Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.)
ilustraciones, diagramas, tablas
- Autores:
-
Coronado Aleans, Verónica
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81948
- Palabra clave:
- Corn - Roots -Anatomy
Maíz - Anatomía de las raíces
Fenotipado
Arquitectura del sistema de raíces
Imágenes digitales
Software REST
Phenotyping
Digital imaging
Root system architecture
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_73d978fe0653abcc3daec59a0e8345ee |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81948 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
dc.title.translated.eng.fl_str_mv |
High -throughput phenotyping using digital image analysis in maize roots |
title |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
spellingShingle |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) Corn - Roots -Anatomy Maíz - Anatomía de las raíces Fenotipado Arquitectura del sistema de raíces Imágenes digitales Software REST Phenotyping Digital imaging Root system architecture |
title_short |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
title_full |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
title_fullStr |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
title_full_unstemmed |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
title_sort |
Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.) |
dc.creator.fl_str_mv |
Coronado Aleans, Verónica |
dc.contributor.advisor.none.fl_str_mv |
Barrera Sánchez, Carlos Felipe Guzmán Hernández, Manuel Alejandro |
dc.contributor.author.none.fl_str_mv |
Coronado Aleans, Verónica |
dc.subject.lemb.none.fl_str_mv |
Corn - Roots -Anatomy Maíz - Anatomía de las raíces |
topic |
Corn - Roots -Anatomy Maíz - Anatomía de las raíces Fenotipado Arquitectura del sistema de raíces Imágenes digitales Software REST Phenotyping Digital imaging Root system architecture |
dc.subject.proposal.spa.fl_str_mv |
Fenotipado Arquitectura del sistema de raíces Imágenes digitales Software REST |
dc.subject.proposal.eng.fl_str_mv |
Phenotyping Digital imaging Root system architecture |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-18T15:39:57Z |
dc.date.available.none.fl_str_mv |
2022-08-18T15:39:57Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81948 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81948 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., & Amtmann, A. (2009). EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant journal: for cell and molecular biology, 57(5), 945–956. Arvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B. (2011). A growth phenotyping pipeline for arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol, 895–907. Band, R., Fozard, A., Godin, C., Jensen, E., Pridmore, T., Bennett, J., King, R. (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906. https://doi.org/10.1105/tpc.112.101550 Bänziger, M., Edmeades, G., Beck, D., & Bellon, M. (2012) Mejoramiento para Aumentar la Tolerancia a Sequía y a Deficiencia de Nitrógeno en el Maíz. De la Teoría a la Práctica. Centro Internacional de Mejoramiento de Maíz y Trigo. México, D. F, 68. Barber, S.A. (1995). Soil nutrient bioavailability: a mechanistic approach, second ed. John Wiley and Sons, New York, NY. Basu, P., & Pal, A. (2012). A new tool for analysis of root growth in the spatio-temporal continuum. The New phytologist, 195(1), 264–274. Basu, P., Pal, A., Lynch, J. P., & Brown, K. M. (2007). A novel image-analysis technique for kinematic study of growth and curvature. Plant physiology, 145(2), 305–316. Bauriegel, E., Giebel, A., Herppich, W. B. (2011). Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears. Sensors, 3765–377. Bauw, P.D., Ramarolahy, J.A., Senthilkumar, K., Rakotoson, T., Merckx, R., Smolders, E., Houtvinck, R.V., Vandamme, E. (2020). Phenotyping Root Architecture of Soil-Grown Rice: A Robust Protocol Combining Manual Practices with Image-based Analyses. Benoit, L., Rousseau, D., Belin, E., Demilly, D., Chapeau-Blondeau, F. (2014) Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Computers and Electronics in Agriculture, Elsevier, 104, pp.84-92. Brewer, M.T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S. (2006) Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology 141, 15-25. Burton, A.L., Williams, M., Lynch, J.P., Brown, K.M. (2012) RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil, 357, 189–203. CIMMYT/IBPGR. (1991). Descriptores para maíz. 30 p Clark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466. Clark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466. Clark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., Kochian, L.V. (2011). Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156, 455–465 Colombi, T., Kirchgessner, N., Le Marié, C.A., York, L.M., Lynch, J.P., Hund, A. (2015) Next generation shovelomics: set up a tent and REST. Plant Soil, 388, 1–20. Das, A., Schneider, H., Burridge., Burridge, J., Martinez, A., Wojciechowski, T., Topp, C., Lynch, J., Weitz, J., Bucksch, A. (2015). Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11, 51. Dathe, A., Postma, J.A., Postma-Blaauw, M.B., Lynch, J.P. (2016). Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany,118, 401–414. De Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K., Merckx, R. (2019). Architectural root responses of rice to reduced water availability can overcome phosphorus stress. Agronomy, 9. Den, H.G., Van I. G., Beeckman, T., De, S.I. (2010) The roots of a new green revolution. Trends Plant Sci 15, 600–607) Duan, L.F., Yang, W.N., Huang, C.L., Liu, Q. (2011). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods, 7. Eberbach, P.L., Hoffmann, J., Moroni, S.J., Wade, L.J., Weston, L.A. (2013). Rhizo-lysimetry: Facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods, 9, 3. Ennos, A.R., Pellerin, S., Smit A.L., Bengough A.G., Engels C., van Noordwijk M., Pellerin S., van de Geijn S.C. (2000) Plant Anchorage. Root Methods. Springer. Fahlgren, N., Gehan, M. A., Baxter I. (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, vol. 24, 93–99. Fernandez, M. G. S., Bao, Y., Tang, L., & Schnable, P. S. (2017). A high‐throughput, field‐based phenotyping technology for tall biomass crops. Plant Physiology, 174(4), Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Pearson Education Limited. Fan, M. S., Zhu, J. M., Richards, C., Brown, K. M. & Lynch, J. P. 2003 Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506. Fiorani, F., Schurr, U. (2013). Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013, 64, 267–291. French, A., Ubeda-Tomás, S., Holman, T. J., Bennett, M. J., & Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiology, 150(4), 1784–1795. French, A.P., Wilson, M.H., Kenobi, K. (2012). Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7. Furbank, R. (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36. Galkovskyi, T., Mileyko, Y.,Bucksch, A., Moore, B.; Symonova, O., Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S. (2012). GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12, 116 Geng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M., Tham, C., Duan, L., & Dinneny, J. R. (2013). A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant cell, 25(6), 2132–2154. Golzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., Lun, D.S. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7, 1–11. Graham, P. H., Rosas, J. C., de Jensen, C. E., Peralta, E., Tlusty, B., Acosta-Gallegos, J. & Pereira, P. A. A. 2003 Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP project in perspective. Field Crops Res. 82, 179–192. Gruber, B.D., Giehl, R.F., Friedel, S., von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol.163, 161–179 Grzesiak, S., Hura, T., Grzesiak, M., Pieńkowski, S. (1999). The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum, 21, 305-315 Guingo, E., Hébert, Y. (1997). Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica, 42, 265-274 Hallauer, A. R., Miranda, J. B. (1988). Quantitative Genetics in Maize Breeding (2nd ed.). Iowa, Ames. USA: Iowa State University Press. Hauck, A.L., Novais, J., Grift, T.E. (2015). Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus 4, 424. Hirel, B., Le, Gouis, J., Ney, B., Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 2369–2387 Hortelano Santa Rosa, René, Gil Muñoz, Abel, Santacruz Varela, Amalio, López Sánchez, Higinio, López, Pedro Antonio, & Miranda Colín, Salvador. (2012). Diversidad fenotípica de maíces nativos del altiplano centro-oriente del estado de Puebla, México. Revista fitotecnia mexicana, 35(2), 97-109. Recuperado en 25 de abril de 2021 Huot, C., Zhou, Y., Philp, J., Denton, M. (2020). Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant Soil 456, 145–158. Jansen, M., Gilmer, F., Biskup, B., Nagel, K.A., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in 59 Bibliografía arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914. Ju, C., Buresh, R.J., Wang, Z., Zhang, H., Liu, L., Yang, J., Zhang, J. (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res 175 47–55. Kano, M., Inukai, Y., Kitano, H., Yamauchi, A. (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil; 342,117–128. Klukas, C., Chen, D., Pape, J. (2014). Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant Physiology, 165(2), 506-518. Kuijken, P., van Eeuwijk, A., Marcelis, M., Bouwmeester, J. (2015). Root phenotyping: from component trait in the lab to breeding. J Exp Bot; 66, 5389–5401. Le Bot, J., Serra, V., Fabre, J., Draye, X., Adamowicz, S., Pagès, L. (2010). DART: A software to analyse root system architecture and development from captured images. Plant Soil, 326, Leitner, D., Felderer, B., Vontobel, P., & Schnepf, A. (2014). Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant physiology, 164(1), 24–35. Lobet, G., Draye, X., Perilleux, C. (2013). An online database for plant image analysis software tools. Plant Methods 9 -38. Lobet, G., Pagès, L., Draye, X. (2011). A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. Plant Physiology, 157(1), 29 -39. Lynch, J. (1995). Root architecture and plant productivity. Plant Physiology 109, 7-13. Lynch, J. P. & Brown, K. B. 2008 Root strategies for phosphorus acquisition. In The ecophysiology of plant– phosphorus interaction P. J. White & J. P. 64-68. Lynch, J. P., Brown, K.M. (2012). New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1598–1604 Lynch, J. P., Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1-2), 45-56. Lynch, J.P. (2019). Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist 223, 548–564. Lynch, J.P., Brown, K.M. (2001). Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237, 225–237. Lynch, J.P., Nielsen, K.L., Davis, R.D. SimRoot (1997): Modelling and visualization of root systems. Plant and Soil 188, 139–151 Maeght, J.L., Rewald, B., Pierret, A. (2013). How to study deep roots—And why it matters. Front. Plant Sci. 4, 299. Mairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M.J., Mooney, S.J., Pridmore, T.P. (2013). Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 9, 1–7. Mathieu, L., Lobet, G., Tocquin, P., Perilleux, C. (2015). “Rhizoponics”: A novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods, 11. Menzel, M. I., Tittmann, S., Bühler, J., Preis, S., Wolters, N., Jahnke, S., Walter, A., Chlubek, A., Leon, A., Hermes, N., Offenhäuser, A., Gilmer, F., Blümler, P., Schurr, U., & Krause, H. J. (2009). Non-invasive determination of plant bioma ss with microwave resonators. Plant, cell & environment, 32(4), 368–379 Miyao, A. Yukimoto Y., Kitano H., Itoh J, Maekawa, M., Murata, K., Yatou, O., Nagato, Y., and Hirochika, (2006) H. “A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes,” Plant Molecular Biology, 63, (5),625–635 Monforte, A. J., Diaz, A., Caño-Delgado, A., van der Knaap, E. (2014). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of experimental botany, 65(16), 4625–4637 Mooney, S., Pridmore, T., Helliwell, J., Bennett, M. (2012). Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil, 352, Mu, X., Chen, F., Wu, Q., Chen, Q., Wang, J., Yuan, L., Mi, G. (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63, 55–61. Pace, J., Lee, N., Naik, H. S., Ganapathysubramanian, B., & Lübberstedt, T. (2014). Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PloS one, 9(9), Paez-Garcia, A., Motes, C., Scheible, W.R., Chen, R., Blancaflor, E., Monteros, M. (2015). Root Traits and Phenotyping Strategies for Plant Improvement. Plants; 4: 334–355. Pardey Rodríguez, C., García Dávila, M. A., & Moreno Cortés, N. (2016). Caracterización de maíz procedente del departamento del Magdalena, Colombia. Ciencia & Tecnología Agropecuaria, 17(2), 167-190 Panguluri, S.K., Kumar, A.A. (2013). Phenotyping for Plant Breeding. New York, NY: Springer New York. Pecina Martínez, J. A.; M. C. Mendoza Castillo, J. A. López Santillán, F. Castillo González y M. Mendoza Rodríguez. (2009). Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia 43 (7): 681-694 Pierret, A., Gonkhamdee, S., Jourdan, C., Maeght, J. L. (2013). Rhizo: An open-source software to measure scanned images of root samples. Plant Soil, 373, 531–539. Pieruschka, R., Poorter, H. (2012). Phenotyping plants: genes, phenes and machines. Functional Plant Biology 39, 813–820 Pound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J., Pridmore, T. (2013) RootNav: Navigating images of complex root architectures. Plant Physiol, 162, 1802–1814. Rao, N.S., Laxman, R.H. (2013). Phenotyping horticultural crops for abiotic stress tolerance. In Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 147–157 Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.L.M., Yee, M.-C., Sebastian, J., Geng, Y., Trontin, C., LaRue, T., Lavelle, A.S. (2015). Multidimensional mapping of root responses to soil environmental cues using a luminescence-based imaging system. bioRxiv, 016931. Rich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of experimental botany, 64(5), 1193–1208. Rich, S.M., Watt, M. (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64: 1193–1208. Richard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T. (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods,11, 13. Richardson, A. 2011 Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 349, 121–156. Ristova, D., Rosas, U., Krouk, G., Ruffel, S., Birnbaum, K. D., & Coruzzi, G. M. (2013). RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis. Plant physiology, 161(3), 1086–1096 Rubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., Lynch, J.P. (2001) Root Gravitropism and below-ground competition among neighbouring plants: a modelling approach. Ann Bot 88, 929–940 Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., Ronneberger, O., & Palme, K. (2014). The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution. The Plant journal: for cell and molecular biology, 77(5), 806–814. Serebrovsky, A. S. (1925). “Somatic segregation” in domestic fowl. J. Genet. 16 33–42. Shakoor, N., Lee, S., Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38, 184–192. Shi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F., Hammond, J.P. (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot (Lond) 112, 381–38. Shrestha, R., Al-Shugeairy, Z., Al-Ogaidi, F., Munasinghe, M., Radermacher, M., Vandenhirtz, J., Price, A. (2014). Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol. 16, 632–642 Singh, V., Van Oosterom, E.J., Jordan, D.R., Messina, C.D., Cooper, M., Hammer, G.L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil 333 (1-2), 287-299. Stanfield, W.D. (1971). Genetics. Theory and 440 solved problems. Segunda ed. Serie Schaum, McGraw-Hill, México, 405 Thomas, C. L., Graham, N. S., Hayden, R., Meacham, M. C., Neugebauer, K., Nightingale, M., Broadley, M. R. (2016). High‐throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field‐grown oilseed rape (Brassica napus L.). Annals of Botany, 118(4), 655–665 Trachsel, S., Kaeppler, S.M., Brown, K.M. (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87. Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P. (2013). Maize root growth angles become steeper under low N conditions. Field Crops Research 140, 18–31. van der Weele, C. M., Jiang, H. S., Palaniappan, K. K., Ivanov, V. B., Palaniappan, K., & Baskin, T. I. (2003). A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant physiology, 132(3), 1138–1148 Voss-Fels, K.P., Snowdon, R.J., Hickey, L.T. (2018) Designer Roots for Future Crops. Trends Plant Sci. 23, 957–960. Walter, A., Silk, W.K., Schurr, U. (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Ann. Rev. Plant Biol., 60, 279–304. Wang, L., Uilecan, I.V., Assadi, A.H., Kozmik, C.A., Spalding, E.P. (2009) HYPOTrace: Image Analysis Software for Measuring Hypocotyl Growth and Shape Demonstrated on Arabidopsis Seedlings Undergoing Photomorphogenesis. Plant Physiology 149,1632–1637. Wasson, P., Richards, A., Chatrath, R., Misra, C., Prasad, S., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 63, (pp.3485–3498) Zeng, G., Birchfield, S. T., & Wells, C. E. (2008). Automatic discrimination of fine roots in minirhizotron images. The New phytologist, 177(2), 549–557. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 63 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Agronómicas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81948/3/1064995892.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81948/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81948/5/1064995892.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
2f6f1394e66bb23e2dd01d9321248393 8153f7789df02f0a4c9e079953658ab2 11f3c4bcf166c7dd90a8af83369d87b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089606916734976 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barrera Sánchez, Carlos Felipe71b7afc32700d0a20b020422873d6e2f600Guzmán Hernández, Manuel Alejandrob7f8ed2286a591b9cc67a54b58f39eb5Coronado Aleans, Verónicaed63053d1a7482096a07a76e81db7ad56002022-08-18T15:39:57Z2022-08-18T15:39:57Z2022https://repositorio.unal.edu.co/handle/unal/81948Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasCon el objetivo de evaluar el uso del fenotipado de raíces basado en imágenes digitales fueron evaluados genotipos de maíz (Zea mays L.) en condiciones de campo para rasgos de interés agronómico y rasgos asociados con la arquitectura de las raíces en Antioquia, Colombia. En cada lote experimental se aplicó un diseño de bloques completos al azar con tres repeticiones. Para el análisis de fenotipo del sistema de raíces se emplearon dos metodologías: I) fenotipado manual y II) fenotipado por análisis de imágenes digitales. Las variables asociadas a la parte aérea y de raíz fueron relacionadas utilizando correlaciones de Pearson. Se usaron componentes principales para evaluar patrones en la variación de la arquitectura de la raíz. El diámetro de raíz medido manualmente se correlacionó con el diámetro de raíz derivado de la imagen (r = 0,97) y los ángulos de apertura derecho e izquierdo con valores de r = 0,96 y 0,94 respectivamente. Los resultados presentados en este estudio muestran que se puede adoptar un protocolo de fenotipado de raíces automatizado bajo el software REST que permite un nivel de investigación fenotípica adecuado para la evaluación de genotipos y estudios fisiológicos.With the objective of evaluating the use of root phenotyping based on digital images, genotypes of maize (Zea mays L.) were evaluated under field conditions for traits of agronomic interest and traits associated with root architecture in Antioquia, Colombia. A randomized complete block design with three replications was applied to each experimental batch. For the analysis of the phenotype of the root system, two methodologies were used: I) manual phenotyping and II) phenotyping by digital image analysis. The variables associated with the aerial and root parts were related using Pearson's correlations. Principal components were used to evaluate patterns in root architecture variation. The results indicated significant differences (P ≤ 0.05) between genotypes for yield, male and female flowering, leaf area, plant height, ear height, plant and ear height ratio. The manually measured root diameter was correlated with the image-derived root diameter (r = 0.97) and the right and left opening angles with values of r = 0.96 and 0.94 respectively. The results presented in this study show that an automated root phenotyping protocol can be adopted under REST software that allows an adequate level of phenotypic investigation for the evaluation of genotypes and physiological studies.MaestríaMagister en Ciencias AgrariasMejoramiento genético de plantasÁrea Curricular en Producción Agraria Sosteniblexvi, 63 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronómicasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínFenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.)High -throughput phenotyping using digital image analysis in maize rootsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMArmengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., & Amtmann, A. (2009). EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant journal: for cell and molecular biology, 57(5), 945–956.Arvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B. (2011). A growth phenotyping pipeline for arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol, 895–907.Band, R., Fozard, A., Godin, C., Jensen, E., Pridmore, T., Bennett, J., King, R. (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906. https://doi.org/10.1105/tpc.112.101550Bänziger, M., Edmeades, G., Beck, D., & Bellon, M. (2012) Mejoramiento para Aumentar la Tolerancia a Sequía y a Deficiencia de Nitrógeno en el Maíz. De la Teoría a la Práctica. Centro Internacional de Mejoramiento de Maíz y Trigo. México, D. F, 68.Barber, S.A. (1995). Soil nutrient bioavailability: a mechanistic approach, second ed. John Wiley and Sons, New York, NY.Basu, P., & Pal, A. (2012). A new tool for analysis of root growth in the spatio-temporal continuum. The New phytologist, 195(1), 264–274.Basu, P., Pal, A., Lynch, J. P., & Brown, K. M. (2007). A novel image-analysis technique for kinematic study of growth and curvature. Plant physiology, 145(2), 305–316.Bauriegel, E., Giebel, A., Herppich, W. B. (2011). Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears. Sensors, 3765–377.Bauw, P.D., Ramarolahy, J.A., Senthilkumar, K., Rakotoson, T., Merckx, R., Smolders, E., Houtvinck, R.V., Vandamme, E. (2020). Phenotyping Root Architecture of Soil-Grown Rice: A Robust Protocol Combining Manual Practices with Image-based Analyses.Benoit, L., Rousseau, D., Belin, E., Demilly, D., Chapeau-Blondeau, F. (2014) Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Computers and Electronics in Agriculture, Elsevier, 104, pp.84-92.Brewer, M.T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S. (2006) Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology 141, 15-25.Burton, A.L., Williams, M., Lynch, J.P., Brown, K.M. (2012) RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil, 357, 189–203.CIMMYT/IBPGR. (1991). Descriptores para maíz. 30 pClark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.Clark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.Clark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., Kochian, L.V. (2011). Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156, 455–465Colombi, T., Kirchgessner, N., Le Marié, C.A., York, L.M., Lynch, J.P., Hund, A. (2015) Next generation shovelomics: set up a tent and REST. Plant Soil, 388, 1–20.Das, A., Schneider, H., Burridge., Burridge, J., Martinez, A., Wojciechowski, T., Topp, C., Lynch, J., Weitz, J., Bucksch, A. (2015). Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11, 51.Dathe, A., Postma, J.A., Postma-Blaauw, M.B., Lynch, J.P. (2016). Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany,118, 401–414.De Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K., Merckx, R. (2019). Architectural root responses of rice to reduced water availability can overcome phosphorus stress. Agronomy, 9.Den, H.G., Van I. G., Beeckman, T., De, S.I. (2010) The roots of a new green revolution. Trends Plant Sci 15, 600–607)Duan, L.F., Yang, W.N., Huang, C.L., Liu, Q. (2011). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods, 7.Eberbach, P.L., Hoffmann, J., Moroni, S.J., Wade, L.J., Weston, L.A. (2013). Rhizo-lysimetry: Facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods, 9, 3.Ennos, A.R., Pellerin, S., Smit A.L., Bengough A.G., Engels C., van Noordwijk M., Pellerin S., van de Geijn S.C. (2000) Plant Anchorage. Root Methods. Springer.Fahlgren, N., Gehan, M. A., Baxter I. (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, vol. 24, 93–99.Fernandez, M. G. S., Bao, Y., Tang, L., & Schnable, P. S. (2017). A high‐throughput, field‐based phenotyping technology for tall biomass crops. Plant Physiology, 174(4),Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Pearson Education Limited.Fan, M. S., Zhu, J. M., Richards, C., Brown, K. M. & Lynch, J. P. 2003 Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506.Fiorani, F., Schurr, U. (2013). Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013, 64, 267–291.French, A., Ubeda-Tomás, S., Holman, T. J., Bennett, M. J., & Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiology, 150(4), 1784–1795.French, A.P., Wilson, M.H., Kenobi, K. (2012). Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7.Furbank, R. (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36.Galkovskyi, T., Mileyko, Y.,Bucksch, A., Moore, B.; Symonova, O., Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S. (2012). GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12, 116Geng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M., Tham, C., Duan, L., & Dinneny, J. R. (2013). A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant cell, 25(6), 2132–2154.Golzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., Lun, D.S. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7, 1–11.Graham, P. H., Rosas, J. C., de Jensen, C. E., Peralta, E., Tlusty, B., Acosta-Gallegos, J. & Pereira, P. A. A. 2003 Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP project in perspective. Field Crops Res. 82, 179–192.Gruber, B.D., Giehl, R.F., Friedel, S., von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol.163, 161–179Grzesiak, S., Hura, T., Grzesiak, M., Pieńkowski, S. (1999). The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum, 21, 305-315Guingo, E., Hébert, Y. (1997). Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica, 42, 265-274Hallauer, A. R., Miranda, J. B. (1988). Quantitative Genetics in Maize Breeding (2nd ed.). Iowa, Ames. USA: Iowa State University Press.Hauck, A.L., Novais, J., Grift, T.E. (2015). Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus 4, 424.Hirel, B., Le, Gouis, J., Ney, B., Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 2369–2387Hortelano Santa Rosa, René, Gil Muñoz, Abel, Santacruz Varela, Amalio, López Sánchez, Higinio, López, Pedro Antonio, & Miranda Colín, Salvador. (2012). Diversidad fenotípica de maíces nativos del altiplano centro-oriente del estado de Puebla, México. Revista fitotecnia mexicana, 35(2), 97-109. Recuperado en 25 de abril de 2021Huot, C., Zhou, Y., Philp, J., Denton, M. (2020). Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant Soil 456, 145–158.Jansen, M., Gilmer, F., Biskup, B., Nagel, K.A., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in 59 Bibliografía arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914.Ju, C., Buresh, R.J., Wang, Z., Zhang, H., Liu, L., Yang, J., Zhang, J. (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res 175 47–55.Kano, M., Inukai, Y., Kitano, H., Yamauchi, A. (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil; 342,117–128.Klukas, C., Chen, D., Pape, J. (2014). Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant Physiology, 165(2), 506-518.Kuijken, P., van Eeuwijk, A., Marcelis, M., Bouwmeester, J. (2015). Root phenotyping: from component trait in the lab to breeding. J Exp Bot; 66, 5389–5401.Le Bot, J., Serra, V., Fabre, J., Draye, X., Adamowicz, S., Pagès, L. (2010). DART: A software to analyse root system architecture and development from captured images. Plant Soil, 326,Leitner, D., Felderer, B., Vontobel, P., & Schnepf, A. (2014). Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant physiology, 164(1), 24–35.Lobet, G., Draye, X., Perilleux, C. (2013). An online database for plant image analysis software tools. Plant Methods 9 -38.Lobet, G., Pagès, L., Draye, X. (2011). A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. Plant Physiology, 157(1), 29 -39.Lynch, J. (1995). Root architecture and plant productivity. Plant Physiology 109, 7-13.Lynch, J. P. & Brown, K. B. 2008 Root strategies for phosphorus acquisition. In The ecophysiology of plant– phosphorus interaction P. J. White & J. P. 64-68.Lynch, J. P., Brown, K.M. (2012). New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1598–1604Lynch, J. P., Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1-2), 45-56.Lynch, J.P. (2019). Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist 223, 548–564.Lynch, J.P., Brown, K.M. (2001). Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237, 225–237.Lynch, J.P., Nielsen, K.L., Davis, R.D. SimRoot (1997): Modelling and visualization of root systems. Plant and Soil 188, 139–151Maeght, J.L., Rewald, B., Pierret, A. (2013). How to study deep roots—And why it matters. Front. Plant Sci. 4, 299.Mairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M.J., Mooney, S.J., Pridmore, T.P. (2013). Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 9, 1–7.Mathieu, L., Lobet, G., Tocquin, P., Perilleux, C. (2015). “Rhizoponics”: A novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods, 11.Menzel, M. I., Tittmann, S., Bühler, J., Preis, S., Wolters, N., Jahnke, S., Walter, A., Chlubek, A., Leon, A., Hermes, N., Offenhäuser, A., Gilmer, F., Blümler, P., Schurr, U., & Krause, H. J. (2009). Non-invasive determination of plant bioma ss with microwave resonators. Plant, cell & environment, 32(4), 368–379Miyao, A. Yukimoto Y., Kitano H., Itoh J, Maekawa, M., Murata, K., Yatou, O., Nagato, Y., and Hirochika, (2006) H. “A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes,” Plant Molecular Biology, 63, (5),625–635Monforte, A. J., Diaz, A., Caño-Delgado, A., van der Knaap, E. (2014). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of experimental botany, 65(16), 4625–4637Mooney, S., Pridmore, T., Helliwell, J., Bennett, M. (2012). Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil, 352,Mu, X., Chen, F., Wu, Q., Chen, Q., Wang, J., Yuan, L., Mi, G. (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63, 55–61.Pace, J., Lee, N., Naik, H. S., Ganapathysubramanian, B., & Lübberstedt, T. (2014). Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PloS one, 9(9),Paez-Garcia, A., Motes, C., Scheible, W.R., Chen, R., Blancaflor, E., Monteros, M. (2015). Root Traits and Phenotyping Strategies for Plant Improvement. Plants; 4: 334–355.Pardey Rodríguez, C., García Dávila, M. A., & Moreno Cortés, N. (2016). Caracterización de maíz procedente del departamento del Magdalena, Colombia. Ciencia & Tecnología Agropecuaria, 17(2), 167-190Panguluri, S.K., Kumar, A.A. (2013). Phenotyping for Plant Breeding. New York, NY: Springer New York.Pecina Martínez, J. A.; M. C. Mendoza Castillo, J. A. López Santillán, F. Castillo González y M. Mendoza Rodríguez. (2009). Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia 43 (7): 681-694Pierret, A., Gonkhamdee, S., Jourdan, C., Maeght, J. L. (2013). Rhizo: An open-source software to measure scanned images of root samples. Plant Soil, 373, 531–539.Pieruschka, R., Poorter, H. (2012). Phenotyping plants: genes, phenes and machines. Functional Plant Biology 39, 813–820Pound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J., Pridmore, T. (2013) RootNav: Navigating images of complex root architectures. Plant Physiol, 162, 1802–1814.Rao, N.S., Laxman, R.H. (2013). Phenotyping horticultural crops for abiotic stress tolerance. In Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 147–157Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.L.M., Yee, M.-C., Sebastian, J., Geng, Y., Trontin, C., LaRue, T., Lavelle, A.S. (2015). Multidimensional mapping of root responses to soil environmental cues using a luminescence-based imaging system. bioRxiv, 016931.Rich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of experimental botany, 64(5), 1193–1208.Rich, S.M., Watt, M. (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64: 1193–1208.Richard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T. (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods,11, 13.Richardson, A. 2011 Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 349, 121–156.Ristova, D., Rosas, U., Krouk, G., Ruffel, S., Birnbaum, K. D., & Coruzzi, G. M. (2013). RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis. Plant physiology, 161(3), 1086–1096Rubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., Lynch, J.P. (2001) Root Gravitropism and below-ground competition among neighbouring plants: a modelling approach. Ann Bot 88, 929–940Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., Ronneberger, O., & Palme, K. (2014). The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution. The Plant journal: for cell and molecular biology, 77(5), 806–814.Serebrovsky, A. S. (1925). “Somatic segregation” in domestic fowl. J. Genet. 16 33–42.Shakoor, N., Lee, S., Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38, 184–192.Shi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F., Hammond, J.P. (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot (Lond) 112, 381–38.Shrestha, R., Al-Shugeairy, Z., Al-Ogaidi, F., Munasinghe, M., Radermacher, M., Vandenhirtz, J., Price, A. (2014). Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol. 16, 632–642Singh, V., Van Oosterom, E.J., Jordan, D.R., Messina, C.D., Cooper, M., Hammer, G.L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil 333 (1-2), 287-299.Stanfield, W.D. (1971). Genetics. Theory and 440 solved problems. Segunda ed. Serie Schaum, McGraw-Hill, México, 405Thomas, C. L., Graham, N. S., Hayden, R., Meacham, M. C., Neugebauer, K., Nightingale, M., Broadley, M. R. (2016). High‐throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field‐grown oilseed rape (Brassica napus L.). Annals of Botany, 118(4), 655–665Trachsel, S., Kaeppler, S.M., Brown, K.M. (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87.Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P. (2013). Maize root growth angles become steeper under low N conditions. Field Crops Research 140, 18–31.van der Weele, C. M., Jiang, H. S., Palaniappan, K. K., Ivanov, V. B., Palaniappan, K., & Baskin, T. I. (2003). A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant physiology, 132(3), 1138–1148Voss-Fels, K.P., Snowdon, R.J., Hickey, L.T. (2018) Designer Roots for Future Crops. Trends Plant Sci. 23, 957–960.Walter, A., Silk, W.K., Schurr, U. (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Ann. Rev. Plant Biol., 60, 279–304.Wang, L., Uilecan, I.V., Assadi, A.H., Kozmik, C.A., Spalding, E.P. (2009) HYPOTrace: Image Analysis Software for Measuring Hypocotyl Growth and Shape Demonstrated on Arabidopsis Seedlings Undergoing Photomorphogenesis. Plant Physiology 149,1632–1637.Wasson, P., Richards, A., Chatrath, R., Misra, C., Prasad, S., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 63, (pp.3485–3498)Zeng, G., Birchfield, S. T., & Wells, C. E. (2008). Automatic discrimination of fine roots in minirhizotron images. The New phytologist, 177(2), 549–557.Corn - Roots -AnatomyMaíz - Anatomía de las raícesFenotipadoArquitectura del sistema de raícesImágenes digitalesSoftware RESTPhenotypingDigital imagingRoot system architectureEstudiantesInvestigadoresMaestrosORIGINAL1064995892.2021.pdf1064995892.2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2531685https://repositorio.unal.edu.co/bitstream/unal/81948/3/1064995892.2021.pdf2f6f1394e66bb23e2dd01d9321248393MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81948/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1064995892.2021.pdf.jpg1064995892.2021.pdf.jpgGenerated Thumbnailimage/jpeg4752https://repositorio.unal.edu.co/bitstream/unal/81948/5/1064995892.2021.pdf.jpg11f3c4bcf166c7dd90a8af83369d87b3MD55unal/81948oai:repositorio.unal.edu.co:unal/819482023-11-08 08:58:57.106Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |