Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico

ilustraciones

Autores:
León Reina, Omar Hernando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84309
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84309
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
Compuestos cíclicos
Compuestos heterocíclicos
Cyclic compounds
Heterocyclic compounds
Isoindolo[2,1-a]quinolin-11(5H)-ona
Ftalilos
Síntesis organica Herocíclica
Condensación aldólica
Ciclación intramolecular
Potencial biológico
Isoindolo[2,1-a]quinolin-11(5H)-one
Fhthalides
Heterocyclic organic synthesis
Aldol condensation
Intramolecular cyclization
Biological potential
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_743cb0167291803b2488f1f49f36921a
oai_identifier_str oai:repositorio.unal.edu.co:unal/84309
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
dc.title.translated.eng.fl_str_mv Synthesis of new derivatives belonging to the nucleus isoindolo[2,1-a]quinolin-11(5H)-one of biological interest
title Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
spellingShingle Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
540 - Química y ciencias afines::547 - Química orgánica
Compuestos cíclicos
Compuestos heterocíclicos
Cyclic compounds
Heterocyclic compounds
Isoindolo[2,1-a]quinolin-11(5H)-ona
Ftalilos
Síntesis organica Herocíclica
Condensación aldólica
Ciclación intramolecular
Potencial biológico
Isoindolo[2,1-a]quinolin-11(5H)-one
Fhthalides
Heterocyclic organic synthesis
Aldol condensation
Intramolecular cyclization
Biological potential
title_short Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
title_full Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
title_fullStr Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
title_full_unstemmed Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
title_sort Síntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológico
dc.creator.fl_str_mv León Reina, Omar Hernando
dc.contributor.advisor.none.fl_str_mv Rodríguez Angulo, Ricaurte
dc.contributor.author.none.fl_str_mv León Reina, Omar Hernando
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Química Heterocíclica
dc.contributor.orcid.spa.fl_str_mv León, Omar [0000-0002-8536-1010]
dc.contributor.researchgate.spa.fl_str_mv León, Omar [www.researchgate.net/profile/Omar-Leon-6]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines::547 - Química orgánica
Compuestos cíclicos
Compuestos heterocíclicos
Cyclic compounds
Heterocyclic compounds
Isoindolo[2,1-a]quinolin-11(5H)-ona
Ftalilos
Síntesis organica Herocíclica
Condensación aldólica
Ciclación intramolecular
Potencial biológico
Isoindolo[2,1-a]quinolin-11(5H)-one
Fhthalides
Heterocyclic organic synthesis
Aldol condensation
Intramolecular cyclization
Biological potential
dc.subject.lemb.spa.fl_str_mv Compuestos cíclicos
Compuestos heterocíclicos
dc.subject.lemb.eng.fl_str_mv Cyclic compounds
Heterocyclic compounds
dc.subject.proposal.spa.fl_str_mv Isoindolo[2,1-a]quinolin-11(5H)-ona
Ftalilos
Síntesis organica Herocíclica
Condensación aldólica
Ciclación intramolecular
dc.subject.proposal.none.fl_str_mv Potencial biológico
dc.subject.proposal.eng.fl_str_mv Isoindolo[2,1-a]quinolin-11(5H)-one
Fhthalides
Heterocyclic organic synthesis
Aldol condensation
Intramolecular cyclization
Biological potential
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-27T16:16:10Z
dc.date.available.none.fl_str_mv 2023-07-27T16:16:10Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84309
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84309
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Delgado Silveira, E.; Muñoz García, M.; Montero Errasquin, B.; Sánchez Castellano, C.; Gallagher, P. F.; Cruz-Jentoft, A. J. Prescripción Inapropiada de Medicamentos En Los Pacientes Mayores: Los Criterios STOPP/START. Rev Esp Geriatr Gerontol 2009, 44 (5), 273–279. https://doi.org/10.1016/j.regg.2009.03.017.
Trelle, S.; Reichenbach, S.; Wandel, S.; Hildebrand, P.; Tschannen, B.; Villiger, P. M.; Egger, M.; Jüni, P. Cardiovascular Safety of Non-Steroidal Anti-Inflammatory Drugs: Network Meta-Analysis. BMJ 2011, 342 (7789), 154. https://doi.org/10.1136/bmj.c7086.
Singh, G. Gastrointestinal Complications of Prescription and Over-the-Counter Nonsteroidal Anti-Inflammatory Drugs: A View from the ARAMIS Database. American Journal of Therapeutics 2000, 7 (2), 115–121. https://doi.org/10.1097/00045391-200007020-00008.
Perea-Martínez, A.; López-Navarrete, G.; De La Osa-Busto, M.; Reyes-Gómez, U. Antiinflamatorios No Esteroideos y Sus Aplicaciones Terapéuticas (Parte 1). Bol Clin Hosp Infant Edo Son 2016, 33 (2), 73–82.
Ernesto, D.; Pérez, V. Uso Del Ácido 2-Formilbezoico En La Obtención de Sistemas Heterocíclicos Fusionados de Interés Biológico, Universidad Nacional de Colombia, Bogotá, 2012.
Latorre, F.; Arias, R.; Soffia, A.; Bohm, P.; Diaz, L.; Monrroy, H. Uso de Baclofeno En El Tratamiento Del Síndrome de Rumiación, Un Estudio Randomizado, Doble Ciego, Controlado y Cruzado. Gastroenterología latinoamericana 2019, 30 (1), 44–47.
Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Síntesis y Estudio de La Actividad Antitumoral y Antituberculosa de Análogos Heterocíclicos Enónicos Derivados Del Pirazol. Revista de ciencias 2011, 18, 123–140. https://doi.org/10.25100/rc.v12i0.640.
Quiñones, J.; Chávez, J.; Basulto, R.; Copete, A.; Hechavarria, S. Eficacia Del Diazepam Retrolabial En El Tratamiento de La Convulsión Febril. Archivo médico de Camaguey 2011, 15 (3), 466–476.
Sui, Z.; Altom, J.; Nguyen, V. N.; Fernandez, J.; Bernstein, J. I.; Hiliard, J. J.; Barrett, J. F.; Podlogar, B. L.; Ohemeng, K. A. Synthesis and Inhibitory Activity of Novel Tri-and Tetracyclic Quinolines against Topoisomerases. Bioorg Med Chem 1978, 6 (6), 735–742. https://doi.org/10.1016/s0968-0896(98)00030-3.
Ishijara, Y.; Kiyota, Y.; Goto, G. Synthesis of Isoindolo[2,1a]Quinoline Derivates and Their Effects on N2-Induced Hypoxia. Chem Pharm Bull (Tokyo) 1990, 38 (11), 3024–3030. https://doi.org/10.1248/CPB.38.3024.
Merchán-Arenas, D. R.; Sojo, F.; Arvelo, F.; Kouznetsov, V. v. Synthesis of Dihydroisoindolo[2,1-: A] Quinolin-11-Ones, Their in Silico ADMET Properties and in Vitro Antitumor Activities. RSC Adv 2020, 10 (69), 42287–42296. https://doi.org/10.1039/d0ra04555a.
Zhou, Y.; Qian, L.; Zhang, W. One-Pot Synthesis of Isoindolo[2,1-a]Quinolin-11-Ones by Cyclocondensation of 3-Hydroxy-2-Arylisoindol-1-Ones with 1,3-Dicarbonyls. Synlett 2009, No. 5, 0843–0847. https://doi.org/10.1055/s-0028-1087955.
Pigeon, P.; Othman, M.; Netchitailo, P.; Decroix Bernard. Acyliminium Ion-Olefin Cyclization Leading to Isoindolo[2,1a]Quinoline Derivates. Journal of Organic Chemistry 1999, 36 (3), 691.
Jha, A.; Chou, T. Y.; ALJaroudi, Z.; Ellis, B. D.; Cameron, T. S. Aza-DielsAlder Reaction between N-Aryl-1-Oxo-1H-Isoindolium Ions and Tert-Enamides: Steric Effects on Reaction Outcome. Beilstein Journal of Organic Chemistry 2014, 10, 848–857. https://doi.org/10.3762/bjoc.10.81.
Reddy, C.; Babu, S. A.; Padmavathi, R. The Barbier-Type Allylation/Lactamization Cascade Route to Isoindolinones and the Heck-Type Annulation Route to Isoindolo[2,1-a]Quinolines. ChemistrySelect 2016, 1 (11), 2952–2959. https://doi.org/10.1002/slct.201600411.
Kouznetsov, V. v.; Cruz, U. M.; Zubkov, F. I.; Nikitina, E. v. An Efficient Synthesis of Isoindolo[2,1-a]Quinoline Derivatives via Imino Diels-Alder and Intramolecular Diels-Alder Reactions with Furan. Synthesis (Stuttg) 2007, No. 3, 0375–0384. https://doi.org/10.1055/s-2007-965875.
Miro Halaczkiewicz; Harald Kelm; Georg Manolik. A Enamide-Based Diastereoselective Synthesis of Isoindolo[2,1-a]Quinolin-11(5H)-Ones with Three Contiguous Stereogenic Centers. European J Org Chem 2022, 26. https://doi.org/10.1002/ejoc.202201318.
Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. A New Approach to Isoindoloisoquinolinones. A Simple Synthesis of Nuevamine. Tetrahedron 2004, 60 (29), 6169–6176. https://doi.org/10.1016/j.tet.2004.05.033.
Alonso, R.; Castedo, L.; Dominguez, D. A Revision of the Structure of (+)-Nuevamine. Tetrahedron Lett 1985, 26 (24), 2925–2928. https://doi.org/10.1016/S0040-4039(00)98873-7.
Zamudio-Medina, A.; García-González, M. C.; Padilla, J.; González-Zamora, E. Synthesis of a Tetracyclic Lactam System of Nuevamine by Four-Component Reaction and Free Radical Cyclization. Tetrahedron Lett 2010, 51 (37), 4837–4839. https://doi.org/10.1016/j.tetlet.2010.07.047.
Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P. Construction of the Six- and Five-Membered Aza-Heterocyclic Units of the Isoindoloisoquinolone Nucleus by Parham-Type Cyclization Sequences - Total Synthesis of Nuevamine. European J Org Chem 2005, No. 16, 3437–3442. https://doi.org/10.1002/ejoc.200500312.
Maleki, B.; Koushki, E.; Baghayeri, M.; Ashrafi, S. S. One-Pot Synthesis of Isobenzofuran-1(3H)-Ones Using Sulfuric Acid Immobilized on Silica under Solvent-Free Conditions and Survey of Third-Order Nonlinear Optical Properties. J. Chil. Chem. Soc 2015, 60 (1). https://doi.org/10.4067/S0717-97072015000100011.
León, A.; Del-Ángel, M.; Ávila, J. L.; Delgado, G. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. Progress in the chemistry of organic natural products. January 1, 2017, pp 127–246. https://doi.org/10.1007/978-3-319-45618-8_2.
Lin, G.; Sun-Kin, S.; Hoi-sing, C.; Song-lin, L. Chemistry and Biological Activities of Naturally Occurring Phthalides. Studies in natural product chemistry 2003, 32, 611–617. https://doi.org/10.1016/S1572-5995(05)80065-1.
Ortega, M. J.; Parra-Torrejón, B.; Cano-Cano, F.; Gómez-Jaramillo, L.; González-Montelongo, M. C.; Zubía, E. Synthesis and Antioxidant/Anti-Inflammatory Activity of 3-Arylphthalides. Pharmaceuticals 2022, 15 (5). https://doi.org/10.3390/ph15050588.
Septianingtyas, D.; Zafira, N.; Zulhipri; Kurniadewi, F.; Dianhar, H. Green Synthesis of Chalcones Derivatives. In AIP Conference Proceedings; American Institute of Physics Inc., 2021; Vol. 2331. https://doi.org/10.1063/5.0042002.
Vogel, A. Israel.; Furniss, B. S.; A. R. Tatchell; P. W. G. Smith; A. J. Hannaford. Vogel’s Textbook of Practical Organic Chemistry.; Longman Scientific & Technical, 1989.
Nising, C. F.; Bräse, S. The Oxa-Michael Reaction: From Recent Developments to Applications in Natural Product Synthesis. Chem Soc Rev 2008, 37 (6), 1218–1228. https://doi.org/10.1039/b718357g.
Eshghi, H.; Rahimizadeh, M.; Mousavi, S. M. Fe(HSO4)3/SiO2: An Efficient and Heterogeneous Catalyst for One-Pot Synthesis of 2-Aryl-Chromene-4-Ones (Flavanones). Nat Prod Res 2014, 28 (7), 438–443. https://doi.org/10.1080/14786419.2013.872103.
Limaye, R. A.; Kumbhar, V. B.; Natu, A. D.; Paradkar, M. v.; Honmore, V. S.; Chauhan, R. R.; Gample, S. P.; Sarkar, D. One Pot Solvent Free Synthesis and in Vitro Antitubercular Screening of 3-Aracylphthalides against Mycobacterium Tuberculosis. Bioorg Med Chem Lett 2013, 23 (3), 711–714. https://doi.org/10.1016/j.bmcl.2012.11.097.
Sangshetti, J. N.; Ansari, S. A. M. K.; Shinde, D. B. ZrOCl2·8H2O Catalyzed Solvent-Free Synthesis of Isobenzofuran-1(3H)-Ones. Chinese Chemical Letters 2011, 22 (2), 163–166. https://doi.org/10.1016/j.cclet.2010.09.026.
Landge, S. M.; Berryman, M.; Török, B. Microwave-Assisted Solid Acid-Catalyzed One-Pot Synthesis of Isobenzofuran-1(3H)-Ones. Tetrahedron Lett 2008, 49 (29–30), 4505–4508. https://doi.org/10.1016/j.tetlet.2008.05.068.
Paradkar, M. v.; Gadre, S. Y.; Pujari, T. A.; Khandekar, P. P.; Kumbhar, V. B. One-Pot Synthesis of 3-Phenacylphthalides. Synth Commun 2005, 35 (3), 471–474. https://doi.org/10.1081/SCC-200048976.
Han, F. Z.; Su, B. B.; Jia, L. N.; Wang, P. W.; Hu, X. P. Quaternary Ammonium Salt-Promoted Multi-Component Reaction in Water: Access to 3-Alkyl-2, 3-Dihydro-1H-Isoindolin-1-One Derivatives. Adv Synth Catal 2017, 359 (1), 146–152. https://doi.org/10.1002/adsc.201600944.
Debnath, K.; Mukherjee, S.; Bodhak, C.; Pramanik, A. Facile One-Pot Three-Component Synthesis of Diverse 2,3-Disubstituted Isoindolin-1-Ones Using ZrO2 Nanoparticles as a Reusable Dual Acid-Base Solid Support under Solvent-Free Conditions. RSC Adv 2016, 6 (25), 21127–21138. https://doi.org/10.1039/c6ra00870d.
Fisher, E.; Kuzel, H. Mittheilungen Aus Dem Chemischen Laboratorium Der Universitat Erlangen. Archiv Der Pharmacie 1883, 261–297.
Takemoto, M.; Iwakiri, Y.; Tanaka, K. Oxidative Cleavage Reaction of Substituted Indoles Catalized by Plant Cell Cultures. Heterocycles 2007, 72 (6), 373–383. https://doi.org/10.1246/bcsj.54.2369.
Han, F.; Lin, S.; Liu, P.; Liu, X.; Tao, J.; Deng, X.; Yi, C.; Xu, H. Discovery of a Novel Series of Thienopyrimidine as Highly Potent and Selective PI3K Inhibitors. ACS Medical Chemistry Letters 2015, 6 (4), 434–441. https://doi.org/10.1021/ml5005014.
Naresh, M.; Arun Kumar, M.; Mahender Reddy, M.; Swamy, P.; Nanubolu, J. B.; Narender, N. Fast and Efficient Bromination of Aromatic Compounds with Ammonium Bromide and Oxone. Synthesis (Germany) 2013, 45 (11), 1497–1504. https://doi.org/10.1055/s-0033-1338431.
Rodríguez, R.; León, O.; Quiroga, F.; Cifuentes, J. N-{2-[(3-Oxo-1,3-Dihydro-2-Benzofuran-1- Yl)Acetyl]Phenyl}acetamide. Molbank 2021, 2021 (3). https://doi.org/10.3390/M1244.
Noboru, S.; Masamoto, A.; Hiroshi, Y. The Chemiluminescence of Indole Derivatives. III. On the Mechanism of the Chemiluminescence of 2,3-Dimethylindole and 5-Substituted-2,3-Dimethylindoles in the Dimethyl Sulfoxide-Alkali System. Bull Chem Soc Jpn 1968, 41 (4), 936–941. https://doi.org/10.1246/BCSJ.41.936.
Dolby, L.; Booth, D. The Periodate Oxidation of Indoles’. J Am Chem Soc 1996, 88 (5), 1049–1051. https://doi.org/10.1021/ja00957a035.
Leoxard, X. J.; Boyd, S. N. CINNOLINES. I. SYNTHESIS OF AMINOACETOPHENONES AND AMINOPROPIOPHENONES’. Journal of Organic Chemistry 1946, 11 (4), 405–418. https://doi.org/10.1021/jo01174a018.
Fekry Isnail, M.; Shams, A.; Salem, I. R.; Em-, A. Behaviour of 6,8-Dibromo-2-Methyl-3,1-Benzoxazin-4-One towards Friedel-Craft and Grignard Reactions. Journal für Praktische Chemie 1983, 326 (3), 417–421. https://doi.org/10.1002/prac.19833250310.
Kianmehr, E.; Nasab, S. B. Silver-Catalyzed Chemo- and Regioselective Nitration of Anilides. European J Org Chem 2018, 2018 (46), 6447–6452. https://doi.org/10.1002/ejoc.201800779.
Hussain, H.; Green, I. R.; Ahmed, I. Journey Describing Applications of Oxone in Synthetic Chemistry. Chemical Reviews. American Chemical Society May 8, 2013, pp 3329–3371. https://doi.org/10.1021/cr3004373.
Beck, D. E.; Agama, K.; Marchand, C.; Chergui, A.; Pommier, Y.; Cushman, M. Synthesis and Biological Evaluation of New Carbohydrate-Substituted Indenoisoquinoline Topoisomerase I Inhibitors and Improved Syntheses of the Experimental Anticancer Agents Indotecan (LMP400) and Indimitecan (LMP776). J Med Chem 2014, 57 (4), 1495–1512. https://doi.org/10.1021/jm401814y.
Fisyuk, A. S.; Kostyuchenko, A. S.; Goncharov, D. S. Camps Reaction and Related Cyclizations. Russian Journal of Organic Chemistry 2020, 56 (11), 1863–1892. https://doi.org/10.1134/S1070428020110019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 63 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84309/3/1030634726.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84309/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84309/4/1030634726.2022.pdf.jpg
bitstream.checksum.fl_str_mv d794ab8a65ea7a1480afdcdebc11b153
eb34b1cf90b7e1103fc9dfd26be24b4a
35624779495af92a1a7d6defff4feac4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089518065647616
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Angulo, Ricaurtef14da2491892c61896f1c5759f7ad578León Reina, Omar Hernandocf72d528101104111e42bca2ef43d3ccGrupo de Investigación en Química HeterocíclicaLeón, Omar [0000-0002-8536-1010]León, Omar [www.researchgate.net/profile/Omar-Leon-6]2023-07-27T16:16:10Z2023-07-27T16:16:10Z2022https://repositorio.unal.edu.co/handle/unal/84309Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLas moléculas pertenecientes al núcleo de las isoindolo[2,1-a]quinolin-11(5H)-onas han demostrado tener una muy destacable actividad biológica frente a diversas patologías. Por esta razón, a nivel investigativo se ha sintetizado una gran variedad de moléculas pertenecientes a este núcleo mediante diversas metodologías, las cuales según los reportes tienen características bastante específicas, tales como propiedades anti-hipóxicas, vasodilatadores, antitumorales, etc. Teniendo en cuenta lo anterior, el presente trabajo propone una metodología para la obtención de sistemas heterocíclicos de cuatro miembros, específicamente de algunos derivados del núcleo isoindolo[2,1-a]quinolin-11(5H)-ona. Es importante resaltar que se tuvo como principio el bajo costo tanto en los insumos (reactivos, solventes, catalizadores, etc.), como en las condiciones de operatividad con el fin de ser llamativa y reproducible. Por otro lado, a través de la ejecución de la síntesis de estas moléculas, surgió la necesidad de sintetizar los mismos compuestos de partida, los cuales corresponden a los derivados de la 2-aminoacetofenona y el ácido 2-formilbenzoico. Para los derivados de la 2-aminoacetofenona fue necesario trabajar con la N-(2-acetilfenil)acetamida, la cual se obtuvo por la oxidación del 2,3-dimetilindol. Este último, se sintetizó empleando la metodología planteada por Fischer. En cuanto a la obtención de los derivados de esta molécula, se plantearon dos rutas de derivatización, una en medio ácido y la otra por medio de un catalizador (Oxone), obteniéndose de este modo tres derivados en concreto. En el caso de los derivados del ácido 2-formilbenzoico se tomaron como base de síntesis algunos compuestos pertenecientes a las benzofuran-1(3H)-onas (conocidos como ftalilos), con el fin de poderse llevar al respectivo ácido, obteniéndose de este modo dos nuevos derivados. Una vez se obtuvieron los derivados de los compuestos iniciales, se procedió a realizar la condensación en medio básico de estos, empleando un tiempo de reacción entre 12 y 18 horas. A partir de esto, se obtuvieron los nuevos ftalilos, que posteriormente fueron sometidos a la respectiva ciclación intramolecular, para dar como producto los respectivos compuestos pertenecientes a las isoindoloquinolinonas. Las moléculas obtenidas en esta metodología, tales como ftalilos e isoindoloquinolinonas, fueron caracterizadas por técnicas espectroscópicas y espectrométricas como RMN, HR-MS, IR-FT, con lo cual se puede ratificar que se ha logrado obtener las moléculas objetivo en una nueva metodología que no supera los tres pasos de reacción. (Texto tomado de la fuente)The molecules belonging to the nucleus of the isoindolo[2,1-a]quinolin-11(5H)-ones have shown to have a very remarkable biological activity against various pathologies. For this reason, at the research level, a wide variety of molecules belonging to this nucleus have been synthesized through various methodologies, which according to reports have quite specific characteristics, such as anti-hypoxic, vasodilator, antitumor properties, etc. According to the above, the present work proposes a methodology for obtaining four-membered heterocyclic systems, specifically from some derivatives of the isoindolo[2,1-a]quinolin-11(5H)-one nucleus. It is important to highlight that the principle was low cost both in the inputs (reagents, solvents, catalysts, etc.), and in the operating conditions to be striking and reproducible. On the other hand, through the execution of the synthesis of these molecules, the need arose to synthesize the same starting compounds, which correspond to the derivatives of 2-aminoacetophenone and 2-formylbenzoic acid. For the 2-aminoacetophenone derivatives, it was necessary to work with N-(2-acetylphenyl)acetamide, which was obtained by the oxidation of 2,3-dimethylindole, which was obtained by the methodology used by Fischer. As for obtaining the derivatives of this molecule, two derivatization routes were proposed, one in an acid medium and the other by means of a catalyst (Oxone), thus obtaining three specific derivatives. In the case of 2-formylbenzoic acid derivatives, some compounds belonging to benzofuran-1(3H)-ones (known as phthalides) were taken as the basis of synthesis, to be able to obtain the respective acid, thus obtaining two new derivatives. Once the derivatives of the initial compounds were obtained, the condensation of these was carried out in a basic medium, using a reaction time between 12 and 18 hours. From this, the new phthalides were obtained, which were subsequently subjected to the respective intramolecular cyclization, to give as a product the respective compounds belonging to the isoindoloquinolinones family. The molecules obtained in this methodology, such as phthalides and isoindoloquinolinones, were characterized by spectroscopic and spectrometric techniques such as NMR, HR-MS, IR-FT, with which it can be confirmed that the target molecules have been obtained in a new methodology that does not exceed the three reaction steps.MaestríaMagíster en Ciencias - QuímicaSíntesis y caracterización de compuestos heterocíclicos con posible actividad biológicaxix, 63 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaCompuestos cíclicosCompuestos heterocíclicosCyclic compoundsHeterocyclic compoundsIsoindolo[2,1-a]quinolin-11(5H)-onaFtalilosSíntesis organica HerocíclicaCondensación aldólicaCiclación intramolecularPotencial biológicoIsoindolo[2,1-a]quinolin-11(5H)-oneFhthalidesHeterocyclic organic synthesisAldol condensationIntramolecular cyclizationBiological potentialSíntesis de nuevos derivados pertenecientes al núcleo isoindolo[2,1-a]quinolin-11(5H)-ona de interés biológicoSynthesis of new derivatives belonging to the nucleus isoindolo[2,1-a]quinolin-11(5H)-one of biological interestTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMDelgado Silveira, E.; Muñoz García, M.; Montero Errasquin, B.; Sánchez Castellano, C.; Gallagher, P. F.; Cruz-Jentoft, A. J. Prescripción Inapropiada de Medicamentos En Los Pacientes Mayores: Los Criterios STOPP/START. Rev Esp Geriatr Gerontol 2009, 44 (5), 273–279. https://doi.org/10.1016/j.regg.2009.03.017.Trelle, S.; Reichenbach, S.; Wandel, S.; Hildebrand, P.; Tschannen, B.; Villiger, P. M.; Egger, M.; Jüni, P. Cardiovascular Safety of Non-Steroidal Anti-Inflammatory Drugs: Network Meta-Analysis. BMJ 2011, 342 (7789), 154. https://doi.org/10.1136/bmj.c7086.Singh, G. Gastrointestinal Complications of Prescription and Over-the-Counter Nonsteroidal Anti-Inflammatory Drugs: A View from the ARAMIS Database. American Journal of Therapeutics 2000, 7 (2), 115–121. https://doi.org/10.1097/00045391-200007020-00008.Perea-Martínez, A.; López-Navarrete, G.; De La Osa-Busto, M.; Reyes-Gómez, U. Antiinflamatorios No Esteroideos y Sus Aplicaciones Terapéuticas (Parte 1). Bol Clin Hosp Infant Edo Son 2016, 33 (2), 73–82.Ernesto, D.; Pérez, V. Uso Del Ácido 2-Formilbezoico En La Obtención de Sistemas Heterocíclicos Fusionados de Interés Biológico, Universidad Nacional de Colombia, Bogotá, 2012.Latorre, F.; Arias, R.; Soffia, A.; Bohm, P.; Diaz, L.; Monrroy, H. Uso de Baclofeno En El Tratamiento Del Síndrome de Rumiación, Un Estudio Randomizado, Doble Ciego, Controlado y Cruzado. Gastroenterología latinoamericana 2019, 30 (1), 44–47.Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Síntesis y Estudio de La Actividad Antitumoral y Antituberculosa de Análogos Heterocíclicos Enónicos Derivados Del Pirazol. Revista de ciencias 2011, 18, 123–140. https://doi.org/10.25100/rc.v12i0.640.Quiñones, J.; Chávez, J.; Basulto, R.; Copete, A.; Hechavarria, S. Eficacia Del Diazepam Retrolabial En El Tratamiento de La Convulsión Febril. Archivo médico de Camaguey 2011, 15 (3), 466–476.Sui, Z.; Altom, J.; Nguyen, V. N.; Fernandez, J.; Bernstein, J. I.; Hiliard, J. J.; Barrett, J. F.; Podlogar, B. L.; Ohemeng, K. A. Synthesis and Inhibitory Activity of Novel Tri-and Tetracyclic Quinolines against Topoisomerases. Bioorg Med Chem 1978, 6 (6), 735–742. https://doi.org/10.1016/s0968-0896(98)00030-3.Ishijara, Y.; Kiyota, Y.; Goto, G. Synthesis of Isoindolo[2,1a]Quinoline Derivates and Their Effects on N2-Induced Hypoxia. Chem Pharm Bull (Tokyo) 1990, 38 (11), 3024–3030. https://doi.org/10.1248/CPB.38.3024.Merchán-Arenas, D. R.; Sojo, F.; Arvelo, F.; Kouznetsov, V. v. Synthesis of Dihydroisoindolo[2,1-: A] Quinolin-11-Ones, Their in Silico ADMET Properties and in Vitro Antitumor Activities. RSC Adv 2020, 10 (69), 42287–42296. https://doi.org/10.1039/d0ra04555a.Zhou, Y.; Qian, L.; Zhang, W. One-Pot Synthesis of Isoindolo[2,1-a]Quinolin-11-Ones by Cyclocondensation of 3-Hydroxy-2-Arylisoindol-1-Ones with 1,3-Dicarbonyls. Synlett 2009, No. 5, 0843–0847. https://doi.org/10.1055/s-0028-1087955.Pigeon, P.; Othman, M.; Netchitailo, P.; Decroix Bernard. Acyliminium Ion-Olefin Cyclization Leading to Isoindolo[2,1a]Quinoline Derivates. Journal of Organic Chemistry 1999, 36 (3), 691.Jha, A.; Chou, T. Y.; ALJaroudi, Z.; Ellis, B. D.; Cameron, T. S. Aza-DielsAlder Reaction between N-Aryl-1-Oxo-1H-Isoindolium Ions and Tert-Enamides: Steric Effects on Reaction Outcome. Beilstein Journal of Organic Chemistry 2014, 10, 848–857. https://doi.org/10.3762/bjoc.10.81.Reddy, C.; Babu, S. A.; Padmavathi, R. The Barbier-Type Allylation/Lactamization Cascade Route to Isoindolinones and the Heck-Type Annulation Route to Isoindolo[2,1-a]Quinolines. ChemistrySelect 2016, 1 (11), 2952–2959. https://doi.org/10.1002/slct.201600411.Kouznetsov, V. v.; Cruz, U. M.; Zubkov, F. I.; Nikitina, E. v. An Efficient Synthesis of Isoindolo[2,1-a]Quinoline Derivatives via Imino Diels-Alder and Intramolecular Diels-Alder Reactions with Furan. Synthesis (Stuttg) 2007, No. 3, 0375–0384. https://doi.org/10.1055/s-2007-965875.Miro Halaczkiewicz; Harald Kelm; Georg Manolik. A Enamide-Based Diastereoselective Synthesis of Isoindolo[2,1-a]Quinolin-11(5H)-Ones with Three Contiguous Stereogenic Centers. European J Org Chem 2022, 26. https://doi.org/10.1002/ejoc.202201318.Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. A New Approach to Isoindoloisoquinolinones. A Simple Synthesis of Nuevamine. Tetrahedron 2004, 60 (29), 6169–6176. https://doi.org/10.1016/j.tet.2004.05.033.Alonso, R.; Castedo, L.; Dominguez, D. A Revision of the Structure of (+)-Nuevamine. Tetrahedron Lett 1985, 26 (24), 2925–2928. https://doi.org/10.1016/S0040-4039(00)98873-7.Zamudio-Medina, A.; García-González, M. C.; Padilla, J.; González-Zamora, E. Synthesis of a Tetracyclic Lactam System of Nuevamine by Four-Component Reaction and Free Radical Cyclization. Tetrahedron Lett 2010, 51 (37), 4837–4839. https://doi.org/10.1016/j.tetlet.2010.07.047.Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P. Construction of the Six- and Five-Membered Aza-Heterocyclic Units of the Isoindoloisoquinolone Nucleus by Parham-Type Cyclization Sequences - Total Synthesis of Nuevamine. European J Org Chem 2005, No. 16, 3437–3442. https://doi.org/10.1002/ejoc.200500312.Maleki, B.; Koushki, E.; Baghayeri, M.; Ashrafi, S. S. One-Pot Synthesis of Isobenzofuran-1(3H)-Ones Using Sulfuric Acid Immobilized on Silica under Solvent-Free Conditions and Survey of Third-Order Nonlinear Optical Properties. J. Chil. Chem. Soc 2015, 60 (1). https://doi.org/10.4067/S0717-97072015000100011.León, A.; Del-Ángel, M.; Ávila, J. L.; Delgado, G. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. Progress in the chemistry of organic natural products. January 1, 2017, pp 127–246. https://doi.org/10.1007/978-3-319-45618-8_2.Lin, G.; Sun-Kin, S.; Hoi-sing, C.; Song-lin, L. Chemistry and Biological Activities of Naturally Occurring Phthalides. Studies in natural product chemistry 2003, 32, 611–617. https://doi.org/10.1016/S1572-5995(05)80065-1.Ortega, M. J.; Parra-Torrejón, B.; Cano-Cano, F.; Gómez-Jaramillo, L.; González-Montelongo, M. C.; Zubía, E. Synthesis and Antioxidant/Anti-Inflammatory Activity of 3-Arylphthalides. Pharmaceuticals 2022, 15 (5). https://doi.org/10.3390/ph15050588.Septianingtyas, D.; Zafira, N.; Zulhipri; Kurniadewi, F.; Dianhar, H. Green Synthesis of Chalcones Derivatives. In AIP Conference Proceedings; American Institute of Physics Inc., 2021; Vol. 2331. https://doi.org/10.1063/5.0042002.Vogel, A. Israel.; Furniss, B. S.; A. R. Tatchell; P. W. G. Smith; A. J. Hannaford. Vogel’s Textbook of Practical Organic Chemistry.; Longman Scientific & Technical, 1989.Nising, C. F.; Bräse, S. The Oxa-Michael Reaction: From Recent Developments to Applications in Natural Product Synthesis. Chem Soc Rev 2008, 37 (6), 1218–1228. https://doi.org/10.1039/b718357g.Eshghi, H.; Rahimizadeh, M.; Mousavi, S. M. Fe(HSO4)3/SiO2: An Efficient and Heterogeneous Catalyst for One-Pot Synthesis of 2-Aryl-Chromene-4-Ones (Flavanones). Nat Prod Res 2014, 28 (7), 438–443. https://doi.org/10.1080/14786419.2013.872103.Limaye, R. A.; Kumbhar, V. B.; Natu, A. D.; Paradkar, M. v.; Honmore, V. S.; Chauhan, R. R.; Gample, S. P.; Sarkar, D. One Pot Solvent Free Synthesis and in Vitro Antitubercular Screening of 3-Aracylphthalides against Mycobacterium Tuberculosis. Bioorg Med Chem Lett 2013, 23 (3), 711–714. https://doi.org/10.1016/j.bmcl.2012.11.097.Sangshetti, J. N.; Ansari, S. A. M. K.; Shinde, D. B. ZrOCl2·8H2O Catalyzed Solvent-Free Synthesis of Isobenzofuran-1(3H)-Ones. Chinese Chemical Letters 2011, 22 (2), 163–166. https://doi.org/10.1016/j.cclet.2010.09.026.Landge, S. M.; Berryman, M.; Török, B. Microwave-Assisted Solid Acid-Catalyzed One-Pot Synthesis of Isobenzofuran-1(3H)-Ones. Tetrahedron Lett 2008, 49 (29–30), 4505–4508. https://doi.org/10.1016/j.tetlet.2008.05.068.Paradkar, M. v.; Gadre, S. Y.; Pujari, T. A.; Khandekar, P. P.; Kumbhar, V. B. One-Pot Synthesis of 3-Phenacylphthalides. Synth Commun 2005, 35 (3), 471–474. https://doi.org/10.1081/SCC-200048976.Han, F. Z.; Su, B. B.; Jia, L. N.; Wang, P. W.; Hu, X. P. Quaternary Ammonium Salt-Promoted Multi-Component Reaction in Water: Access to 3-Alkyl-2, 3-Dihydro-1H-Isoindolin-1-One Derivatives. Adv Synth Catal 2017, 359 (1), 146–152. https://doi.org/10.1002/adsc.201600944.Debnath, K.; Mukherjee, S.; Bodhak, C.; Pramanik, A. Facile One-Pot Three-Component Synthesis of Diverse 2,3-Disubstituted Isoindolin-1-Ones Using ZrO2 Nanoparticles as a Reusable Dual Acid-Base Solid Support under Solvent-Free Conditions. RSC Adv 2016, 6 (25), 21127–21138. https://doi.org/10.1039/c6ra00870d.Fisher, E.; Kuzel, H. Mittheilungen Aus Dem Chemischen Laboratorium Der Universitat Erlangen. Archiv Der Pharmacie 1883, 261–297.Takemoto, M.; Iwakiri, Y.; Tanaka, K. Oxidative Cleavage Reaction of Substituted Indoles Catalized by Plant Cell Cultures. Heterocycles 2007, 72 (6), 373–383. https://doi.org/10.1246/bcsj.54.2369.Han, F.; Lin, S.; Liu, P.; Liu, X.; Tao, J.; Deng, X.; Yi, C.; Xu, H. Discovery of a Novel Series of Thienopyrimidine as Highly Potent and Selective PI3K Inhibitors. ACS Medical Chemistry Letters 2015, 6 (4), 434–441. https://doi.org/10.1021/ml5005014.Naresh, M.; Arun Kumar, M.; Mahender Reddy, M.; Swamy, P.; Nanubolu, J. B.; Narender, N. Fast and Efficient Bromination of Aromatic Compounds with Ammonium Bromide and Oxone. Synthesis (Germany) 2013, 45 (11), 1497–1504. https://doi.org/10.1055/s-0033-1338431.Rodríguez, R.; León, O.; Quiroga, F.; Cifuentes, J. N-{2-[(3-Oxo-1,3-Dihydro-2-Benzofuran-1- Yl)Acetyl]Phenyl}acetamide. Molbank 2021, 2021 (3). https://doi.org/10.3390/M1244.Noboru, S.; Masamoto, A.; Hiroshi, Y. The Chemiluminescence of Indole Derivatives. III. On the Mechanism of the Chemiluminescence of 2,3-Dimethylindole and 5-Substituted-2,3-Dimethylindoles in the Dimethyl Sulfoxide-Alkali System. Bull Chem Soc Jpn 1968, 41 (4), 936–941. https://doi.org/10.1246/BCSJ.41.936.Dolby, L.; Booth, D. The Periodate Oxidation of Indoles’. J Am Chem Soc 1996, 88 (5), 1049–1051. https://doi.org/10.1021/ja00957a035.Leoxard, X. J.; Boyd, S. N. CINNOLINES. I. SYNTHESIS OF AMINOACETOPHENONES AND AMINOPROPIOPHENONES’. Journal of Organic Chemistry 1946, 11 (4), 405–418. https://doi.org/10.1021/jo01174a018.Fekry Isnail, M.; Shams, A.; Salem, I. R.; Em-, A. Behaviour of 6,8-Dibromo-2-Methyl-3,1-Benzoxazin-4-One towards Friedel-Craft and Grignard Reactions. Journal für Praktische Chemie 1983, 326 (3), 417–421. https://doi.org/10.1002/prac.19833250310.Kianmehr, E.; Nasab, S. B. Silver-Catalyzed Chemo- and Regioselective Nitration of Anilides. European J Org Chem 2018, 2018 (46), 6447–6452. https://doi.org/10.1002/ejoc.201800779.Hussain, H.; Green, I. R.; Ahmed, I. Journey Describing Applications of Oxone in Synthetic Chemistry. Chemical Reviews. American Chemical Society May 8, 2013, pp 3329–3371. https://doi.org/10.1021/cr3004373.Beck, D. E.; Agama, K.; Marchand, C.; Chergui, A.; Pommier, Y.; Cushman, M. Synthesis and Biological Evaluation of New Carbohydrate-Substituted Indenoisoquinoline Topoisomerase I Inhibitors and Improved Syntheses of the Experimental Anticancer Agents Indotecan (LMP400) and Indimitecan (LMP776). J Med Chem 2014, 57 (4), 1495–1512. https://doi.org/10.1021/jm401814y.Fisyuk, A. S.; Kostyuchenko, A. S.; Goncharov, D. S. Camps Reaction and Related Cyclizations. Russian Journal of Organic Chemistry 2020, 56 (11), 1863–1892. https://doi.org/10.1134/S1070428020110019.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1030634726.2022.pdf1030634726.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf1597786https://repositorio.unal.edu.co/bitstream/unal/84309/3/1030634726.2022.pdfd794ab8a65ea7a1480afdcdebc11b153MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84309/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1030634726.2022.pdf.jpg1030634726.2022.pdf.jpgGenerated Thumbnailimage/jpeg5200https://repositorio.unal.edu.co/bitstream/unal/84309/4/1030634726.2022.pdf.jpg35624779495af92a1a7d6defff4feac4MD54unal/84309oai:repositorio.unal.edu.co:unal/843092024-08-15 23:14:38.738Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=