-12):1033-43.
69. Rodrı́guez LE, Urquiza M, Ocampo M, Curtidor H, Suárez J, Garcı́a J, et al. Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine. 2002;20(9-10):1331-9.
70. Pacheco MA, Poe AC, Collins WE, Lal AA, Tanabe K, Kariuki SK, et al. A comparative study of the genetic diversity of the 42 kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. Infection, Genetics and Evolution. 2007;7(2):180-7.
71. Thái TL, Jun H, Lee J, Kang J-M, Lê HG, Lin K, et al. Genetic diversity of merozoite surface protein-1 C-terminal 42 kDa of Plasmodium falciparum (PfMSP-142) may be greater than previously known in global isolates. Parasites & vectors. 2018;11(1):1-15.
72. Gaur D, Mayer DG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. International journal for parasitology. 2004;34(13-14):1413-29.
73. Goel VK, Li X, Chen H, Liu S-C, Chishti AH, Oh SS. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proceedings of the National Academy of Sciences. 2003;100(9):5164-9.
74. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS biology. 2003;1(1):e5.
75. Moss DK, Remarque EJ, Faber BW, Cavanagh DR, Arnot DE, Thomas AW, et al. Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development. Infection and immunity. 2012;80(3):1280-7.
76. Yuen D, Leung W-H, Cheung R, Hashimoto C, Ng SF, Ho W, et al. Antigenicity and immunogenicity of the N-terminal 33-kDa processing fragment of the Plasmodium falciparum merozoite surface protein 1, MSP1: implications for vaccine development. Vaccine. 2007;25(3):490-9.
77. Fernandez-Becerra C, Sanz S, Brucet M, Stanisic DI, Alves FP, Camargo EP, et al. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. Malar J. 2010;9:29.
78. Punnath K, Dayanand KK, Midya V, Chandrashekar VN, Achur RN, Kakkilaya SB, et al. Acquired antibody responses against merozoite surface protein-1(19) antigen during Plasmodium falciparum and P.vivax infections in South Indian city of Mangaluru. J Parasit Dis. 2021;45(1):176-90.
79. Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. Vaccine. 2018;36(45):6703-10.
80. Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite's Achilles' Heel: Functionally-relevant Invasion Structures. Current issues in molecular biology. 2016;18(1):11-20.
81. Ivette Caro-Aguilar SL, Jan Pohl, Mary R. Galinski, Alberto Moreno. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes and infection. 2005;1324–1337.
82. Su H, Caldwell HD. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. The Journal of experimental medicine. 1992;175(1):227-35.
83. Smith EC, Taylor-Robinson AW. Parasite-specific immunoglobulin isotypes during lethal and non-lethal murine malaria infections. Parasitology Research. 2002;89:26-33.
84. Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical and Vaccine Immunology. 2002;9(6):1145-52.
85. Gbedande K, Carpio VH, Stephens R. Using two phases of the CD 4 T cell response to blood‐stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunological reviews. 2020;293(1):88-114.
86. Niikura M, Inoue S, Kobayashi F. Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol. 2011;2011:383962.
87. Randall LM, Amante FH, McSweeney KA, Zhou Y, Stanley AC, Haque A, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infection and immunity. 2008;76(7):3312-20.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 68 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86730/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86730/4/Tesis%20Jeimy%20Beltran%20-15-08-24%20Repositorio.pdf
https://repositorio.unal.edu.co/bitstream/unal/86730/5/Tesis%20Jeimy%20Beltran%20-15-08-24%20Repositorio.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e095e480f27b3a6c5b092a6d0da06d42
989fcb0a89ef33a95432cbd68b1e941e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169089309736960
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Arévalo, Diana4b9a1ebb1633a8c2defe6148569778fcPatarroyo Gutiérrez, Manuel Alfonso30322a85ae0ad9c1368bae791386bffeBeltrán Castañeda, Jeimy Yurani2ef02487fc0ed9be1f8e41c4a4777d4bRodríguez Obediente, Kewin Jair2024-08-15T19:53:15Z2024-08-15T19:53:15Z2024https://repositorio.unal.edu.co/handle/unal/86730Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl modelo de malaria murina ha sido ampliamente usado en ensayos preliminares de protección con aquellas proteínas de Plasmodium yoelii que son homólogas a las proteínas de P. vivax, al evaluar posibles candidatos a vacuna. La proteína MSP1 es la proteína más abundante localizada en la superficie del merozoíto y está involucrada en la unión inicial a la membrana del glóbulo rojo durante el proceso de invasión a eritrocitos. En el presente estudio, como prueba de concepto, se caracterizó la respuesta inmune protectiva de epítopos B de la proteína PyMSP1-42 kDa con un epítopo T artificial para la unión a H2-IEd, utilizando ratones BALB/c. Se seleccionaron epítopos B bajo un análisis de restricción funcional in silico, encontrando dos regiones conservadas que pertenecen al fragmento 33 kDa y 19 kDa; con base en este análisis, se sintetizaron dieciséis péptidos cubriendo la totalidad de las regiones conservadas y, en ensayos in vitro, se identificaron 3 péptidos con capacidad de unión a eritrocitos, capacidad de inhibición de la invasión y con capacidad antigénica. Mediante análisis bioinformáticos, se realizó la optimización de los epítopos B seleccionados, a través de la articulación de un epítopo T artificial y se evaluó su unión in vitro a moléculas H2-IEd. Los péptidos quiméricos 43758 y 43762 mostraron perfiles de unión superior al 50% a la molécula del Complejo Mayor de Histocompatibilidad (MHC, del inglés Major Histocompatibility Complex) de clase II murino, además de un perfil de isotipos IgG1 e IgG2 y una respuesta mediada por TNFα, como posible mediador de la eliminación del parásito durante la infección temprana de P. yoelii. Este trabajo propone una metodología racional y robusta para la optimización de péptidos conservados a través de constructos articulados de epítopos B, y epítopos T completamente artificiales, como una estrategia novedosa para el diseño de candidatos peptídicos inmunoprofilácticos para el desarrollo de una vacuna sintética multiepítopo - multiantígeno – multiestadio contra la malaria (Texto tomado de la fuente).The murine malaria model has been widely used in preliminary protection trials with Plasmodium yoelii proteins that are homologous to P. vivax proteins as potential vaccine candidates. The MSP1 protein is the most abundant protein located on the surface of the merozoite and is involved in the initial binding to the red blood cell membrane during the invasion process to erythrocytes. In the present study, as a proof of concept, the protective immune response of B epitopes of PyMSP1-42 kDa protein with an artificial T epitope for H2-IEd binding was characterized using BALB/c mice. B epitopes under functional restriction analysis were selected in silico, two conserved regions belonging to the 33 kDa and 19 kDa fragments were found; sixteen peptides covering the conserved regions were synthesized, 3 of them displaying erythrocyte binding ability, invasion inhibition ability and antigenicity. The selected B epitopes were then optimized through bioinformatics analysis, articulating them with an artificial T epitope, and their in vitro binding to H2-IEd molecules was evaluated. Chimeric peptides 43758 and 43762 showed binding profiles greater than 50% to the murine MHC class II molecule; furthermore, they induced IgG1 and IgG2 isotype profiles and a TNFα-mediated response as a possible mediator of parasite clearance during early P. yoelii infection. This work proposes a robust and rational methodology to optimize conserved peptides by joining natural B epitopes with artificial T ones, as a novel strategy for designing immunoprophylactic peptide candidates in the development of a multiepitope – multiantigen – multistage malaria vaccine.MaestríaMagister en Ciencias – MicrobiologíaEl polimorfismo del gen msp1 fragmento 42 kDa se evaluó a partir de los datos de secuencias de P. yoelii y especies relacionadas filogenéticamente / tropismo por la célula hospedera (Tabla 2), obtenidos de la plataforma NCBI (https://www.ncbi.nlm.nih.gov). El servidor web TraslatorX (http://translatorx.co.uk/) (45), se utilizó para realizar un alineamiento múltiple conservando el ORF (del inglés, Open Reading Frame) para la proteína PyMSP1-42 kDa. El algoritmo GARD (Genetic Algorithm for Recombination Detection) se utilizó para detectar procesos de recombinación. Luego, los modelos IFEL (Internal Fixed Effects Likelihood), 24 SLAC (Single-Likelihood Ancestor Counting), FEL (Fixed Effects Likelihood), REL (Random Effects Likelihood) (46), MEME (Mixed Effects Model of Evolution) (47) y FUBAR (Fast, Unconstrained Bayesian Approximation) (48), se utilizaron para evaluar dinámicas de selección natural, integrando enfoques bayesianos o de máxima verosimilitud. Lo anterior con el objetivo de inferir codones bajo selección purificante (característica importante para predecir regiones mínimas funcionales). La ventana deslizante para inferir la tasa de divergencia genética (ω), se obtuvo en el software DnaSP6 (49). Las señales de selección natural intra-especie se evaluaron a través del método modificado de Nei-Gojobori, calculando la variación entre las tasas de sustitución no sinónima y sinónima (dN/dS). Además, se aplicó la corrección de Jukes-Cantor (50) para evaluar fenómenos inter-especie, teniendo en cuenta la diferencia entre las tasas de divergencia no sinónimas y sinónimas (KNKS). Aquellas regiones que presentaron valor ω > 1 se consideraron bajo selección purificante (51).Inmunología Celular y Molecular68 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::571 - Fisiología y temas relacionados570 - Biología::576 - Genética y evoluciónINMUNORRESPUESTAMICROBIOLOGIA-TECNICAHISTOCOMPATIBILIDADANTIGENOS DE HISTOCOMPATIBILIDADImmune responseMicrobiology-techniqueHistocompatibilityHistocompatibility antigensSelección naturalPéptidos quiméricosPlasmodium yoeliiEpítopos TEpítopos BInmunogenicidadAntigenicidadNatural selectionT epitopesB epitopesChimeric peptidesImmunogenicityAntigenicityEvaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratónEvaluation of the protective immune response stimulated by B epitopes derived from the Plasmodium yoelii MSP-1 protein optimized for binding to mouse major histocompatibility complex class II moleculesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology. 2022;149(6):1-22.2. WHO. Geneva: World Malaria Report 2023. World Health Organization; 2023.3. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia:4. Quin SJ, Langhorne J. Different regions of the malaria merozoite surface protein 1 of Plasmodium chabaudi elicit distinct T-cell and antibody isotype responses. Infection and immunity. 2001;69(4):2245-51.5. Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS One. 2015;10(4):e0123249.6. Tinto H, Otieno W, Gesase S, Sorgho H, Otieno L, Liheluka E, et al. Long-term incidence of severe malaria following RTS, S/AS01 vaccination in children and infants in Africa: an open-label 3-year extension study of a phase 3 randomised controlled trial. The Lancet Infectious Diseases. 2019;19(8):821-32.7. Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. The Lancet Infectious Diseases. 2022;22(12):1728-36.8. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725-32.9. Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. New England Journal of Medicine. 2016;374(26):2519-29.10. Lima-Junior JdC, Pratt-Riccio LR. Major histocompatibility complex and malaria: focus on Plasmodium vivax infection. Frontiers in immunology. 2016;7:13.11. Marussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. International immunology. 1997;9(12):1817-24.12. Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 1995;60:105-49.13. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum* S. Molecular & cellular proteomics. 2006;5(7):1286-99.14. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, et al. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell host & microbe. 2015;18(4):433-44.15. Holder A. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology. 2009;136(12):1445-56.16. Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota J-i, et al. Merozoite surface protein 1-specific immune response is protective against exoerythrocytic forms of Plasmodium yoelii. Infection and immunity. 2002;70(11):6075-8217. Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF. Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. The Journal of Immunology. 2002;169(2):944-51.18. Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. Journal of immunology research. 2018;2018.19. WHO. Geneva: World Malaria Report 2022. World Health Organization; 2022.20. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia: Instituto Nacional de Salud - Sistema Nacional de Vigilancia en Salud Pública; 2023.21. Khan SM, Jarra W, Preiser PR. The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: function at the junction. Molecular and Biochemical Parasitology. 2001;117(1):1-10.22. Spencer LM, Mendoza E, Louro A. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles. Revista Bionatura. 2016;1(3):146-5323. Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malaria journal. 2013;12(1):1-9.24. Siddiqui WA, Tam LQ, Kramer KJ, Hui GS, Case SE, Yamaga KM, et al. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987;84(9):3014-8.25. Tian J-H, Kumar S, Kaslow DC, Miller LH. Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infection and immunity. 1997;65(8):3032-6.26. Ling I, Ogun S, Holder A. Immunization against malaria with a recombinant protein. Parasite immunology. 1994;16(2):63-7.27. Rotman HL, Daly TM, Clynes R, Long CA. Fc receptors are not required for antibody-mediated protection against lethal malaria challenge in a mouse model. The Journal of Immunology. 1998;161(4):1908-12.28. Combes V, Taylor TE, Juhan-Vague I, Mège J-L, Mwenechanya J, Tembo M, et al. Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. Jama. 2004;291(21):2542-4.29. Deroost K, Pham T-T, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS microbiology reviews. 2016;40(2):208-57.30. Bansal GP, Weinstein CS, Kumar N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line. Acta tropica. 2016;157:96-101.31. Haque A, Best SE, De Oca MM, James KR, Ammerdorffer A, Edwards CL, et al. Type I IFN signaling in CD8–DCs impairs Th1-dependent malaria immunity. The Journal of clinical investigation. 2014;124(6):2483-96.32. Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.33. Yu X, Cai B, Wang M, Tan P, Ding X, Wu J, et al. Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity. 2016;45(5):1093-107.34. McNab F, Mayer-Barber K, Sher A, Wack A, O'garra A. Type I interferons in infectious disease. Nature Reviews Immunology. 2015;15(2):87-103.35. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542(7642):445-9.36. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. The Journal of Immunology. 2010;184(11):6043-52.37. Su Z, & Stevenson, M. M. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infection and immunity. 2000;68:4399-406.38. Cai C, Hu Z, Yu X. Accelerator or brake: Immune regulators in malaria. Frontiers in Cellular and Infection Microbiology. 2020;10:610121.39. Vinuesa CG, Cyster JG. How T cells earn the follicular rite of passage. Immunity. 2011;35(5):671-80.40. Obeng-Adjei N, Portugal S, Tran TM, Yazew TB, Skinner J, Li S, et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell reports. 2015;13(2):425-39.41. Ryg-Cornejo V, Ioannidis LJ, Ly A, Chiu CY, Tellier J, Hill DL, et al. Severe malaria infections impair germinal center responses by inhibiting T follicular helper cell differentiation. Cell reports. 2016;14(1):68-81.42. Kuby Janis KT, Goldsby Richard Inmunología de Kuby 2007.43. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. Immunobiology: The Immune System in Health and Disease 5th edition: Garland Science; 2001.44. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. 2017;8:248429.45. Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.46. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution. 2005;22(5):1208-22.47. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS genetics. 2012;8(7):e100276448. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Molecular biology and evolution. 2013;30(5):1196-205.49. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution. 2017;34(12):3299-302.50. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian protein metabolism. 1969;3:21-132.51. Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infection, Genetics and Evolution. 2015;33:182-8.52. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.53. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.54. Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.55. Nillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Z Parasitenkd. 1981;64(3):279-84.56. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.57. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.58. Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.59. Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory and computation. 2014;10(10):4745-58.60. Gorga JC, Horejsi V, Johnson DR, Raghupathy R, Strominger JL. Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. Journal of Biological Chemistry. 1987;262(33):16087-94.61. Andrew SM, Titus JA. Purification of immunoglobulin G. Current Protocols in Cell Biology. 2000;5(1):16.3. 1-.3. 2.62. Vargas LE, Parra CA, Salazar LM, Guzmán F, Pinto M, Patarroyo ME. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6. Biochemical and biophysical research communications. 2003;307(1):148-56.63. Saravia C, Martinez P, Granados DS, Lopez C, Reyes C, Patarroyo MA. Identification and evaluation of universal epitopes in Plasmodium vivax Duffy binding protein. Biochemical and biophysical research communications. 2008;377(4):1279-83.64. Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.65. Cuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).66. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.67. RTS SCTP. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. New England Journal of Medicine. 2012;367(24):2284-95.68. Espinosa AM, Sierra AY, Barrero CA, Cepeda LA, Cantor EM, Lombo TB, et al. Expression, polymorphism analysis, reticulocyte binding and serological reactivity of two Plasmodium vivax MSP-1 protein recombinant fragments. Vaccine. 2003;21(11-12):1033-43.69. Rodrı́guez LE, Urquiza M, Ocampo M, Curtidor H, Suárez J, Garcı́a J, et al. Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine. 2002;20(9-10):1331-9.70. Pacheco MA, Poe AC, Collins WE, Lal AA, Tanabe K, Kariuki SK, et al. A comparative study of the genetic diversity of the 42 kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. Infection, Genetics and Evolution. 2007;7(2):180-7.71. Thái TL, Jun H, Lee J, Kang J-M, Lê HG, Lin K, et al. Genetic diversity of merozoite surface protein-1 C-terminal 42 kDa of Plasmodium falciparum (PfMSP-142) may be greater than previously known in global isolates. Parasites & vectors. 2018;11(1):1-15.72. Gaur D, Mayer DG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. International journal for parasitology. 2004;34(13-14):1413-29.73. Goel VK, Li X, Chen H, Liu S-C, Chishti AH, Oh SS. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proceedings of the National Academy of Sciences. 2003;100(9):5164-9.74. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS biology. 2003;1(1):e5.75. Moss DK, Remarque EJ, Faber BW, Cavanagh DR, Arnot DE, Thomas AW, et al. Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development. Infection and immunity. 2012;80(3):1280-7.76. Yuen D, Leung W-H, Cheung R, Hashimoto C, Ng SF, Ho W, et al. Antigenicity and immunogenicity of the N-terminal 33-kDa processing fragment of the Plasmodium falciparum merozoite surface protein 1, MSP1: implications for vaccine development. Vaccine. 2007;25(3):490-9.77. Fernandez-Becerra C, Sanz S, Brucet M, Stanisic DI, Alves FP, Camargo EP, et al. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. Malar J. 2010;9:29.78. Punnath K, Dayanand KK, Midya V, Chandrashekar VN, Achur RN, Kakkilaya SB, et al. Acquired antibody responses against merozoite surface protein-1(19) antigen during Plasmodium falciparum and P.vivax infections in South Indian city of Mangaluru. J Parasit Dis. 2021;45(1):176-90.79. Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. Vaccine. 2018;36(45):6703-10.80. Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite's Achilles' Heel: Functionally-relevant Invasion Structures. Current issues in molecular biology. 2016;18(1):11-20.81. Ivette Caro-Aguilar SL, Jan Pohl, Mary R. Galinski, Alberto Moreno. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes and infection. 2005;1324–1337.82. Su H, Caldwell HD. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. The Journal of experimental medicine. 1992;175(1):227-35.83. Smith EC, Taylor-Robinson AW. Parasite-specific immunoglobulin isotypes during lethal and non-lethal murine malaria infections. Parasitology Research. 2002;89:26-33.84. Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical and Vaccine Immunology. 2002;9(6):1145-52.85. Gbedande K, Carpio VH, Stephens R. Using two phases of the CD 4 T cell response to blood‐stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunological reviews. 2020;293(1):88-114.86. Niikura M, Inoue S, Kobayashi F. Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol. 2011;2011:383962.87. Randall LM, Amante FH, McSweeney KA, Zhou Y, Stanley AC, Haque A, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infection and immunity. 2008;76(7):3312-20.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86730/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALTesis Jeimy Beltran -15-08-24 Repositorio.pdfTesis Jeimy Beltran -15-08-24 Repositorio.pdfTesis de Maestría en Ciencias – Microbiologíaapplication/pdf2282713https://repositorio.unal.edu.co/bitstream/unal/86730/4/Tesis%20Jeimy%20Beltran%20-15-08-24%20Repositorio.pdfe095e480f27b3a6c5b092a6d0da06d42MD54THUMBNAILTesis Jeimy Beltran -15-08-24 Repositorio.pdf.jpgTesis Jeimy Beltran -15-08-24 Repositorio.pdf.jpgGenerated Thumbnailimage/jpeg5112https://repositorio.unal.edu.co/bitstream/unal/86730/5/Tesis%20Jeimy%20Beltran%20-15-08-24%20Repositorio.pdf.jpg989fcb0a89ef33a95432cbd68b1e941eMD55unal/86730oai:repositorio.unal.edu.co:unal/867302024-08-15 23:06:23.396Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=