Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro

ilustraciones, diagramas, mapas, tablas

Autores:
Ochoa Correa, Lucía Inés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81915
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81915
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::669 - Metalurgia
Metales de tierras raras
Rare earth metals
Arenas negras
Minerales pesados
Concentración
Aluvial
REE
Black sands
Concentration
Alluvial
Heavy minerals
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_74777e78b58b812110512471cb492547
oai_identifier_str oai:repositorio.unal.edu.co:unal/81915
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
dc.title.translated.eng.fl_str_mv Study of recovery and quality of rare earth minerals as alluvial gold mining by product
title Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
spellingShingle Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::669 - Metalurgia
Metales de tierras raras
Rare earth metals
Arenas negras
Minerales pesados
Concentración
Aluvial
REE
Black sands
Concentration
Alluvial
Heavy minerals
title_short Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
title_full Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
title_fullStr Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
title_full_unstemmed Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
title_sort Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
dc.creator.fl_str_mv Ochoa Correa, Lucía Inés
dc.contributor.advisor.none.fl_str_mv NEIRA ARENAS, GUSTAVO
dc.contributor.author.none.fl_str_mv Ochoa Correa, Lucía Inés
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Explotacion y Aprovechamiento Sostenible de Recursos Minerales - Geamin
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::669 - Metalurgia
topic 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::669 - Metalurgia
Metales de tierras raras
Rare earth metals
Arenas negras
Minerales pesados
Concentración
Aluvial
REE
Black sands
Concentration
Alluvial
Heavy minerals
dc.subject.lemb.none.fl_str_mv Metales de tierras raras
Rare earth metals
dc.subject.proposal.spa.fl_str_mv Arenas negras
Minerales pesados
Concentración
Aluvial
dc.subject.proposal.eng.fl_str_mv REE
Black sands
Concentration
Alluvial
Heavy minerals
description ilustraciones, diagramas, mapas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T16:10:14Z
dc.date.available.none.fl_str_mv 2022-08-16T16:10:14Z
dc.date.issued.none.fl_str_mv 2022-08-13
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81915
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81915
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ASTM C 1444 - 00. (2000). Standard test method for measuring the angle of repose of free-flowing mold. ASTM International, 1, 15–16.
Bradley S. Van Gosen, Philip L. Verplanck, Robert R. Seal II, K. R. L., & Gambogi, and J. (2013). Rare-Earth Elements Chapter O of Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 – O U . S . Department of the Interior. USGS - U.S. Geological Survey, 01–031. https://doi.org/https://doi.org/10.3133/pp1802O
Bustamante, O. M., Gaviria, A. C., & Restrepo, O. J. (2008). CONCENTRACIÓN DE MINERALES (Vol. 17, Issue 34, pp. 39–46). IM CIMEX.
Carpco Inc. (1995). OPERATING MANUAL FOR LABORATORY ELECTROSTTATIC SEPARATOR HT(15, 25, 36) 111-15. SEPOR.
D2320-98, A. D. (1998). Standard Test Method for Density of Solid Pitch (Pycnometer Method ). 98(Reapproved 2003), 1–3.
Díaz, M. (1992). Primer Estimado Producción Arenas Negras para Mineros Nacionales-Confidencial.
Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103521
Echeverri L., F., & Parra B., J. J. (2019). Los lantánidos: ni tierras ni raras. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 291–296.
Elsner, H. (2010). Assessment Manual: Heavy Minerals of Economic Importance. (Ilmenite and Leucoxene, Rutile, Zircon, Monazite and Xenotime, Kyanite, Sillimanite and Andalusite, Staurolite, Garnet, Chromite, Magnetite, Cassiterite, Columbite-Tantalite,Wolframite and Scheeli.
Elsner, H. (2013). Zircon – insufficient supply in the future? DERA Deutsche Rohstoffagentur.
Evans, A. (1993). Ore Geology and Industrial Minerals. In B. Company (Ed.), Blackwell Science (Third, Vol. 39, Issue 5).
Frimmel, H. E., & James, C. S. (2021). Placer Deposits and Processes (D. Alderton & S. A. B. T.-E. of G. (Second E. Elias (eds.); pp. 877–898). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00004-7
Galsin, J. S. (2019). Chapter 18 - Magnetism. In J. S. B. T.-S. S. P. Galsin (Ed.), Solid State Physics: An Introduction to Theory (pp. 383–405). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817103-5.00018-9
Gambogi, J. (2021). Rare Earths. In Mineral Commodity Summaries. U.S. Geological Survey.
Garzanti, E., & Andò, S. (2019). Heavy Minerals for Junior Woodchucks. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030148
Gonçalves, C., & Braga, P. (2019). Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals, 9(3), 176. https://doi.org/10.3390/min9030176
Gupta, A, & Yan, D. S. (2006a). Chapter 15 - Gravity Separation. In A Gupta & D. S. B. T.-M. P. D. and O. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (pp. 494–554). Elsevier Science. https://doi.org/10.1016/B978-0-444-51636-7.X5000-1
Gupta, A, & Yan, D. S. (2006b). Chapter 2 - Particle Size Estimation and Distributions (A Gupta & D. S. B. T.-M. P. D. and O. Yan (eds.); pp. 32–62). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044451636-7/50003-6
Gupta, A, & Yan, D. S. (2016). Chapter 16 - Gravity Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Edition) (pp. 563–628). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00016-2
Gupta, Ashok, & Yan, D. (2016). Chapter 17 - Magnetic and Electrostatic Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (2nd ed., pp. 629–687). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00017-4
Haldar, S. K. (2018a). Chapter 12 - Elements of Mining (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 229–258). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00012-5
Haldar, S. K. (2018b). Chapter 13 - Mineral Processing (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 259–290). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00013-7
Haldar, S. K. (2018d). Economic Mineral Deposits and Host Rocks. In Mineral Exploration (2nd ed., pp. 25–45). Joe Hayton. https://doi.org/10.1016/B978-0-12-814022-2.00002-2
Hikichi, Y., & Nomura, T. (1987). Melting Temperatures of Monazite and Xenotime. Journal of the American Ceramic Society, 70(10), C‐252-C‐253. https://doi.org/10.1111/j.1151-2916.1987.tb04890.x
Hoshino, M., Sanematsu, K., & Watanabe, Y. (2016). Chapter 279 - REE Mineralogy and Resources. In B. Jean-Claude & P. B. T.-H. on the P. and C. of R. E. Vitalij K. (Eds.), Including Actinides (Vol. 49, pp. 129–291). Elsevier. https://doi.org/https://doi.org/10.1016/bs.hpcre.2016.03.006
IUPAC. (2005). NOMENCLATURE OF INORGANIC CHEMISTRY. http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf
Jones, G. (2009). Mineral Sands: An Overview of the Industry. In Iluka. http://cdn.ceo.ca.s3-us-west-2.amazonaws.com/1d8eduo-mineral-sands---an-overview-of-the-industry-by-greg-jones-manager-development-geology.pdf
Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/https://doi.org/10.1016/j.mineng.2012.10.017
Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.006
Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Sheridan, R. S., Teng, C., Demers, H., Gauvin, R., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 2: Characterisation of products from gravity and magnetic separation. Minerals Engineering, 99, 96–110. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.007
Kim, K., & Jeong, S. (2019). Separation of Monazite from Placer Deposit by Magnetic Separation. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030149
Komar, P. D. (2018). Placer Deposits BT - Encyclopedia of Coastal Science (C. W. Finkl & C. Makowski (eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-48657-4_246-2
Komar, P. D. (2019). Placer Deposits (pp. 1–3). https://doi.org/10.1007/978-3-319-48657-4_246-2
Lamus, C. (2005). Mineralogia aplicada al uso y aprovechamiento de las arenas negras. Universidad Nacional de Colombia.
Laurence, R. (2005). INTRODUCTION TO ORE-FORMING PROCESSES. Blackwell Publishing.
Macdonald, E. H. (1983). Alluvial Mining: The geology, technology and economics placers. Springer. https://doi.org/10.1007/978-94-017-5361-6
Mange, M. A., & Maurer, H. F. W. (1992). Heavy Minerals in Colour. CHAPMAN & HALL.
Manser, R. J., Barley, R. W., & Wills, B. A. (1991). The shaking table concentrator — The influence of operating conditions and table parameters on mineral separation — The development of a mathematical model for normal operating conditions. Minerals Engineering, 4(3), 369–381. https://doi.org/https://doi.org/10.1016/0892-6875(91)90142-I
Mazo.Z, J. (2011). UNA MIRADA AL ESTUDIO Y LAS APLICACIONES TECNOLÓGICAS Y BIOMÉDICAS DE LA MAGNETITA. In Revista EIA (pp. 207–223). scieloco.
Noval, V. E., Ochoa Puentes, C., & Carriazo, J. G. (2017). Magnetita (Fe 3 O 4 ): Una estructura inorgánica con multiples aplicaciones en catálisis heterogénea. In Revista Colombiana de Química (Vol. 46, pp. 42–59). scieloco.
O.Burt, R. (1984). Gravity Concentration Technology. Elsevier Science B.V.
Oberteuffer, J. (1974). Magnetic separation: A review of principles, devices, and applications. IEEE Transactions on Magnetics, 10(2), 223–238. https://doi.org/10.1109/TMAG.1974.1058315
Pellant, C. (2000). ROCKS AND MINERALS.
Rey, C. M. (2011). Magnetic separation. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (Eds.), 100 Years of Superconductivity (pp. 797–809). Elsevier. https://doi.org/10.1201/b22268-58
Sivamohan, R., & Forssberg, E. (1985). Principles of tabling. International Journal of Mineral Processing, 15(4), 281–295. https://doi.org/https://doi.org/10.1016/0301-7516(85)90046-8
Slatt, R. M. (2006). Chapter 6 Fluvial deposits and reservoirs. In R. M. B. T.-H. of P. E. and P. Slatt (Ed.), Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers (Vol. 6, pp. 203–248). Elsevier. https://doi.org/https://doi.org/10.1016/S1567-8032(06)80041-8
Standing, C. (2016). Mineral sands. Applied Earth Science, 125(3), 105–106. https://doi.org/10.1080/03717453.2016.1201897
Svoboda, J. (2005). Magnetic Separation (K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (eds.); pp. 1–7). Elsevier. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/02031-3
Transmin Metallurgical Consultants. (1995). LIMN The Flowsheet Processor (pp. 1–95). Transmin Metallurgical Consultants.
Trujillo, D. (2015). Desarrollo de un proceso de recuperación de dióxido de titanio a partir de la ilmenita presente en las arenas ferrotitaníferas de la zona de Mompiche [Quito : EPN, 2015.]. https://bibdigital.epn.edu.ec/handle/15000/10597
Van Gosen, B. ., Bleiwas, D. ., Bedinger, G. ., Ellefsen, K. ., & Shah, A. . (2016). Coastal deposits of heavy mineral sands; global significance and us resources. Mining Engineering, 68(10), 36–43. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435202&partnerID=40&md5=db1bbb926d500419d5139a0b303a679e
Van Gosen, B. S., & Sengupta, D. (2016, July 12). PLACER-TYPE RARE EARTH ELEMENT DEPOSITS. https://doi.org/10.1130/abs/2016am-279551
Wills, B. A., & Finch, J. A. (2016a). Chapter 10 - Gravity Concentration. In B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (Eds.), Will’s Mineral Processing Technology (pp. 223–244). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00010-8
Wills, B. A., & Finch, J. A. (2016b). Chapter 13 - Magnetic and Electrical Separation (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 381–407). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00013-3
Wills, B. A., & Finch, J. A. (2016c). Chapter 4 - Particle Size Analysis (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 91–107). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00004-2
Zhou, B., Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. In Minerals (Vol. 7, Issue 11). MDPI AG. https://doi.org/10.3390/min7110203
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 128 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.publisher.department.spa.fl_str_mv Departamento de Materiales y Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81915/1/1026137102.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81915/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81915/3/1026137102.2022.pdf.jpg
bitstream.checksum.fl_str_mv ba3f3426e0d635320e872fd9fb1199ff
8153f7789df02f0a4c9e079953658ab2
3a6c93b9099fd270c86716c0f2d95216
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089866858725376
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NEIRA ARENAS, GUSTAVOe23fcb3d3deae2f9dd4e882db7ba3f94600Ochoa Correa, Lucía Inés67b090aebd4786d6be56975c74b7a834Grupo de Explotacion y Aprovechamiento Sostenible de Recursos Minerales - Geamin2022-08-16T16:10:14Z2022-08-16T16:10:14Z2022-08-13https://repositorio.unal.edu.co/handle/unal/81915Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasEste trabajo presenta una posible ruta de beneficio para minerales de tierras raras (REE) y otros minerales como magnetita, ilmenita, rutilo y circones contenidos en las arenas negras de un proceso industrial de minería aluvial de oro. Esta ruta de beneficio comprende separaciones por tamaño, magnéticas, gravimétricas y electrostáticas de una corriente que hace parte de los relaves actuales de la explotación de un depósito de placer aluvial de oro ubicado en el Bajo Cauca Antioqueño (Colombia). Esta corriente presenta una concentración de minerales pesados superior al 50%, distribuidos en diferentes rangos de tamaño y asociaciones mineralógicas. Se encontró que la monacita, mineral de tierras raras de mayor interés, se encuentra concentrado en la fracción gruesa (+20 mallas, tamaño mayor a 0,85 milímetros), con un 1,4% de participación en esta fracción, esta fracción de gruesos a su vez equivale al 7% del total de la corriente sometida a estudio, y en la fracción fina (-70 mallas, tamaños menores a 0,212 milímetros), con un 0,23% de participación en esta fracción que a su vez equivale al 27% de la corriente de este estudio. Partiendo de un muestreo sistemático de la corriente de interés del proceso actual de beneficio aluvial, ensayos de separación y con ayuda del software LIMN®, se establecieron parámetros para la concentración de monacita y otros minerales de interés. La caracterización óptica, física, química y mineralógica de los concentrados obtenidos permitió inferir que, para lograr la recuperación de los minerales de tierras raras puede ser necesario un proceso de liberación mediante conminución, a fin de alcanzar los requerimientos de comercialización de concentrados, esto requiere un análisis técnico económico más profundo. El estudio de calidad realizado evidenció la potencialidad de aprovechamiento de minerales principales de hierro (como magnetita), titanio (ilmenita), monacita y circones, con variadas asociaciones mineralógicas. (Texto tomado de la fuente)This paper presents a possible route to rare minerals benefit, and also other minerals such as magnetite, ilmenite, rutile, and circones, present in the black sands of an industrial aluvial gold mining company. This benefit route includes size, magnetic, gravimetric, and electrostatic separation of one of the currents that are part of the dredge tails in the mining process of an aluvial placer deposit located in El Bajo Cauca Antioqueño (Colombia). This current contains a heavy mineral concentration higher than 50%, distributed in different ranges of size and mineralogical associations. It was found that the monacite, the rare sands mineral of greater interest is concentrated in the gross section (+20 mesh, size bigger than 0.85 millimeters), with a 1,4% participation in this fraction, which represents the 7% of the total current under study, and in the fine fraction (-70 mesh, sizes under 0,212 millimeters), with a 0.23% of participation in this fraction, which also represents 27% of the current under study. Starting from systematic sampling of the currents of interest of the actual aluvial benefit process and with the support of the Software LIMN®, separation test and based of the, the parameters of concentration of the minerals of interest were stablished, for monacita. The optical, physical, chemical, and mineralogical characterization of the concentrates obtained, allowed to infer that the recovery of the minerals in the rare sands may require a comminution liberation process, with the purpose of achieving the requirements to commercialize the concentrates, which also requires a deeper technical and economic analysis. The quality study, showed the potential of the exploitation of the principal minerals of iron (such us magnetite), titanium (ilmenite), monacite and circones, with various mineralogical associations.Mineros Aluvial SAS BICUniversidad Nacional de ColombiaLeeds UniversityMaestríaMagíster en Ingeniería - Recursos MineralesBeneficio de MineralesÁrea Curricular de Recursos Mineralesxx, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos MineralesDepartamento de Materiales y MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas660 - Ingeniería química::669 - MetalurgiaMetales de tierras rarasRare earth metalsArenas negrasMinerales pesadosConcentraciónAluvialREEBlack sandsConcentrationAlluvialHeavy mineralsEstudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oroStudy of recovery and quality of rare earth minerals as alluvial gold mining by productTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMASTM C 1444 - 00. (2000). Standard test method for measuring the angle of repose of free-flowing mold. ASTM International, 1, 15–16.Bradley S. Van Gosen, Philip L. Verplanck, Robert R. Seal II, K. R. L., & Gambogi, and J. (2013). Rare-Earth Elements Chapter O of Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 – O U . S . Department of the Interior. USGS - U.S. Geological Survey, 01–031. https://doi.org/https://doi.org/10.3133/pp1802OBustamante, O. M., Gaviria, A. C., & Restrepo, O. J. (2008). CONCENTRACIÓN DE MINERALES (Vol. 17, Issue 34, pp. 39–46). IM CIMEX.Carpco Inc. (1995). OPERATING MANUAL FOR LABORATORY ELECTROSTTATIC SEPARATOR HT(15, 25, 36) 111-15. SEPOR.D2320-98, A. D. (1998). Standard Test Method for Density of Solid Pitch (Pycnometer Method ). 98(Reapproved 2003), 1–3.Díaz, M. (1992). Primer Estimado Producción Arenas Negras para Mineros Nacionales-Confidencial.Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103521Echeverri L., F., & Parra B., J. J. (2019). Los lantánidos: ni tierras ni raras. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 291–296.Elsner, H. (2010). Assessment Manual: Heavy Minerals of Economic Importance. (Ilmenite and Leucoxene, Rutile, Zircon, Monazite and Xenotime, Kyanite, Sillimanite and Andalusite, Staurolite, Garnet, Chromite, Magnetite, Cassiterite, Columbite-Tantalite,Wolframite and Scheeli.Elsner, H. (2013). Zircon – insufficient supply in the future? DERA Deutsche Rohstoffagentur.Evans, A. (1993). Ore Geology and Industrial Minerals. In B. Company (Ed.), Blackwell Science (Third, Vol. 39, Issue 5).Frimmel, H. E., & James, C. S. (2021). Placer Deposits and Processes (D. Alderton & S. A. B. T.-E. of G. (Second E. Elias (eds.); pp. 877–898). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00004-7Galsin, J. S. (2019). Chapter 18 - Magnetism. In J. S. B. T.-S. S. P. Galsin (Ed.), Solid State Physics: An Introduction to Theory (pp. 383–405). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817103-5.00018-9Gambogi, J. (2021). Rare Earths. In Mineral Commodity Summaries. U.S. Geological Survey.Garzanti, E., & Andò, S. (2019). Heavy Minerals for Junior Woodchucks. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030148Gonçalves, C., & Braga, P. (2019). Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals, 9(3), 176. https://doi.org/10.3390/min9030176Gupta, A, & Yan, D. S. (2006a). Chapter 15 - Gravity Separation. In A Gupta & D. S. B. T.-M. P. D. and O. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (pp. 494–554). Elsevier Science. https://doi.org/10.1016/B978-0-444-51636-7.X5000-1Gupta, A, & Yan, D. S. (2006b). Chapter 2 - Particle Size Estimation and Distributions (A Gupta & D. S. B. T.-M. P. D. and O. Yan (eds.); pp. 32–62). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044451636-7/50003-6Gupta, A, & Yan, D. S. (2016). Chapter 16 - Gravity Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Edition) (pp. 563–628). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00016-2Gupta, Ashok, & Yan, D. (2016). Chapter 17 - Magnetic and Electrostatic Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (2nd ed., pp. 629–687). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00017-4Haldar, S. K. (2018a). Chapter 12 - Elements of Mining (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 229–258). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00012-5Haldar, S. K. (2018b). Chapter 13 - Mineral Processing (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 259–290). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00013-7Haldar, S. K. (2018d). Economic Mineral Deposits and Host Rocks. In Mineral Exploration (2nd ed., pp. 25–45). Joe Hayton. https://doi.org/10.1016/B978-0-12-814022-2.00002-2Hikichi, Y., & Nomura, T. (1987). Melting Temperatures of Monazite and Xenotime. Journal of the American Ceramic Society, 70(10), C‐252-C‐253. https://doi.org/10.1111/j.1151-2916.1987.tb04890.xHoshino, M., Sanematsu, K., & Watanabe, Y. (2016). Chapter 279 - REE Mineralogy and Resources. In B. Jean-Claude & P. B. T.-H. on the P. and C. of R. E. Vitalij K. (Eds.), Including Actinides (Vol. 49, pp. 129–291). Elsevier. https://doi.org/https://doi.org/10.1016/bs.hpcre.2016.03.006IUPAC. (2005). NOMENCLATURE OF INORGANIC CHEMISTRY. http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdfJones, G. (2009). Mineral Sands: An Overview of the Industry. In Iluka. http://cdn.ceo.ca.s3-us-west-2.amazonaws.com/1d8eduo-mineral-sands---an-overview-of-the-industry-by-greg-jones-manager-development-geology.pdfJordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/https://doi.org/10.1016/j.mineng.2012.10.017Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.006Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Sheridan, R. S., Teng, C., Demers, H., Gauvin, R., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 2: Characterisation of products from gravity and magnetic separation. Minerals Engineering, 99, 96–110. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.007Kim, K., & Jeong, S. (2019). Separation of Monazite from Placer Deposit by Magnetic Separation. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030149Komar, P. D. (2018). Placer Deposits BT - Encyclopedia of Coastal Science (C. W. Finkl & C. Makowski (eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-48657-4_246-2Komar, P. D. (2019). Placer Deposits (pp. 1–3). https://doi.org/10.1007/978-3-319-48657-4_246-2Lamus, C. (2005). Mineralogia aplicada al uso y aprovechamiento de las arenas negras. Universidad Nacional de Colombia.Laurence, R. (2005). INTRODUCTION TO ORE-FORMING PROCESSES. Blackwell Publishing.Macdonald, E. H. (1983). Alluvial Mining: The geology, technology and economics placers. Springer. https://doi.org/10.1007/978-94-017-5361-6Mange, M. A., & Maurer, H. F. W. (1992). Heavy Minerals in Colour. CHAPMAN & HALL.Manser, R. J., Barley, R. W., & Wills, B. A. (1991). The shaking table concentrator — The influence of operating conditions and table parameters on mineral separation — The development of a mathematical model for normal operating conditions. Minerals Engineering, 4(3), 369–381. https://doi.org/https://doi.org/10.1016/0892-6875(91)90142-IMazo.Z, J. (2011). UNA MIRADA AL ESTUDIO Y LAS APLICACIONES TECNOLÓGICAS Y BIOMÉDICAS DE LA MAGNETITA. In Revista EIA (pp. 207–223). scieloco.Noval, V. E., Ochoa Puentes, C., & Carriazo, J. G. (2017). Magnetita (Fe 3 O 4 ): Una estructura inorgánica con multiples aplicaciones en catálisis heterogénea. In Revista Colombiana de Química (Vol. 46, pp. 42–59). scieloco.O.Burt, R. (1984). Gravity Concentration Technology. Elsevier Science B.V.Oberteuffer, J. (1974). Magnetic separation: A review of principles, devices, and applications. IEEE Transactions on Magnetics, 10(2), 223–238. https://doi.org/10.1109/TMAG.1974.1058315Pellant, C. (2000). ROCKS AND MINERALS.Rey, C. M. (2011). Magnetic separation. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (Eds.), 100 Years of Superconductivity (pp. 797–809). Elsevier. https://doi.org/10.1201/b22268-58Sivamohan, R., & Forssberg, E. (1985). Principles of tabling. International Journal of Mineral Processing, 15(4), 281–295. https://doi.org/https://doi.org/10.1016/0301-7516(85)90046-8Slatt, R. M. (2006). Chapter 6 Fluvial deposits and reservoirs. In R. M. B. T.-H. of P. E. and P. Slatt (Ed.), Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers (Vol. 6, pp. 203–248). Elsevier. https://doi.org/https://doi.org/10.1016/S1567-8032(06)80041-8Standing, C. (2016). Mineral sands. Applied Earth Science, 125(3), 105–106. https://doi.org/10.1080/03717453.2016.1201897Svoboda, J. (2005). Magnetic Separation (K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (eds.); pp. 1–7). Elsevier. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/02031-3Transmin Metallurgical Consultants. (1995). LIMN The Flowsheet Processor (pp. 1–95). Transmin Metallurgical Consultants.Trujillo, D. (2015). Desarrollo de un proceso de recuperación de dióxido de titanio a partir de la ilmenita presente en las arenas ferrotitaníferas de la zona de Mompiche [Quito : EPN, 2015.]. https://bibdigital.epn.edu.ec/handle/15000/10597Van Gosen, B. ., Bleiwas, D. ., Bedinger, G. ., Ellefsen, K. ., & Shah, A. . (2016). Coastal deposits of heavy mineral sands; global significance and us resources. Mining Engineering, 68(10), 36–43. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435202&partnerID=40&md5=db1bbb926d500419d5139a0b303a679eVan Gosen, B. S., & Sengupta, D. (2016, July 12). PLACER-TYPE RARE EARTH ELEMENT DEPOSITS. https://doi.org/10.1130/abs/2016am-279551Wills, B. A., & Finch, J. A. (2016a). Chapter 10 - Gravity Concentration. In B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (Eds.), Will’s Mineral Processing Technology (pp. 223–244). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00010-8Wills, B. A., & Finch, J. A. (2016b). Chapter 13 - Magnetic and Electrical Separation (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 381–407). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00013-3Wills, B. A., & Finch, J. A. (2016c). Chapter 4 - Particle Size Analysis (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 91–107). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00004-2Zhou, B., Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. In Minerals (Vol. 7, Issue 11). MDPI AG. https://doi.org/10.3390/min7110203BUILDING RESEARCH AND INNOVATION CAPABILITIES FOR THE SUSTAINABLE EXPLOITATION OF BLACK SANDS AS A SOURCE OF RARE EARTH ELEMENTSThe Royal Academy of EngineeringBibliotecariosEstudiantesInvestigadoresMaestrosORIGINAL1026137102.2022.pdf1026137102.2022.pdfTesis de Maestría en Recursos Mineralesapplication/pdf5465269https://repositorio.unal.edu.co/bitstream/unal/81915/1/1026137102.2022.pdfba3f3426e0d635320e872fd9fb1199ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81915/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1026137102.2022.pdf.jpg1026137102.2022.pdf.jpgGenerated Thumbnailimage/jpeg5099https://repositorio.unal.edu.co/bitstream/unal/81915/3/1026137102.2022.pdf.jpg3a6c93b9099fd270c86716c0f2d95216MD53unal/81915oai:repositorio.unal.edu.co:unal/819152023-10-20 21:03:10.409Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK