Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
ilustraciones, diagramas, tablas
- Autores:
-
Serna Toro, Juan Sebastian
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81999
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Sistemas eléctricos - Colombia
Electrical systems - Colombia
Energía solar
Solar energy
Renovables
Región Segura de Operación
Pronostico
Redes neuronales
Renewables
Safe Region of Operation
Forecast
Neural Networks
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_74ac8813f0d5552dcf36f7abb4c11c0b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81999 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
dc.title.translated.eng.fl_str_mv |
Electrical safety in a power system considering intermittent sources of electrical energy |
title |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
spellingShingle |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Sistemas eléctricos - Colombia Electrical systems - Colombia Energía solar Solar energy Renovables Región Segura de Operación Pronostico Redes neuronales Renewables Safe Region of Operation Forecast Neural Networks |
title_short |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
title_full |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
title_fullStr |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
title_full_unstemmed |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
title_sort |
Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica |
dc.creator.fl_str_mv |
Serna Toro, Juan Sebastian |
dc.contributor.advisor.none.fl_str_mv |
Candelo Becerra, John Edwin |
dc.contributor.author.none.fl_str_mv |
Serna Toro, Juan Sebastian |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Sistemas eléctricos - Colombia Electrical systems - Colombia Energía solar Solar energy Renovables Región Segura de Operación Pronostico Redes neuronales Renewables Safe Region of Operation Forecast Neural Networks |
dc.subject.lemb.none.fl_str_mv |
Sistemas eléctricos - Colombia Electrical systems - Colombia Energía solar Solar energy |
dc.subject.proposal.spa.fl_str_mv |
Renovables Región Segura de Operación Pronostico Redes neuronales |
dc.subject.proposal.eng.fl_str_mv |
Renewables Safe Region of Operation Forecast Neural Networks |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-22T20:53:09Z |
dc.date.available.none.fl_str_mv |
2022-08-22T20:53:09Z |
dc.date.issued.none.fl_str_mv |
2022-05-15 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81999 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81999 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113. “RE-thinking 2050.” www.erec.org (accessed Sep. 02, 2013). “World Energy Outlook 2012.” www.iae.org (accessed Aug. 15, 2013). UPME, “‘Informe registro de proyectos’ - https://www1.upme.gov.co/Paginas/Registro.aspx" ,” Nov. 18, 2021. Comisión de Regulación de Energía y Gas, “Resolución N° 060 de 2019.” p. 44, 2019. P. Li et al., “Operational flexibility of active distribution networks: Definition, quantified calculation and application,” International Journal of Electrical Power & Energy Systems, vol. 119, p. 105872, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105872. M. A. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson, and G. Andersson, “On quantification of flexibility in power systems,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232514. J. Zhang, G. Xiong, K. Meng, P. Yu, G. Yao, and Z. Dong, “An improved probabilistic load flow simulation method considering correlated stochastic variables,” International Journal of Electrical Power and Energy Systems, vol. 111, no. March, pp. 260–268, 2019, doi: 10.1016/j.ijepes.2019.04.007. F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091. F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091. C. Liu, “A New Method for the Construction of Maximal Steady-State Security Regions of Power Systems,” IEEE Power Engineering Review, vol. PER-6, no. 11, pp. 25–26, 1986, doi: 10.1109/MPER.1986.5527464. W. Dai et al., “Security region of renewable energy integration: Characterization and flexibility,” Energy, vol. 187, p. 115975, 2019, doi: 10.1016/j.energy.2019.115975. Y. Hou, J. Yan, C. Peng, Z. Qin, S. Lei, and H. Ruan, “Risk assessment of critical time to renewable operation with steady-state security region,” Proceedings - 2014 Power Systems Computation Conference, PSCC 2014, no. 51277155, pp. 1–6, 2014, doi: 10.1109/PSCC.2014.7038341. F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091. H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and A. Elkamel, “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN,” Sustainable Energy Technologies and Assessments, vol. 38, no. December 2019, 2020, doi: 10.1016/j.seta.2019.100601. H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, “Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning,” International Journal of Electrical Power and Energy Systems, vol. 118, no. December 2019, p. 105790, 2020, doi: 10.1016/j.ijepes.2019.105790. S. Xuewei et al., “Research on Energy Storage Configuration Method Based on Wind and Solar Volatility; Research on Energy Storage Configuration Method Based on Wind and Solar Volatility,” 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, doi: 10.1109/ICPES51309.2020.9349645/20/$31.00. C. O. Inacio and C. L. T. Borges, “Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 952–960, Apr. 2018, doi: 10.1109/TSTE.2017.2767780. K. Touafek et al., “Improvement of Energy Efficiency of Solar Hybrid Water Collectors; Improvement of Energy Efficiency of Solar Hybrid Water Collectors,” 2017. J. Windarta, D. Denis, S. Saptadi, J. S. Silaen, and D. A. Satrio, “Implementation and Testing of Rooftop Solar Power Plant with On-Grid System 1215 Wp Household Scale,” in 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, Sep. 2020, pp. 294–299. doi: 10.1109/ICITACEE50144.2020.9239239. M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901. L. Alvarado-Barrios, J. M. Mauricio, J. M. Maza-Ortega, and A. Gómez-Expósito, “Control strategy for a mid-size Wind Energy Convertion System,” in SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2010, pp. 396–402. doi: 10.1109/SPEEDAM.2010.5542228. L. F. Donoso, “Energía Eólica en Chile,” Chile más Energía, 2011. http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html (accessed Feb. 24, 2020). B. F. W. Allen J. Wood, Power Generation operation and control, Second edition. 1996. D. A. Rivera, S. M. Matute, J. v. Mendoza, and G. Mejía, “Low active and reactive power reserve in Honduras Northwest’s transmission system,” Dec. 2020. doi: 10.1109/ARGENCON49523.2020.9505325. Comisión de regulación de energía eléctrica y gas, “Creg 060.” Ministerio de minas y energía, Jun. 20, 2019. R. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network,” IEEE Access, vol. 6, pp. 59438–59448, 2018, doi: 10.1109/ACCESS.2018.2873712. J. S. Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation 9, 1997. M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901. South Dakota State University, IEEE Region 4, and Institute of Electrical and Electronics Engineers, Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability. M. Lave, J. Kleissl, and E. Arias-Castro, “High-frequency irradiance fluctuations and geographic smoothing,” Solar Energy, vol. 86, no. 8. pp. 2190–2199, Aug. 2012. doi: 10.1016/j.solener.2011.06.031. Gutierrez Eduardo and Vladimirovna Olga, “Estadistica inferencial para ingenieria y ciencias,” Azcapotzalco, Ciudad de México: Grupo editorial Patria, 2016, pp. 306–307. H. Adolfo. Quevedo Urías and B. Rosa. Pérez Salvador, Estadística para inegeniería y ciencias. Larousse - Grupo Editorial Patria, 2000. DIgSILENT GmbH, “39 Bus New England System,” vol. V15,2, pp. 1–18, 2018. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
67 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81999/5/1115083142_2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81999/6/license.txt https://repositorio.unal.edu.co/bitstream/unal/81999/7/1115083142_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
a836be93517884320a151e3f50557891 8153f7789df02f0a4c9e079953658ab2 4bf8777cbd0269b3eb2392cc6b239017 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089895982923776 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Candelo Becerra, John Edwinbf134c76c509b4c08e75144d67983d4e600Serna Toro, Juan Sebastian452f2e1b2701b58e27b90996bdbe23402022-08-22T20:53:09Z2022-08-22T20:53:09Z2022-05-15https://repositorio.unal.edu.co/handle/unal/81999Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo de grado se abordan los principales retos de la operación y planeación del sistema eléctrico bajo la regulación CREG 060 de 2019. Se aborda el tema de pronósticos de potencia de plantas solares haciendo uso de redes neuronales recurrentes. Se plantea una metodología para operar de manera segura el sistema teniendo en cuenta la variación de corto tiempo asociado a este tipo de plantas y finalmente se propone una modificación al calculo de la región segura de operación que considera la variación de las renovables. (Texto tomado de la fuente)In this degree work, the main challenges of the operation and planning of the electrical system under the CREG 060 regulation of 2019 are addressed. The issue of power forecasts of solar plants is addressed using recurrent neural networks. A methodology is proposed to safely operate the system, considering the short-time variation associated with this type of plant, and finally a modification to the calculation of the safe region of operation that considers the variation of renewables is proposed.MaestríaMagíster en Ingeniería - Ingeniería EléctricaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control67 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaSistemas eléctricos - ColombiaElectrical systems - ColombiaEnergía solarSolar energyRenovablesRegión Segura de OperaciónPronosticoRedes neuronalesRenewablesSafe Region of OperationForecastNeural NetworksSeguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctricaElectrical safety in a power system considering intermittent sources of electrical energyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMO. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113.“RE-thinking 2050.” www.erec.org (accessed Sep. 02, 2013).“World Energy Outlook 2012.” www.iae.org (accessed Aug. 15, 2013).UPME, “‘Informe registro de proyectos’ - https://www1.upme.gov.co/Paginas/Registro.aspx" ,” Nov. 18, 2021.Comisión de Regulación de Energía y Gas, “Resolución N° 060 de 2019.” p. 44, 2019.P. Li et al., “Operational flexibility of active distribution networks: Definition, quantified calculation and application,” International Journal of Electrical Power & Energy Systems, vol. 119, p. 105872, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105872.M. A. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson, and G. Andersson, “On quantification of flexibility in power systems,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232514.J. Zhang, G. Xiong, K. Meng, P. Yu, G. Yao, and Z. Dong, “An improved probabilistic load flow simulation method considering correlated stochastic variables,” International Journal of Electrical Power and Energy Systems, vol. 111, no. March, pp. 260–268, 2019, doi: 10.1016/j.ijepes.2019.04.007.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.C. Liu, “A New Method for the Construction of Maximal Steady-State Security Regions of Power Systems,” IEEE Power Engineering Review, vol. PER-6, no. 11, pp. 25–26, 1986, doi: 10.1109/MPER.1986.5527464.W. Dai et al., “Security region of renewable energy integration: Characterization and flexibility,” Energy, vol. 187, p. 115975, 2019, doi: 10.1016/j.energy.2019.115975.Y. Hou, J. Yan, C. Peng, Z. Qin, S. Lei, and H. Ruan, “Risk assessment of critical time to renewable operation with steady-state security region,” Proceedings - 2014 Power Systems Computation Conference, PSCC 2014, no. 51277155, pp. 1–6, 2014, doi: 10.1109/PSCC.2014.7038341.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and A. Elkamel, “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN,” Sustainable Energy Technologies and Assessments, vol. 38, no. December 2019, 2020, doi: 10.1016/j.seta.2019.100601.H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, “Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning,” International Journal of Electrical Power and Energy Systems, vol. 118, no. December 2019, p. 105790, 2020, doi: 10.1016/j.ijepes.2019.105790.S. Xuewei et al., “Research on Energy Storage Configuration Method Based on Wind and Solar Volatility; Research on Energy Storage Configuration Method Based on Wind and Solar Volatility,” 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, doi: 10.1109/ICPES51309.2020.9349645/20/$31.00.C. O. Inacio and C. L. T. Borges, “Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 952–960, Apr. 2018, doi: 10.1109/TSTE.2017.2767780.K. Touafek et al., “Improvement of Energy Efficiency of Solar Hybrid Water Collectors; Improvement of Energy Efficiency of Solar Hybrid Water Collectors,” 2017.J. Windarta, D. Denis, S. Saptadi, J. S. Silaen, and D. A. Satrio, “Implementation and Testing of Rooftop Solar Power Plant with On-Grid System 1215 Wp Household Scale,” in 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, Sep. 2020, pp. 294–299. doi: 10.1109/ICITACEE50144.2020.9239239.M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.L. Alvarado-Barrios, J. M. Mauricio, J. M. Maza-Ortega, and A. Gómez-Expósito, “Control strategy for a mid-size Wind Energy Convertion System,” in SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2010, pp. 396–402. doi: 10.1109/SPEEDAM.2010.5542228.L. F. Donoso, “Energía Eólica en Chile,” Chile más Energía, 2011. http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html (accessed Feb. 24, 2020).B. F. W. Allen J. Wood, Power Generation operation and control, Second edition. 1996.D. A. Rivera, S. M. Matute, J. v. Mendoza, and G. Mejía, “Low active and reactive power reserve in Honduras Northwest’s transmission system,” Dec. 2020. doi: 10.1109/ARGENCON49523.2020.9505325.Comisión de regulación de energía eléctrica y gas, “Creg 060.” Ministerio de minas y energía, Jun. 20, 2019.R. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network,” IEEE Access, vol. 6, pp. 59438–59448, 2018, doi: 10.1109/ACCESS.2018.2873712.J. S. Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation 9, 1997.M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.South Dakota State University, IEEE Region 4, and Institute of Electrical and Electronics Engineers, Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability.M. Lave, J. Kleissl, and E. Arias-Castro, “High-frequency irradiance fluctuations and geographic smoothing,” Solar Energy, vol. 86, no. 8. pp. 2190–2199, Aug. 2012. doi: 10.1016/j.solener.2011.06.031.Gutierrez Eduardo and Vladimirovna Olga, “Estadistica inferencial para ingenieria y ciencias,” Azcapotzalco, Ciudad de México: Grupo editorial Patria, 2016, pp. 306–307.H. Adolfo. Quevedo Urías and B. Rosa. Pérez Salvador, Estadística para inegeniería y ciencias. Larousse - Grupo Editorial Patria, 2000.DIgSILENT GmbH, “39 Bus New England System,” vol. V15,2, pp. 1–18, 2018.EstudiantesInvestigadoresMaestrosORIGINAL1115083142_2022.pdf1115083142_2022.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf2483075https://repositorio.unal.edu.co/bitstream/unal/81999/5/1115083142_2022.pdfa836be93517884320a151e3f50557891MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81999/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56THUMBNAIL1115083142_2022.pdf.jpg1115083142_2022.pdf.jpgGenerated Thumbnailimage/jpeg5579https://repositorio.unal.edu.co/bitstream/unal/81999/7/1115083142_2022.pdf.jpg4bf8777cbd0269b3eb2392cc6b239017MD57unal/81999oai:repositorio.unal.edu.co:unal/819992024-08-05 23:10:50.104Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |