Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica

ilustraciones, diagramas, tablas

Autores:
Serna Toro, Juan Sebastian
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81999
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81999
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Sistemas eléctricos - Colombia
Electrical systems - Colombia
Energía solar
Solar energy
Renovables
Región Segura de Operación
Pronostico
Redes neuronales
Renewables
Safe Region of Operation
Forecast
Neural Networks
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_74ac8813f0d5552dcf36f7abb4c11c0b
oai_identifier_str oai:repositorio.unal.edu.co:unal/81999
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
dc.title.translated.eng.fl_str_mv Electrical safety in a power system considering intermittent sources of electrical energy
title Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
spellingShingle Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Sistemas eléctricos - Colombia
Electrical systems - Colombia
Energía solar
Solar energy
Renovables
Región Segura de Operación
Pronostico
Redes neuronales
Renewables
Safe Region of Operation
Forecast
Neural Networks
title_short Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
title_full Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
title_fullStr Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
title_full_unstemmed Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
title_sort Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica
dc.creator.fl_str_mv Serna Toro, Juan Sebastian
dc.contributor.advisor.none.fl_str_mv Candelo Becerra, John Edwin
dc.contributor.author.none.fl_str_mv Serna Toro, Juan Sebastian
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Sistemas eléctricos - Colombia
Electrical systems - Colombia
Energía solar
Solar energy
Renovables
Región Segura de Operación
Pronostico
Redes neuronales
Renewables
Safe Region of Operation
Forecast
Neural Networks
dc.subject.lemb.none.fl_str_mv Sistemas eléctricos - Colombia
Electrical systems - Colombia
Energía solar
Solar energy
dc.subject.proposal.spa.fl_str_mv Renovables
Región Segura de Operación
Pronostico
Redes neuronales
dc.subject.proposal.eng.fl_str_mv Renewables
Safe Region of Operation
Forecast
Neural Networks
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-22T20:53:09Z
dc.date.available.none.fl_str_mv 2022-08-22T20:53:09Z
dc.date.issued.none.fl_str_mv 2022-05-15
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81999
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81999
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113.
“RE-thinking 2050.” www.erec.org (accessed Sep. 02, 2013).
“World Energy Outlook 2012.” www.iae.org (accessed Aug. 15, 2013).
UPME, “‘Informe registro de proyectos’ - https://www1.upme.gov.co/Paginas/Registro.aspx" ,” Nov. 18, 2021.
Comisión de Regulación de Energía y Gas, “Resolución N° 060 de 2019.” p. 44, 2019.
P. Li et al., “Operational flexibility of active distribution networks: Definition, quantified calculation and application,” International Journal of Electrical Power & Energy Systems, vol. 119, p. 105872, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105872.
M. A. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson, and G. Andersson, “On quantification of flexibility in power systems,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232514.
J. Zhang, G. Xiong, K. Meng, P. Yu, G. Yao, and Z. Dong, “An improved probabilistic load flow simulation method considering correlated stochastic variables,” International Journal of Electrical Power and Energy Systems, vol. 111, no. March, pp. 260–268, 2019, doi: 10.1016/j.ijepes.2019.04.007.
F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.
F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.
C. Liu, “A New Method for the Construction of Maximal Steady-State Security Regions of Power Systems,” IEEE Power Engineering Review, vol. PER-6, no. 11, pp. 25–26, 1986, doi: 10.1109/MPER.1986.5527464.
W. Dai et al., “Security region of renewable energy integration: Characterization and flexibility,” Energy, vol. 187, p. 115975, 2019, doi: 10.1016/j.energy.2019.115975.
Y. Hou, J. Yan, C. Peng, Z. Qin, S. Lei, and H. Ruan, “Risk assessment of critical time to renewable operation with steady-state security region,” Proceedings - 2014 Power Systems Computation Conference, PSCC 2014, no. 51277155, pp. 1–6, 2014, doi: 10.1109/PSCC.2014.7038341.
F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.
H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and A. Elkamel, “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN,” Sustainable Energy Technologies and Assessments, vol. 38, no. December 2019, 2020, doi: 10.1016/j.seta.2019.100601.
H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, “Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning,” International Journal of Electrical Power and Energy Systems, vol. 118, no. December 2019, p. 105790, 2020, doi: 10.1016/j.ijepes.2019.105790.
S. Xuewei et al., “Research on Energy Storage Configuration Method Based on Wind and Solar Volatility; Research on Energy Storage Configuration Method Based on Wind and Solar Volatility,” 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, doi: 10.1109/ICPES51309.2020.9349645/20/$31.00.
C. O. Inacio and C. L. T. Borges, “Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 952–960, Apr. 2018, doi: 10.1109/TSTE.2017.2767780.
K. Touafek et al., “Improvement of Energy Efficiency of Solar Hybrid Water Collectors; Improvement of Energy Efficiency of Solar Hybrid Water Collectors,” 2017.
J. Windarta, D. Denis, S. Saptadi, J. S. Silaen, and D. A. Satrio, “Implementation and Testing of Rooftop Solar Power Plant with On-Grid System 1215 Wp Household Scale,” in 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, Sep. 2020, pp. 294–299. doi: 10.1109/ICITACEE50144.2020.9239239.
M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.
L. Alvarado-Barrios, J. M. Mauricio, J. M. Maza-Ortega, and A. Gómez-Expósito, “Control strategy for a mid-size Wind Energy Convertion System,” in SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2010, pp. 396–402. doi: 10.1109/SPEEDAM.2010.5542228.
L. F. Donoso, “Energía Eólica en Chile,” Chile más Energía, 2011. http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html (accessed Feb. 24, 2020).
B. F. W. Allen J. Wood, Power Generation operation and control, Second edition. 1996.
D. A. Rivera, S. M. Matute, J. v. Mendoza, and G. Mejía, “Low active and reactive power reserve in Honduras Northwest’s transmission system,” Dec. 2020. doi: 10.1109/ARGENCON49523.2020.9505325.
Comisión de regulación de energía eléctrica y gas, “Creg 060.” Ministerio de minas y energía, Jun. 20, 2019.
R. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network,” IEEE Access, vol. 6, pp. 59438–59448, 2018, doi: 10.1109/ACCESS.2018.2873712.
J. S. Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation 9, 1997.
M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.
South Dakota State University, IEEE Region 4, and Institute of Electrical and Electronics Engineers, Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability.
M. Lave, J. Kleissl, and E. Arias-Castro, “High-frequency irradiance fluctuations and geographic smoothing,” Solar Energy, vol. 86, no. 8. pp. 2190–2199, Aug. 2012. doi: 10.1016/j.solener.2011.06.031.
Gutierrez Eduardo and Vladimirovna Olga, “Estadistica inferencial para ingenieria y ciencias,” Azcapotzalco, Ciudad de México: Grupo editorial Patria, 2016, pp. 306–307.
H. Adolfo. Quevedo Urías and B. Rosa. Pérez Salvador, Estadística para inegeniería y ciencias. Larousse - Grupo Editorial Patria, 2000.
DIgSILENT GmbH, “39 Bus New England System,” vol. V15,2, pp. 1–18, 2018.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 67 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81999/5/1115083142_2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81999/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81999/7/1115083142_2022.pdf.jpg
bitstream.checksum.fl_str_mv a836be93517884320a151e3f50557891
8153f7789df02f0a4c9e079953658ab2
4bf8777cbd0269b3eb2392cc6b239017
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089895982923776
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Candelo Becerra, John Edwinbf134c76c509b4c08e75144d67983d4e600Serna Toro, Juan Sebastian452f2e1b2701b58e27b90996bdbe23402022-08-22T20:53:09Z2022-08-22T20:53:09Z2022-05-15https://repositorio.unal.edu.co/handle/unal/81999Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo de grado se abordan los principales retos de la operación y planeación del sistema eléctrico bajo la regulación CREG 060 de 2019. Se aborda el tema de pronósticos de potencia de plantas solares haciendo uso de redes neuronales recurrentes. Se plantea una metodología para operar de manera segura el sistema teniendo en cuenta la variación de corto tiempo asociado a este tipo de plantas y finalmente se propone una modificación al calculo de la región segura de operación que considera la variación de las renovables. (Texto tomado de la fuente)In this degree work, the main challenges of the operation and planning of the electrical system under the CREG 060 regulation of 2019 are addressed. The issue of power forecasts of solar plants is addressed using recurrent neural networks. A methodology is proposed to safely operate the system, considering the short-time variation associated with this type of plant, and finally a modification to the calculation of the safe region of operation that considers the variation of renewables is proposed.MaestríaMagíster en Ingeniería - Ingeniería EléctricaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control67 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaSistemas eléctricos - ColombiaElectrical systems - ColombiaEnergía solarSolar energyRenovablesRegión Segura de OperaciónPronosticoRedes neuronalesRenewablesSafe Region of OperationForecastNeural NetworksSeguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctricaElectrical safety in a power system considering intermittent sources of electrical energyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMO. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113.“RE-thinking 2050.” www.erec.org (accessed Sep. 02, 2013).“World Energy Outlook 2012.” www.iae.org (accessed Aug. 15, 2013).UPME, “‘Informe registro de proyectos’ - https://www1.upme.gov.co/Paginas/Registro.aspx" ,” Nov. 18, 2021.Comisión de Regulación de Energía y Gas, “Resolución N° 060 de 2019.” p. 44, 2019.P. Li et al., “Operational flexibility of active distribution networks: Definition, quantified calculation and application,” International Journal of Electrical Power & Energy Systems, vol. 119, p. 105872, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105872.M. A. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson, and G. Andersson, “On quantification of flexibility in power systems,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232514.J. Zhang, G. Xiong, K. Meng, P. Yu, G. Yao, and Z. Dong, “An improved probabilistic load flow simulation method considering correlated stochastic variables,” International Journal of Electrical Power and Energy Systems, vol. 111, no. March, pp. 260–268, 2019, doi: 10.1016/j.ijepes.2019.04.007.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.C. Liu, “A New Method for the Construction of Maximal Steady-State Security Regions of Power Systems,” IEEE Power Engineering Review, vol. PER-6, no. 11, pp. 25–26, 1986, doi: 10.1109/MPER.1986.5527464.W. Dai et al., “Security region of renewable energy integration: Characterization and flexibility,” Energy, vol. 187, p. 115975, 2019, doi: 10.1016/j.energy.2019.115975.Y. Hou, J. Yan, C. Peng, Z. Qin, S. Lei, and H. Ruan, “Risk assessment of critical time to renewable operation with steady-state security region,” Proceedings - 2014 Power Systems Computation Conference, PSCC 2014, no. 51277155, pp. 1–6, 2014, doi: 10.1109/PSCC.2014.7038341.F. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and A. Elkamel, “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN,” Sustainable Energy Technologies and Assessments, vol. 38, no. December 2019, 2020, doi: 10.1016/j.seta.2019.100601.H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, “Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning,” International Journal of Electrical Power and Energy Systems, vol. 118, no. December 2019, p. 105790, 2020, doi: 10.1016/j.ijepes.2019.105790.S. Xuewei et al., “Research on Energy Storage Configuration Method Based on Wind and Solar Volatility; Research on Energy Storage Configuration Method Based on Wind and Solar Volatility,” 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, doi: 10.1109/ICPES51309.2020.9349645/20/$31.00.C. O. Inacio and C. L. T. Borges, “Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 952–960, Apr. 2018, doi: 10.1109/TSTE.2017.2767780.K. Touafek et al., “Improvement of Energy Efficiency of Solar Hybrid Water Collectors; Improvement of Energy Efficiency of Solar Hybrid Water Collectors,” 2017.J. Windarta, D. Denis, S. Saptadi, J. S. Silaen, and D. A. Satrio, “Implementation and Testing of Rooftop Solar Power Plant with On-Grid System 1215 Wp Household Scale,” in 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, Sep. 2020, pp. 294–299. doi: 10.1109/ICITACEE50144.2020.9239239.M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.L. Alvarado-Barrios, J. M. Mauricio, J. M. Maza-Ortega, and A. Gómez-Expósito, “Control strategy for a mid-size Wind Energy Convertion System,” in SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2010, pp. 396–402. doi: 10.1109/SPEEDAM.2010.5542228.L. F. Donoso, “Energía Eólica en Chile,” Chile más Energía, 2011. http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html (accessed Feb. 24, 2020).B. F. W. Allen J. Wood, Power Generation operation and control, Second edition. 1996.D. A. Rivera, S. M. Matute, J. v. Mendoza, and G. Mejía, “Low active and reactive power reserve in Honduras Northwest’s transmission system,” Dec. 2020. doi: 10.1109/ARGENCON49523.2020.9505325.Comisión de regulación de energía eléctrica y gas, “Creg 060.” Ministerio de minas y energía, Jun. 20, 2019.R. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network,” IEEE Access, vol. 6, pp. 59438–59448, 2018, doi: 10.1109/ACCESS.2018.2873712.J. S. Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation 9, 1997.M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.South Dakota State University, IEEE Region 4, and Institute of Electrical and Electronics Engineers, Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability.M. Lave, J. Kleissl, and E. Arias-Castro, “High-frequency irradiance fluctuations and geographic smoothing,” Solar Energy, vol. 86, no. 8. pp. 2190–2199, Aug. 2012. doi: 10.1016/j.solener.2011.06.031.Gutierrez Eduardo and Vladimirovna Olga, “Estadistica inferencial para ingenieria y ciencias,” Azcapotzalco, Ciudad de México: Grupo editorial Patria, 2016, pp. 306–307.H. Adolfo. Quevedo Urías and B. Rosa. Pérez Salvador, Estadística para inegeniería y ciencias. Larousse - Grupo Editorial Patria, 2000.DIgSILENT GmbH, “39 Bus New England System,” vol. V15,2, pp. 1–18, 2018.EstudiantesInvestigadoresMaestrosORIGINAL1115083142_2022.pdf1115083142_2022.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf2483075https://repositorio.unal.edu.co/bitstream/unal/81999/5/1115083142_2022.pdfa836be93517884320a151e3f50557891MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81999/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56THUMBNAIL1115083142_2022.pdf.jpg1115083142_2022.pdf.jpgGenerated Thumbnailimage/jpeg5579https://repositorio.unal.edu.co/bitstream/unal/81999/7/1115083142_2022.pdf.jpg4bf8777cbd0269b3eb2392cc6b239017MD57unal/81999oai:repositorio.unal.edu.co:unal/819992024-08-05 23:10:50.104Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK