Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia
ilustraciones, diagramas, tablas
- Autores:
-
Gil Vera, Victor Daniel
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81113
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
370 - Educación::378 - Educación superior (Educación terciaria)
Distance education
Educación a distancia
Universidad a distancia
Educación
Estudiante
Machine Learning
Education
Student
Machine Learning
Performance
Prediction
Predicción
Rendimiento
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_73c2be82af28cffa57bd4992b43f7f37 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81113 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
dc.title.translated.eng.fl_str_mv |
Methodology for predicting student performance in virtual university distance learning courses |
title |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
spellingShingle |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 370 - Educación::378 - Educación superior (Educación terciaria) Distance education Educación a distancia Universidad a distancia Educación Estudiante Machine Learning Education Student Machine Learning Performance Prediction Predicción Rendimiento |
title_short |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
title_full |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
title_fullStr |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
title_full_unstemmed |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
title_sort |
Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia |
dc.creator.fl_str_mv |
Gil Vera, Victor Daniel |
dc.contributor.advisor.none.fl_str_mv |
Velásquez-Henao, Juan David Franco Cardona, Carlos Jaime |
dc.contributor.author.none.fl_str_mv |
Gil Vera, Victor Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Big Data y Data Analytics |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 370 - Educación::378 - Educación superior (Educación terciaria) |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 370 - Educación::378 - Educación superior (Educación terciaria) Distance education Educación a distancia Universidad a distancia Educación Estudiante Machine Learning Education Student Machine Learning Performance Prediction Predicción Rendimiento |
dc.subject.lemb.none.fl_str_mv |
Distance education Educación a distancia Universidad a distancia |
dc.subject.proposal.spa.fl_str_mv |
Educación Estudiante |
dc.subject.proposal.eng.fl_str_mv |
Machine Learning Education Student Machine Learning Performance Prediction |
dc.subject.proposal.none.fl_str_mv |
Predicción Rendimiento |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-03-02T16:37:05Z |
dc.date.available.none.fl_str_mv |
2022-03-02T16:37:05Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81113 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81113 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abu Tair, M. M., & El-Halees, A. M. (2012). Mining educational data to improve students’ performance: a case study. Mining Educational Data to Improve Students’ Performance: A Case Study, 2(2). Abu Zohair, L. M. (2019). Prediction of Student’s performance by modelling small dataset size. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0160-3 Ahammed, F., & Smith, E. (2019). Prediction of students’ performances using course analytics data: A case of water engineering course at the university of south australia. Education Sciences, 9(3). https://doi.org/10.3390/educsci9030245 Al-Nofaie, H. (2020). Saudi University Students’ Perceptions towards Virtual Education during COVID-19 Pandemic: A Case Study of Language Learning via Blackboard. Arab World English Journal, 11(3), 4–20. Al-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., Alhiyafi, J., & Olatunji, S. O. (2017). Student performance prediction using support vector machine and k-nearest neighbor. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 1–4. Al-Sudani, S., & Palaniappan, R. (2019). Predicting students’ final degree classification using an extended profile. Education and Information Technologies, 24(4), 2357–2369. https://doi.org/10.1007/s10639-019-09873-8 Alarcón, G. G., Añorve, J. R., Sánchez, M. del R. G., & Salgado, T. A. (2016). Los factores psicosociales como impacto en el bajo rendimiento escolar de los estudiantes de la Universidad Autónoma de Guerrero/Psychosocial factors as impact on poor school performance of the students of the Autonomous University of Guerrero. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 7(13), 107–125 AMIR. (2020). Curso Híbrido. https://academiamir.com/cursos-amir/hibrido/ Angeline, D. M. D. (2013). Association rule generation for student performance analysis using apriori algorithm. The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA), 1(1), 12–16. Arsad, P. M., Buniyamin, N., & Manan, J. A. (2013). A neural network students’ performance prediction model (NNSPPM). 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 1–5. Baggs, T., Barnett, D., & McCullough, K. (2015). The value of traditional cognitive variables for predicting performance in graduate speech-language pathology programs. Journal of Allied Health, 44(1), 10–16. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924898093&partnerID=40&md5=3c7591fefc8ae763d803459a9a87dc00 Banditvilai, C. (2016). Enhancing students language skills through blended learning. Electronic Journal of E-Learning, 14(3), pp223-232. Bastús, V. J. (1855). Diccionario histórico enciclopédico, 2. Roca. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. Beyens, I., Vandenbosch, L., & Eggermont, S. (2015). Early adolescent boys’ exposure to Internet pornography: Relationships to pubertal timing, sensation seeking, and academic performance. The Journal of Early Adolescence, 35(8), 1045–1068. Bin Mat, U., Buniyamin, N., Arsad, P. M., & Kassim, R. (2013). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th Conference on Engineering Education (ICEED), 126–130. Black, S. E., Lincove, J., Cullinane, J., & Veron, R. (2015). Can you leave high school behind? Economics of Education Review, 46, 52–63. Bogarín, A., Romero, C., Cerezo, R., & Sánchez-Santillán, M. (2014). Clustering for improving educational process mining. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 11–15. Brasche, I., & Harrington, I. (2012). Promoting teacher quality and continuity: Tackling the disadvantages of remote Indigenous schools in the Northern Territory. Australian Journal of Education, 56(2), 110–125. Bravo-Agapito, J., Romero, S. J., & Pamplona, S. (2021). Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study. Computers in Human Behavior, 115(January 2020), 106595. https://doi.org/10.1016/j.chb.2020.106595 Brito, M., Medeiros, F., & Bezerra, E. (2019). A report-type plugin to indicate dropout risk in the virtual learning environment moodle. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 2161, 127–128. Brook, S., & Roberts, M. (2021). What are the determinants of student performance on an undergraduate accounting degree? Journal of Further and Higher Education. https://doi.org/10.1080/0309877X.2021.1882666 Brownlee, J. (2016). Support Vector Machines for Machine Learning. Machine Learning Mastery. https://machinelearningmastery.com/support-vector-machines-for-machine-learning/ Buenaño-Fernández, D., Gil, D., & Luján-Mora, S. (2019). Application of machine learning in predicting performance for computer engineering students: A case study. Sustainability, 11(10), 2833. Bunkar, K., Kumar, S., PandyaBhupendra, K., & Bunkar, R. (2012). Data mining: Prediction for performance improvement of graduate students using classification. 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN), 1–5. Bussu, A., Detotto, C., & Serra, L. (2020). Indicators to prevent university drop-out and delayed graduation: an Italian case. Journal of Applied Research in Higher Education, 12(2), 230–249. https://doi.org/10.1108/JARHE-10-2018-0201 Capterra. (2020). Best Learning Management System Software for Windows. https://www.capterra.com/learning-management-system-software/s/windows/ Cazarez, R. L. U., & Martin, C. L. (2018). Neural Networks for Predicting Student Performance in Online Education. IEEE Latin America Transactions, 16(7), 2053–2060. https://doi.org/10.1109/TLA.2018.8447376 Chang, Y., & Brickman, P. (2018). When group work doesn’t work: Insights from students. CBE Life Sciences Education, 17(3). https://doi.org/10.1187/cbe.17-09-0199 Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13. Christian, T. M., & Ayub, M. (2014). Exploration of classification using NBTree for predicting students’ performance. 2014 International Conference on Data and Software Engineering (ICODSE), 1–6. Correa-Burrows, P., Burrows, R., Blanco, E., Reyes, M., & Gahagan, S. (2016). Nutritional quality of diet and academic performance in Chilean students Qualité nutritionnelle de l’alimentation et résultats scolaires des lycéens chiliens Calidad nutricional de la dieta y rendimiento académico de los estudiantes chilenos. Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of School Psychology, 68, 154–162. https://doi.org/10.1016/j.jsp.2018.03.005 Daud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F., & Alowibdi, J. S. (2017). Predicting student performance using advanced learning analytics. Proceedings of the 26th International Conference on World Wide Web Companion, 415–421. David, M. C., Eley, D. S., Schafer, J., & Davies, L. (2016). Risk assessment of student performance in the international foundations of medicine clinical science examination by the use of statistical modeling. Advances in Medical Education and Practice, 7, 653–660. https://doi.org/10.2147/AMEP.S122841 Deo, R. C., Yaseen, Z. M., Al-Ansari, N., Nguyen-Huy, T., Langlands, T. A. M., & Galligan, L. (2020). Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction: An Investigation on Engineering Mathematics Courses. IEEE Access, 8, 136697–136724. https://doi.org/10.1109/ACCESS.2020.3010938 Döring, M. (2018). Prediction vs Forecasting. Data Science Blog. https://www.datascienceblog.net/post/machine-learning/forecasting_vs_prediction/ Dung, D. T. H. (2020). The advantages and disadvantages of virtual learning. IOSR Journal of Research & Method in Education, 10(3), 45–48. Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. Ieee Access, 5, 15991–16005. Edgar, T. W., & Manz, D. O. (2017). Chapter 6 - Machine Learning. In T. W. Edgar & D. O. Manz (Eds.), Research Methods for Cyber Security (pp. 153–173). Syngress. https://doi.org/https://doi.org/10.1016/B978-0-12-805349-2.00006-6 Ehsanpur, S., & Razavi, M. R. (2020). A Comparative analysis of learning, retention, learning and study strategies in the traditional and M-learning systems. European Review of Applied Psychology, 70(6), 100605. https://doi.org/https://doi.org/10.1016/j.erap.2020.100605 Erokhina, E. A., & Anikina, E. M. (2020). Advantages and Disadvantages of Remote Education in the Russian Federation During the Pandemic Period. Непрерывное Профессиональное Образование: Теория и Практика, 121–123. Gedrimiene, E., Silvola, A., Pursiainen, J., Rusanen, J., & Muukkonen, H. (2019). Learning Analytics in Education: Literature Review and Case Examples From Vocational Education. Scandinavian Journal of Educational Research, 3831. https://doi.org/10.1080/00313831.2019.1649718 Gil-Herrera, E., Tsalatsanis, A., Yalcin, A., & Kaw, A. (2011). Predicting academic performance using a Rough Set Theory-based knowledge discovery methodology. International Journal of Engineering Education, 27(5), 992–1002. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052985455&partnerID=40&md5=94ee1759e02b6c5659f7637b9e67aa7a Golden, C. E., Rothrock Jr, M. J., & Mishra, A. (2019). Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Research International, 122, 47–55. Gómez-Aguilar, D.-A., García-Peñalvo, F.-J., & Therón, R. (2014). Analítica visual en e-learning. Profesional de La Información, 23(3), 236–245. Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60–67. Gonen, S., & Basaran, B. (2008). The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package. Online Submission, 9(3), 112–120. Google. (2021). Colaboratory. Preguntas Frecuentes. https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C or “Colab” for,learning%2C data analysis and education. Gray, G., McGuinness, C., & Owende, P. (2014). An application of classification models to predict learner progression in tertiary education. 2014 IEEE International Advance Computing Conference (IACC), 549–554. Gray, G., McGuinness, C., Owende, P., & Hofmann, M. (2016). Learning factor models of students at risk of failing in the early stage of tertiary education. Journal of Learning Analytics, 3(2), 330–372. Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2019). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227–245. https://doi.org/10.1007/s41060-018-0141-y Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134–146. Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V, Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: A systematic literature review. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 175–199. https://doi.org/10.1145/3293881.3295783 Huang, C., Zhou, J., Chen, J., Yang, J., Clawson, K., & Peng, Y. (2021). A feature weighted support vector machine and artificial neural network algorithm for academic course performance prediction. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-05962-3 Hudson, R. D., & Treagust, D. F. (2013). Which form of assessment provides the best information about student performance in chemistry examinations? Research in Science and Technological Education, 31(1), 49–65. https://doi.org/10.1080/02635143.2013.764516 Hussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2018). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational Intelligence and Neuroscience, 2018. Ibrahim, Z., & Rusli, D. (2007). Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. 21st Annual SAS Malaysia Forum, 5th September. IIOT, A. &. (2016). A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python). Analytics. https://analyticks.wordpress.com/2016/07/05/a-complete-tutorial-on-tree-based-modeling-from-scratch-in-r-python/ Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning techniques. WSEAS Transactions on Computers, 4(8), 966–974. Imran, M., Latif, S., Mehmood, D., & Shah, M. S. (2019). Student academic performance prediction using supervised learning techniques. International Journal of Emerging Technologies in Learning, 14(14), 92–104. https://doi.org/10.3991/ijet.v14i14.10310 Jayanthi, G., & Ramesh, V. (2014). Design of Academic Performance Prediction System Using Multi-Layer Perceptron. International Journal of Computer Science and Software Engineering, 1(1), 9–15. Jena, R. K. (2016). Investigating the interrelation between attitudes, learning readiness, and learning styles under virtual learning environment: a study among Indian students. Behaviour and Information Technology, 35(11), 946–957. https://doi.org/10.1080/0144929X.2016.1212930 Jensen, E., Umada, T., Hunkins, N. C., Hutt, S., Huggins-Manley, A. C., & D’mello, S. K. (2021). What you do predicts how you do: Prospectively modeling student quiz performance using activity features in an online learning environment. ACM International Conference Proceeding Series, 121–131. https://doi.org/10.1145/3448139.3448151 Jia, B., Niu, K., Hou, X., Li, N., Peng, X., Gu, P., & Jia, R. (2019). Prediction for Student Academic Performance Using SMNaive Bayes Model. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11888 LNAI, 712–725. https://doi.org/10.1007/978-3-030-35231-8_52 Jishan, S. T., Rashu, R. I., Haque, N., & Rahman, R. M. (2015). Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique. Decision Analytics, 2(1), 1–25. Joksimović, S., Manataki, A., Gašević, D., Dawson, S., Kovanović, V., & De Kereki, I. F. (2016). Translating network position into performance: Importance of centrality in different network configurations. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 314–323. Jones, T. (2018). Supervised learning models. IBM Developer. https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-supervised-learning-models/#:~:text=Supervised learning is a method,then generalize for new examples.&text=In supervised learning%2C you create,data and a wanted output. Khan, A., & Ghosh, S. K. (2021). Student performance analysis and prediction in classroom learning: A review of educational data mining studies. Education and Information Technologies, 26(1), 205–240. Kim, B.-H., Vizitei, E., & Ganapathi, V. (2018). GritNet: Student performance prediction with deep learning. ArXiv Preprint ArXiv:1804.07405. Kim, J., Park, J. Y., & van Den Noortgate, W. (2020). On the use of Bayesian probabilistic matrix factorization for predicting student performance in online learning environments. International Conference on Higher Education Advances, 2020-June, 751–759. https://doi.org/10.4995/HEAd20.2020.11137 Kitchenham, B. . (2004). Procedures for undertaking systematic reviews. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf Kovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R. S., & Hatala, M. (2015). Penetrating the black box of time-on-task estimation. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 184–193. Kumar, A., Vijayalakshmi, M., & Kumar, D. A. (2012). Appraising the significance of self-regulated learning in higher education using neural networks. International Journal of Engineering Research and Development, 1(1), 9–15. Lakshmi, V., & Ramesh, D. V. (2017). Evaluating students’ descriptive answers using natural language processing and artificial neural networks. International Journal of Creative Research Thoughts (IJCRT), 5(4), 3168–3173. Lanzat, A. M. A., López, A. J. G., González, M. L. C., & Navío, E. P. (2018). Causas del fracaso escolar: Un análisis desde la perspectiva del profesorado y del alumnado. Enseñanza & Teaching: Revista Interuniversitaria de Didáctica, 36(1), 129–149. Lau, E. T., Sun, L., & Yang, Q. (2019). Modelling, prediction and classification of student academic performance using artificial neural networks. SN Applied Sciences, 1(9), 982. https://doi.org/10.1007/s42452-019-0884-7 Li, K. F., Rusk, D., & Song, F. (2013). Predicting student academic performance. 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, 27–33. Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Lin, A. J. Q., Ogata, H., & Yang, S. J. H. (2018). Applying learning analytics for the early prediction of Students’ academic performance in blended learning. Journal of Educational Technology & Society, 21(2), 220–232. M. Barb, R. Vilanova, J. Lopez Vicario, R. (2017). Data Mining Tool for Academic Data Exploitation. In Romania (Issue June). Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588–599. https://doi.org/10.1016/j.compedu.2009.09.008 Macfadyen, L. P., Groth, D., Rehrey, G., Shepard, L., Greer, J., Ward, D., Bennett, C., Kaupp, J., Molinaro, M., & Steinwachs, M. (2017). Developing institutional learning analytics’ communities of transformation’to support student success. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, 498–499. Mahmoud Abu Zohair, L. (2019). Prediction of Student’s performance by modelling small dataset size. 16, 18. https://doi.org/10.1186/s41239-019-0160-3 Malau-Aduli, B. S. (2011). Exploring the experiences and coping strategies of international medical students. BMC Medical Education, 11(1). https://doi.org/10.1186/1472-6920-11-40 Maltby, A., & Mackie, S. (2009). Virtual learning environments – help or hindrance for the ‘disengaged’ student? ALT-J, 17(1), 49–62. https://doi.org/10.1080/09687760802657577 Marbouti, F., Ulas, J., & Wang, C.-H. (2021). Academic and Demographic Cluster Analysis of Engineering Student Success. IEEE Transactions on Education, 64(3), 261–266. https://doi.org/10.1109/TE.2020.3036824 MathWorks. (2021). Análisis predictivo. Predictive Analytics. https://es.mathworks.com/discovery/predictive-analytics.html Mauthe, A., & Thomas, P. (2004). Professional content management systems. John Whiley & Sons, Ltd. Max Kuhn. (2021). 15 Variable Importance. https://topepo.github.io/caret/variable-importance.html Mayilvaganan, M., & Kalpanadevi, D. (2014). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, 113–118. Meit, S. S., Borges, N. J., Cubic, B. A., & Seibel, H. R. (2004). Personality Differences in Incoming Male and Female Medical Students. Online Submission. Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. F. (2003). Predicting student performance: an application of data mining methods with an educational web-based system. 33rd Annual Frontiers in Education, 2003. FIE 2003., 1, T2A-13. Miranda, G. J., Casa Nova, S. P. C., & Cornacchione Jr., E. B. (2013). To Sir with Love: The relations between teacher qualification and student performance in accounting [Ao mestre com carinho: Relações entre as qualificações docentes e o desempenho discente em contabilidade]. Revista Brasileira de Gestao de Negocios, 15(48), 462–480. https://doi.org/10.7819/rbgn.v15i48.1351 Mishra, T., Kumar, D., & Gupta, S. (2014). Mining students’ data for prediction performance. 2014 Fourth International Conference on Advanced Computing & Communication Technologies, 255–262. Miskioglu, E. (2016). Unseen influences on student performance: Instructor assessment styles. ASEE Annual Conference and Exposition, Conference Proceedings, 2016-June. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983266259&partnerID=40&md5=538ffaaf39189337ccab815bef9db963 Moodle. (2020). Course dedication. Moodle Course Dedication. https://moodle.org/plugins/block_dedication Morris, L. V, Finnegan, C., & Wu, S.-S. (2005). Tracking student behavior, persistence, and achievement in online courses. The Internet and Higher Education, 8(3), 221–231. Moucary, C. El, Khair, M., & Zakhem, W. (2011). Improving student’s performance using data clustering and neural networks in foreign-language based higher education. The Research Bulletin of Jordan ACM, 2(3), 27–34. Moyano, M. (2018). ¿Curso a distancia sincrónico o asincrónico? Online Educaton Center. https://onlineeducation.center/es/curso-a-distancia-sincronico-o-asincronico Muljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18. Mutascu, M. (2021). Artificial intelligence and unemployment: New insights. Economic Analysis and Policy, 69, 653–667. https://doi.org/https://doi.org/10.1016/j.eap.2021.01.012 Naganandhini, S., & Shanmugavadivu, P. (2019). Effective diagnosis of alzheimer’s disease using modified decision tree classifier. Procedia Computer Science, 165, 548–555. Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences (Switzerland), 11(1), 1–28. https://doi.org/10.3390/app11010237 Nanfor. (2021). Telepresencial. https://nanfor.com/pages/avanzado Napoli, A. R., & Raymond, L. A. (2004). How reliable are our assessment data?: A comparison of the reliability of data produced in graded and un-graded conditions. Research in Higher Education, 45(8), 921–929. Naren, J. (2014). Application of data mining in educational database for predicting behavioural patterns of the students. Natek, S., & Zwilling, M. (2014). Student data mining solution–knowledge management system related to higher education institutions. Expert Systems with Applications, 41(14), 6400–6407. Nguyen, Q., Huptych, M., & Rienties, B. (2018). Linking students’ timing of engagement to learning design and academic performance. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, 141–150. Nguyen, T. L. H. (2013). Middle-level academic management: A case study on the roles of the heads of department at a Vietnamese university. Tertiary Education and Management, 19(1), 1–15. O’Shaughnessy, S., & Gray, G. (2011). Development and evaluation of a dataset generator tool for generating synthetic log files containing computer attack signatures. International Journal of Ambient Computing and Intelligence (IJACI), 3(2), 64–76. Oladokun, V. O., Adebanjo, A. T., & Charles-Owaba, O. E. (2008). Predicting students academic performance using artificial neural network: A case study of an engineering course. Orduña, P., García-Zubia, J., Rodriguez-Gil, L., Irurzun, J., López-de-Ipiña, D., & Gazzola, F. (2012). Using LabVIEW remote panel in remote laboratories: Advantages and disadvantages. Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), 1–7. Osmanbegović, E., AGIĆ, H., & Suljić, M. (2014). PREDICTION OF STUDENTS’SUCCESS BY APPLYING DATA MINING ALGORITHAMS. Journal of Theoretical & Applied Information Technology, 61(2). Osmanbegovic, E., & Suljic, M. (2012). Data mining approach for predicting student performance. Economic Review: Journal of Economics and Business, 10(1), 3–12. Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147–158. Padua Rodríguez, L. M. (2019). Factores individuales y familiares asociados al bajo rendimiento académico en estudiantes universitarios. Revista Mexicana de Investigación Educativa, 24(80), 173–195. Pakhomova, T. O., Komova, O. S., Belia, V. V, Yivzhenko, Y. V, & Demidko, E. V. (2021). Transformation of the pedagogical process in higher education during the quarantine. Linguistics and Culture Review, 5(S2), 215–230. Pal, A. K., & Pal, S. (2013). Analysis and mining of educational data for predicting the performance of students. International Journal of Electronics Communication and Computer Engineering, 4(5), 1560–1565. Palvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., & Sindhi, S. (2018). Online education: Worldwide status, challenges, trends, and implications. Taylor & Francis. Papageorgiou, K., & Halabi, A. K. (2014). Factors contributing toward student performance in a distance education accounting degree. Meditari Accountancy Research, 22(2), 211–223. https://doi.org/10.1108/MEDAR-08-2013-0032 Parack, S., Zahid, Z., & Merchant, F. (2012). Application of data mining in educational databases for predicting academic trends and patterns. 2012 IEEE International Conference on Technology Enhanced Education (ICTEE), 1–4. Patterson, R. W., & Patterson, R. M. (2017). Computers and productivity: Evidence from laptop use in the college classroom. Economics of Education Review, 57, 66–79. Perin, D. (2006). Academic progress of community college nursing aspirants: An institutional research profile. Community College Journal of Research and Practice, 30(8), 657–670. Phan, D.-V., Chan, C.-L., Pan, R.-H., Yang, N.-P., Hsu, H.-C., Ting, H.-W., & Lai, K. R. (2018). A Study of the Effects of Daily Physical Activity on Memory and Attention Capacities in College Students. Journal of Healthcare Engineering, 2018, 2942930. https://doi.org/10.1155/2018/2942930 Polsani, P. R. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4). Quadri, M. M. N., & Kalyankar, N. V. (2010). Drop out feature of student data for academic performance using decision tree techniques. Global Journal of Computer Science and Technology. Quinn, R. J., & Gray, G. (2019). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1). https://doi.org/10.22554/ijtel.v5i1.57 Quinn, R. J., & Gray, G. (2020). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1). R. (2021). The Comprehensive R Archive Network. https://cran.r-project.org/ Radović-Marković, M. (2010). Advantages and disadvantages of e-learning in comparison to traditional forms of learning. Annals of the University of Petroşani, Economics, 10(2), 289–298. Ramesh, V., Parkavi, P., & Ramar, K. (2013). Predicting student performance: a statistical and data mining approach. International Journal of Computer Applications, 63(8). Rana, P., Raj Gupta, L., Dubey, M. K., & Kumar, G. (2021). Review on evaluation techniques for better student learning outcomes using machine learning. Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 86–90. https://doi.org/10.1109/ICIEM51511.2021.9445294 Ribeiro, Í. J. S., Pereira, R., Freire, I. V, de Oliveira, B. G., Casotti, C. A., & Boery, E. N. (2018). Stress and Quality of Life Among University Students: A Systematic Literature Review. Health Professions Education, 4(2), 70–77. https://doi.org/https://doi.org/10.1016/j.hpe.2017.03.002 Rivas, A., Gonzalez-Briones, A., Hernandez, G., Prieto, J., & Chamoso, P. (2021). Artificial neural network analysis of the academic performance of students in virtual learning environments. Neurocomputing, 423, 713–720. Rodríguez Ayán, M. N., & Ruiz Díaz, M. Á. (2011). Indicadores de rendimiento de estudiantes universitarios: calificaciones versus créditos acumulados. Revista de Educación. Roll, I., Macfadyen, L. P., & Sandilands, D. (2015). Evaluating the Relationship Between Course Structure, Learner Activity, and Perceived Value of Online Courses. Proceedings of the Second (2015) ACM Conference on Learning@ Scale, 385–388. Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472. Sagoo, M. G., Smith, C. F., & Gosden, E. (2016). Assessment of anatomical knowledge by practical examinations: The effect of question design on student performance. Anatomical Sciences Education, 9(5), 446–452. https://doi.org/10.1002/ase.1597 Salazar, M. E. L., & de León, A. L. E. (2008). Desempeño académico de estudiantes en educación virtual. Algunos factores negativos. Saltos, W. R. F., & Maldonado, C. G. (2019). Predictive models for the detection of problems in autonomous learning in higher education students virtual modality. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 1–6. Sekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student Performance Prediction and Classification Using Machine Learning Algorithms. Proceedings of the 2019 8th International Conference on Educational and Information Technology, 7–11. https://doi.org/10.1145/3318396.3318419 Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011a). Prediction of student academic performance by an application of data mining techniques. 6, 110–114. Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011b). Prediction of student academic performance by an application of data mining techniques. International Conference on Management and Artificial Intelligence IPEDR, 6(1), 110–114. Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. https://doi.org/10.1016/j.procs.2015.12.157 Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press. Siemens, G. (2010). 1st international conference on learning analytics & knowledge (lak 2011). Simsek, A., & Balaban, J. (2010). Learning Strategies of Successful and Unsuccessful University Students. Online Submission, 1(1), 36–45. Smith, M. W., Miller, D. W., & Seager, S. (2011). Enhancing undergraduate education in aerospace engineering and planetary sciences at MIT through the development of a CubeSat mission. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V, 8146, 81460S. Sorrell, S. (2007). Improving the evidence base for energy policy: the role of systematic reviews. Energy Policy, 35(3), 1858–1871. Stephens, N. M., Brannon, T. N., Markus, H. R., & Nelson, J. E. (2015). Feeling at home in college: Fortifying school‐relevant selves to reduce social class disparities in higher education. Social Issues and Policy Review, 9(1), 1–24. Stephens, N. M., Hamedani, M. G., & Destin, M. (2014). Closing the social-class achievement gap: A difference-education intervention improves first-generation students’ academic performance and all students’ college transition. Psychological Science, 25(4), 943–953. Stephens, N. M., Townsend, S. S. M., Hamedani, M. G., Destin, M., & Manzo, V. (2015). A difference-education intervention equips first-generation college students to thrive in the face of stressful college situations. Psychological Science, 26(10), 1556–1566. Subirà, M. P.-M., & Catasús, M. G. (2011). Aprender y enseñar en línea. Universitat Oberta de Catalunya. Surenthiran, S., Rajalakshmi, R., & Sujatha, S. S. (2021). Student Performance Prediction Using Atom Search Optimization Based Deep Belief Neural Network. Optical Memory and Neural Networks (Information Optics), 30(2), 157–171. https://doi.org/10.3103/S1060992X21020119 Suresh, K., Meghana, J., & Pooja, M. E. (2021). Predicting the E-Learners Learning Style by using Support Vector Regression Technique. Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 350–355. https://doi.org/10.1109/ICAIS50930.2021.9396018 Talebian, S., Mohammadi, H. M., & Rezvanfar, A. (2014). Information and communication technology (ICT) in higher education: advantages, disadvantages, conveniences and limitations of applying e-learning to agricultural students in Iran. Procedia-Social and Behavioral Sciences, 152, 300–305. Tempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408–420. https://doi.org/https://doi.org/10.1016/j.chb.2017.08.010 Tempelaar, D. T., Rienties, B., & Nguyen, Q. (2017). Towards actionable learning analytics using dispositions. IEEE Transactions on Learning Technologies, 10(1), 6–16. Ten Ham-Baloyi, W., & Jordan, P. (2016). Systematic review as a research method in post-graduate nursing education. Health {SA} Gesondheid, 21, 120–128. https://doi.org/http://dx.doi.org/10.1016/j.hsag.2015.08.002 Toskova, A., Toskov, B., Doukovska, L., Daskalov, B., & Radeva, I. (2018). Neural Networks in the Intelligent Educational Space. ANNA ’18; Advances in Neural Networks and Applications 2018, 1–6. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. Tucker, B. (2012). The flipped classroom. Education Next, 12(1), 82–83. Umer, R., Susnjak, T., Mathrani, A., & Suriadi, L. (2021). Current stance on predictive analytics in higher education: opportunities, challenges and future directions. Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1933542 Vamanan, R., Parkavi, P., & Ramar, K. (2013). Predicting Student Performance: A Statistical and Data Mining Approach. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS, 63, 975–8887. https://doi.org/10.5120/10489-5242 Vasudevan, V., Almozini, B., Almuhanna, S., & Aljubair, A. (n.d.). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques. Vasudevan, V., & Almuhanna, S. (2018). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques. 7. Velásquez, J. . (2014). Una guía corta para escribir Revisiones Sistemáticas de Literatura. DYNA, 81(187), 9–10. http://www.bdigital.unal.edu.co/44811/1/46758-226992-1-PB.pdf Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine learning paradigms: Advances in learning analytics. In Intelligent Systems Reference Library (Vol. 158, pp. 1–5). https://doi.org/10.1007/978-3-030-13743-4_1 Waheed, H., Anas, M., Hassan, S.-U., Aljohani, N. R., Alelyani, S., Edifor, E. E., & Nawaz, R. (2021). Balancing sequential data to predict students at-risk using adversarial networks. Computers & Electrical Engineering, 93, 107274. Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104, 106189. Wasif, M., Waheed, H., Aljohani, N. R., & Hassan, S.-U. (2019). Understanding student learning behavior and predicting their performance. In Cognitive Computing in Technology-Enhanced Learning (pp. 1–28). IGI Global. Webster, M. (2006). Merriam-Webster online dictionary. Retrieved June, 20, 2013. Woolf, B. P. (2009). Chapter 7 - Machine Learning. In B. P. Woolf (Ed.), Building Intelligent Interactive Tutors (pp. 221–297). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00007-1 Wu, J. (2020). Machine Learning in Education. Proceedings - 2020 International Conference on Modern Education and Information Management, ICMEIM 2020, 56–63. https://doi.org/10.1109/ICMEIM51375.2020.00020 Xu, J., Moon, K. H., & Van Der Schaar, M. (2017). A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs. IEEE Journal on Selected Topics in Signal Processing, 11(5), 742–753. https://doi.org/10.1109/JSTSP.2017.2692560 Yadav, N., & Srivastava, K. (2020). Student Performance Prediction from E-mail Assessments Using Tiny Neural Networks. 2020 9th IEEE Integrated STEM Education Conference, ISEC 2020, 2020-Janua. https://doi.org/10.1109/ISEC49744.2020.9397817 Yadav, S. K., & Pal, S. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification. 2(2), 51–56. http://arxiv.org/abs/1203.3832 Yang, F., & Li, F. W. B. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers & Education, 123, 97–108. https://doi.org/https://doi.org/10.1016/j.compedu.2018.04.006 Yang, S. J. H., Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Ogata, H., & Lin, A. J. Q. (2018). Predicting students’ academic performance using multiple linear regression and principal component analysis. Journal of Information Processing, 26, 170–176. Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd. Yu, T., & Jo, I.-H. (2014). Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 269–270. Zacharis, N. Z. (2010). The impact of learning styles on student achievement in a web-based versus an equivalent face-to-face course. College Student Journal, 44(3), 591–598. Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44–53. Zacharis, N. Z. (2016). Predicting student academic performance in blended learning using artificial neural networks. International Journal of Artificial Intelligence and Applications, 7(5), 17–29. Zaporozhko, V. V, Parfenov, D. I., & Shardakov, V. M. (2019). Development Approach of Formation of Individual Educational Trajectories Based on Neural Network Prediction of Student Learning Outcomes. International Conference of Artificial Intelligence, Medical Engineering, Education, 305–314. Zhang, Q., Wang, K., & Zhou, S. (2020). Application and Practice of VR Virtual Education Platform in Improving the Quality and Ability of College Students. IEEE Access, 8, 162830–162837. Zomaya, A. Y. (2017). Foreword. In J. Miguel, S. Caballé, & F. Xhafa (Eds.), Intelligent Data Analysis for e-Learning (pp. xvii–xviii). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804535-0.09995-0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 124 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81113/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81113/3/1152186415.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81113/5/1152186415.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 2b83a57575d7cec7c8ee1b7b1e3c017a 593899619d90e48803ae20bc15344303 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090130550423552 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez-Henao, Juan David17e47270622895774ea0d4811334dd31600Franco Cardona, Carlos Jaimee77c35ea37c7b92041b06767ea4b4d60600Gil Vera, Victor Daniel332d619d94ae55f120b10a7c74f3e137600Big Data y Data Analytics2022-03-02T16:37:05Z2022-03-02T16:37:05Z2021-11https://repositorio.unal.edu.co/handle/unal/81113Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl incremento masivo de cursos universitarios virtuales a distancia en universidades e Instituciones de Educación Superior a nivel mundial, ha llevado al incremento en la generación de información relacionada con el rendimiento académico estudiantil; esta información puede ser aprovechada para predecir el desempeño académico y prevenir la mortalidad académica y la deserción. A partir de los resultados de la revisión sistemática de literatura se identificó que no existe una metodología que permita a los docentes de cursos universitarios virtuales a distancia predecir el rendimiento académico estudiantil; algunas investigaciones presentan ejercicios de clasificación sobre el desempeño de los estudiantes; pero no establecen un procedimiento formal que pueda ser empleado por docentes de cualquier área de conocimiento que dicten este tipo de cursos. El principal aporte de esta investigación doctoral es la creación de una metodología para predecir el desempeño académico (Aprueba/Reprueba) en cursos universitarios virtuales a distancia. En resumen, la metodología está conformada por los siguientes pasos; determinación de las variables a analizar, construcción de la base de datos, construcción de los modelos de predicción, evaluación de los modelos y visualización de la predicción. La metodología va más allá del Machine Learning dado que esta considera aspectos relevantes del contexto educativo que deben ser considerados para que las predicciones tengan sentido. Se concluye que la metodología formulada tiene una alta precisión e involucra diferentes aspectos relacionados con la vida académica y personal de los estudiantes, ya que el rendimiento académico estudiantil en este tipo de cursos depende de diversos factores. (Texto tomado de la fuente)The massive increase of virtual university distance learning courses in universities and Higher Education Institutions worldwide has led to an increase in the generation of information related to student academic performance; this information can be used to predict academic performance and prevent academic mortality and dropout. From the results of the systematic literature review, it was identified that there is no methodology that allows teachers of virtual distance university courses to predict student academic performance; some researches present classification exercises on student performance; but they do not establish a formal procedure that can be used by teachers of any area of knowledge who teach this type of courses. The main contribution of this doctoral research is the creation of a methodology to predict academic performance (Pass/Fail) in virtual distance university courses. In summary, the methodology consists of the following steps; determination of the variables to be analyzed, construction of the database, construction of the prediction models, evaluation of the models and visualization of the prediction. The methodology goes beyond Machine Learning since it considers relevant aspects of the educational context that must be considered for the predictions to make sense. This research concludes that the formulated methodology has a high accuracy and involves different aspects related to the academic and personal life of the students, since student academic performance in this type of courses depends on several factors.DoctoradoDoctor en IngenieríaAnalíticaÁrea Curricular de Ingeniería de Sistemas e Informáticaxix, 124 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación370 - Educación::378 - Educación superior (Educación terciaria)Distance educationEducación a distanciaUniversidad a distanciaEducaciónEstudianteMachine LearningEducationStudentMachine LearningPerformancePredictionPredicciónRendimientoMetodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distanciaMethodology for predicting student performance in virtual university distance learning coursesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbu Tair, M. M., & El-Halees, A. M. (2012). Mining educational data to improve students’ performance: a case study. Mining Educational Data to Improve Students’ Performance: A Case Study, 2(2).Abu Zohair, L. M. (2019). Prediction of Student’s performance by modelling small dataset size. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0160-3Ahammed, F., & Smith, E. (2019). Prediction of students’ performances using course analytics data: A case of water engineering course at the university of south australia. Education Sciences, 9(3). https://doi.org/10.3390/educsci9030245Al-Nofaie, H. (2020). Saudi University Students’ Perceptions towards Virtual Education during COVID-19 Pandemic: A Case Study of Language Learning via Blackboard. Arab World English Journal, 11(3), 4–20.Al-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., Alhiyafi, J., & Olatunji, S. O. (2017). Student performance prediction using support vector machine and k-nearest neighbor. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 1–4.Al-Sudani, S., & Palaniappan, R. (2019). Predicting students’ final degree classification using an extended profile. Education and Information Technologies, 24(4), 2357–2369. https://doi.org/10.1007/s10639-019-09873-8Alarcón, G. G., Añorve, J. R., Sánchez, M. del R. G., & Salgado, T. A. (2016). Los factores psicosociales como impacto en el bajo rendimiento escolar de los estudiantes de la Universidad Autónoma de Guerrero/Psychosocial factors as impact on poor school performance of the students of the Autonomous University of Guerrero. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 7(13), 107–125AMIR. (2020). Curso Híbrido. https://academiamir.com/cursos-amir/hibrido/Angeline, D. M. D. (2013). Association rule generation for student performance analysis using apriori algorithm. The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA), 1(1), 12–16.Arsad, P. M., Buniyamin, N., & Manan, J. A. (2013). A neural network students’ performance prediction model (NNSPPM). 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 1–5.Baggs, T., Barnett, D., & McCullough, K. (2015). The value of traditional cognitive variables for predicting performance in graduate speech-language pathology programs. Journal of Allied Health, 44(1), 10–16. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924898093&partnerID=40&md5=3c7591fefc8ae763d803459a9a87dc00Banditvilai, C. (2016). Enhancing students language skills through blended learning. Electronic Journal of E-Learning, 14(3), pp223-232.Bastús, V. J. (1855). Diccionario histórico enciclopédico, 2. Roca.Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.Beyens, I., Vandenbosch, L., & Eggermont, S. (2015). Early adolescent boys’ exposure to Internet pornography: Relationships to pubertal timing, sensation seeking, and academic performance. The Journal of Early Adolescence, 35(8), 1045–1068.Bin Mat, U., Buniyamin, N., Arsad, P. M., & Kassim, R. (2013). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th Conference on Engineering Education (ICEED), 126–130.Black, S. E., Lincove, J., Cullinane, J., & Veron, R. (2015). Can you leave high school behind? Economics of Education Review, 46, 52–63.Bogarín, A., Romero, C., Cerezo, R., & Sánchez-Santillán, M. (2014). Clustering for improving educational process mining. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 11–15.Brasche, I., & Harrington, I. (2012). Promoting teacher quality and continuity: Tackling the disadvantages of remote Indigenous schools in the Northern Territory. Australian Journal of Education, 56(2), 110–125.Bravo-Agapito, J., Romero, S. J., & Pamplona, S. (2021). Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study. Computers in Human Behavior, 115(January 2020), 106595. https://doi.org/10.1016/j.chb.2020.106595Brito, M., Medeiros, F., & Bezerra, E. (2019). A report-type plugin to indicate dropout risk in the virtual learning environment moodle. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 2161, 127–128.Brook, S., & Roberts, M. (2021). What are the determinants of student performance on an undergraduate accounting degree? Journal of Further and Higher Education. https://doi.org/10.1080/0309877X.2021.1882666Brownlee, J. (2016). Support Vector Machines for Machine Learning. Machine Learning Mastery. https://machinelearningmastery.com/support-vector-machines-for-machine-learning/Buenaño-Fernández, D., Gil, D., & Luján-Mora, S. (2019). Application of machine learning in predicting performance for computer engineering students: A case study. Sustainability, 11(10), 2833.Bunkar, K., Kumar, S., PandyaBhupendra, K., & Bunkar, R. (2012). Data mining: Prediction for performance improvement of graduate students using classification. 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN), 1–5.Bussu, A., Detotto, C., & Serra, L. (2020). Indicators to prevent university drop-out and delayed graduation: an Italian case. Journal of Applied Research in Higher Education, 12(2), 230–249. https://doi.org/10.1108/JARHE-10-2018-0201Capterra. (2020). Best Learning Management System Software for Windows. https://www.capterra.com/learning-management-system-software/s/windows/Cazarez, R. L. U., & Martin, C. L. (2018). Neural Networks for Predicting Student Performance in Online Education. IEEE Latin America Transactions, 16(7), 2053–2060. https://doi.org/10.1109/TLA.2018.8447376Chang, Y., & Brickman, P. (2018). When group work doesn’t work: Insights from students. CBE Life Sciences Education, 17(3). https://doi.org/10.1187/cbe.17-09-0199Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13.Christian, T. M., & Ayub, M. (2014). Exploration of classification using NBTree for predicting students’ performance. 2014 International Conference on Data and Software Engineering (ICODSE), 1–6.Correa-Burrows, P., Burrows, R., Blanco, E., Reyes, M., & Gahagan, S. (2016). Nutritional quality of diet and academic performance in Chilean students Qualité nutritionnelle de l’alimentation et résultats scolaires des lycéens chiliens Calidad nutricional de la dieta y rendimiento académico de los estudiantes chilenos.Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of School Psychology, 68, 154–162. https://doi.org/10.1016/j.jsp.2018.03.005Daud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F., & Alowibdi, J. S. (2017). Predicting student performance using advanced learning analytics. Proceedings of the 26th International Conference on World Wide Web Companion, 415–421.David, M. C., Eley, D. S., Schafer, J., & Davies, L. (2016). Risk assessment of student performance in the international foundations of medicine clinical science examination by the use of statistical modeling. Advances in Medical Education and Practice, 7, 653–660. https://doi.org/10.2147/AMEP.S122841Deo, R. C., Yaseen, Z. M., Al-Ansari, N., Nguyen-Huy, T., Langlands, T. A. M., & Galligan, L. (2020). Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction: An Investigation on Engineering Mathematics Courses. IEEE Access, 8, 136697–136724. https://doi.org/10.1109/ACCESS.2020.3010938Döring, M. (2018). Prediction vs Forecasting. Data Science Blog. https://www.datascienceblog.net/post/machine-learning/forecasting_vs_prediction/Dung, D. T. H. (2020). The advantages and disadvantages of virtual learning. IOSR Journal of Research & Method in Education, 10(3), 45–48.Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. Ieee Access, 5, 15991–16005.Edgar, T. W., & Manz, D. O. (2017). Chapter 6 - Machine Learning. In T. W. Edgar & D. O. Manz (Eds.), Research Methods for Cyber Security (pp. 153–173). Syngress. https://doi.org/https://doi.org/10.1016/B978-0-12-805349-2.00006-6Ehsanpur, S., & Razavi, M. R. (2020). A Comparative analysis of learning, retention, learning and study strategies in the traditional and M-learning systems. European Review of Applied Psychology, 70(6), 100605. https://doi.org/https://doi.org/10.1016/j.erap.2020.100605Erokhina, E. A., & Anikina, E. M. (2020). Advantages and Disadvantages of Remote Education in the Russian Federation During the Pandemic Period. Непрерывное Профессиональное Образование: Теория и Практика, 121–123.Gedrimiene, E., Silvola, A., Pursiainen, J., Rusanen, J., & Muukkonen, H. (2019). Learning Analytics in Education: Literature Review and Case Examples From Vocational Education. Scandinavian Journal of Educational Research, 3831. https://doi.org/10.1080/00313831.2019.1649718Gil-Herrera, E., Tsalatsanis, A., Yalcin, A., & Kaw, A. (2011). Predicting academic performance using a Rough Set Theory-based knowledge discovery methodology. International Journal of Engineering Education, 27(5), 992–1002. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052985455&partnerID=40&md5=94ee1759e02b6c5659f7637b9e67aa7aGolden, C. E., Rothrock Jr, M. J., & Mishra, A. (2019). Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Research International, 122, 47–55.Gómez-Aguilar, D.-A., García-Peñalvo, F.-J., & Therón, R. (2014). Analítica visual en e-learning. Profesional de La Información, 23(3), 236–245.Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60–67.Gonen, S., & Basaran, B. (2008). The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package. Online Submission, 9(3), 112–120.Google. (2021). Colaboratory. Preguntas Frecuentes. https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C or “Colab” for,learning%2C data analysis and education.Gray, G., McGuinness, C., & Owende, P. (2014). An application of classification models to predict learner progression in tertiary education. 2014 IEEE International Advance Computing Conference (IACC), 549–554.Gray, G., McGuinness, C., Owende, P., & Hofmann, M. (2016). Learning factor models of students at risk of failing in the early stage of tertiary education. Journal of Learning Analytics, 3(2), 330–372.Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2019). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227–245. https://doi.org/10.1007/s41060-018-0141-yHelal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134–146.Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V, Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: A systematic literature review. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 175–199. https://doi.org/10.1145/3293881.3295783Huang, C., Zhou, J., Chen, J., Yang, J., Clawson, K., & Peng, Y. (2021). A feature weighted support vector machine and artificial neural network algorithm for academic course performance prediction. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-05962-3Hudson, R. D., & Treagust, D. F. (2013). Which form of assessment provides the best information about student performance in chemistry examinations? Research in Science and Technological Education, 31(1), 49–65. https://doi.org/10.1080/02635143.2013.764516Hussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2018). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational Intelligence and Neuroscience, 2018.Ibrahim, Z., & Rusli, D. (2007). Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. 21st Annual SAS Malaysia Forum, 5th September.IIOT, A. &. (2016). A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python). Analytics. https://analyticks.wordpress.com/2016/07/05/a-complete-tutorial-on-tree-based-modeling-from-scratch-in-r-python/Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning techniques. WSEAS Transactions on Computers, 4(8), 966–974.Imran, M., Latif, S., Mehmood, D., & Shah, M. S. (2019). Student academic performance prediction using supervised learning techniques. International Journal of Emerging Technologies in Learning, 14(14), 92–104. https://doi.org/10.3991/ijet.v14i14.10310Jayanthi, G., & Ramesh, V. (2014). Design of Academic Performance Prediction System Using Multi-Layer Perceptron. International Journal of Computer Science and Software Engineering, 1(1), 9–15.Jena, R. K. (2016). Investigating the interrelation between attitudes, learning readiness, and learning styles under virtual learning environment: a study among Indian students. Behaviour and Information Technology, 35(11), 946–957. https://doi.org/10.1080/0144929X.2016.1212930Jensen, E., Umada, T., Hunkins, N. C., Hutt, S., Huggins-Manley, A. C., & D’mello, S. K. (2021). What you do predicts how you do: Prospectively modeling student quiz performance using activity features in an online learning environment. ACM International Conference Proceeding Series, 121–131. https://doi.org/10.1145/3448139.3448151Jia, B., Niu, K., Hou, X., Li, N., Peng, X., Gu, P., & Jia, R. (2019). Prediction for Student Academic Performance Using SMNaive Bayes Model. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11888 LNAI, 712–725. https://doi.org/10.1007/978-3-030-35231-8_52Jishan, S. T., Rashu, R. I., Haque, N., & Rahman, R. M. (2015). Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique. Decision Analytics, 2(1), 1–25.Joksimović, S., Manataki, A., Gašević, D., Dawson, S., Kovanović, V., & De Kereki, I. F. (2016). Translating network position into performance: Importance of centrality in different network configurations. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 314–323.Jones, T. (2018). Supervised learning models. IBM Developer. https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-supervised-learning-models/#:~:text=Supervised learning is a method,then generalize for new examples.&text=In supervised learning%2C you create,data and a wanted output.Khan, A., & Ghosh, S. K. (2021). Student performance analysis and prediction in classroom learning: A review of educational data mining studies. Education and Information Technologies, 26(1), 205–240.Kim, B.-H., Vizitei, E., & Ganapathi, V. (2018). GritNet: Student performance prediction with deep learning. ArXiv Preprint ArXiv:1804.07405.Kim, J., Park, J. Y., & van Den Noortgate, W. (2020). On the use of Bayesian probabilistic matrix factorization for predicting student performance in online learning environments. International Conference on Higher Education Advances, 2020-June, 751–759. https://doi.org/10.4995/HEAd20.2020.11137Kitchenham, B. . (2004). Procedures for undertaking systematic reviews. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdfKovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R. S., & Hatala, M. (2015). Penetrating the black box of time-on-task estimation. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 184–193.Kumar, A., Vijayalakshmi, M., & Kumar, D. A. (2012). Appraising the significance of self-regulated learning in higher education using neural networks. International Journal of Engineering Research and Development, 1(1), 9–15.Lakshmi, V., & Ramesh, D. V. (2017). Evaluating students’ descriptive answers using natural language processing and artificial neural networks. International Journal of Creative Research Thoughts (IJCRT), 5(4), 3168–3173.Lanzat, A. M. A., López, A. J. G., González, M. L. C., & Navío, E. P. (2018). Causas del fracaso escolar: Un análisis desde la perspectiva del profesorado y del alumnado. Enseñanza & Teaching: Revista Interuniversitaria de Didáctica, 36(1), 129–149.Lau, E. T., Sun, L., & Yang, Q. (2019). Modelling, prediction and classification of student academic performance using artificial neural networks. SN Applied Sciences, 1(9), 982. https://doi.org/10.1007/s42452-019-0884-7Li, K. F., Rusk, D., & Song, F. (2013). Predicting student academic performance. 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, 27–33.Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Lin, A. J. Q., Ogata, H., & Yang, S. J. H. (2018). Applying learning analytics for the early prediction of Students’ academic performance in blended learning. Journal of Educational Technology & Society, 21(2), 220–232.M. Barb, R. Vilanova, J. Lopez Vicario, R. (2017). Data Mining Tool for Academic Data Exploitation. In Romania (Issue June).Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588–599. https://doi.org/10.1016/j.compedu.2009.09.008Macfadyen, L. P., Groth, D., Rehrey, G., Shepard, L., Greer, J., Ward, D., Bennett, C., Kaupp, J., Molinaro, M., & Steinwachs, M. (2017). Developing institutional learning analytics’ communities of transformation’to support student success. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, 498–499.Mahmoud Abu Zohair, L. (2019). Prediction of Student’s performance by modelling small dataset size. 16, 18. https://doi.org/10.1186/s41239-019-0160-3Malau-Aduli, B. S. (2011). Exploring the experiences and coping strategies of international medical students. BMC Medical Education, 11(1). https://doi.org/10.1186/1472-6920-11-40Maltby, A., & Mackie, S. (2009). Virtual learning environments – help or hindrance for the ‘disengaged’ student? ALT-J, 17(1), 49–62. https://doi.org/10.1080/09687760802657577Marbouti, F., Ulas, J., & Wang, C.-H. (2021). Academic and Demographic Cluster Analysis of Engineering Student Success. IEEE Transactions on Education, 64(3), 261–266. https://doi.org/10.1109/TE.2020.3036824MathWorks. (2021). Análisis predictivo. Predictive Analytics. https://es.mathworks.com/discovery/predictive-analytics.htmlMauthe, A., & Thomas, P. (2004). Professional content management systems. John Whiley & Sons, Ltd.Max Kuhn. (2021). 15 Variable Importance. https://topepo.github.io/caret/variable-importance.htmlMayilvaganan, M., & Kalpanadevi, D. (2014). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, 113–118.Meit, S. S., Borges, N. J., Cubic, B. A., & Seibel, H. R. (2004). Personality Differences in Incoming Male and Female Medical Students. Online Submission.Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. F. (2003). Predicting student performance: an application of data mining methods with an educational web-based system. 33rd Annual Frontiers in Education, 2003. FIE 2003., 1, T2A-13.Miranda, G. J., Casa Nova, S. P. C., & Cornacchione Jr., E. B. (2013). To Sir with Love: The relations between teacher qualification and student performance in accounting [Ao mestre com carinho: Relações entre as qualificações docentes e o desempenho discente em contabilidade]. Revista Brasileira de Gestao de Negocios, 15(48), 462–480. https://doi.org/10.7819/rbgn.v15i48.1351Mishra, T., Kumar, D., & Gupta, S. (2014). Mining students’ data for prediction performance. 2014 Fourth International Conference on Advanced Computing & Communication Technologies, 255–262.Miskioglu, E. (2016). Unseen influences on student performance: Instructor assessment styles. ASEE Annual Conference and Exposition, Conference Proceedings, 2016-June. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983266259&partnerID=40&md5=538ffaaf39189337ccab815bef9db963Moodle. (2020). Course dedication. Moodle Course Dedication. https://moodle.org/plugins/block_dedicationMorris, L. V, Finnegan, C., & Wu, S.-S. (2005). Tracking student behavior, persistence, and achievement in online courses. The Internet and Higher Education, 8(3), 221–231.Moucary, C. El, Khair, M., & Zakhem, W. (2011). Improving student’s performance using data clustering and neural networks in foreign-language based higher education. The Research Bulletin of Jordan ACM, 2(3), 27–34.Moyano, M. (2018). ¿Curso a distancia sincrónico o asincrónico? Online Educaton Center. https://onlineeducation.center/es/curso-a-distancia-sincronico-o-asincronicoMuljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18.Mutascu, M. (2021). Artificial intelligence and unemployment: New insights. Economic Analysis and Policy, 69, 653–667. https://doi.org/https://doi.org/10.1016/j.eap.2021.01.012Naganandhini, S., & Shanmugavadivu, P. (2019). Effective diagnosis of alzheimer’s disease using modified decision tree classifier. Procedia Computer Science, 165, 548–555.Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences (Switzerland), 11(1), 1–28. https://doi.org/10.3390/app11010237Nanfor. (2021). Telepresencial. https://nanfor.com/pages/avanzadoNapoli, A. R., & Raymond, L. A. (2004). How reliable are our assessment data?: A comparison of the reliability of data produced in graded and un-graded conditions. Research in Higher Education, 45(8), 921–929.Naren, J. (2014). Application of data mining in educational database for predicting behavioural patterns of the students.Natek, S., & Zwilling, M. (2014). Student data mining solution–knowledge management system related to higher education institutions. Expert Systems with Applications, 41(14), 6400–6407.Nguyen, Q., Huptych, M., & Rienties, B. (2018). Linking students’ timing of engagement to learning design and academic performance. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, 141–150.Nguyen, T. L. H. (2013). Middle-level academic management: A case study on the roles of the heads of department at a Vietnamese university. Tertiary Education and Management, 19(1), 1–15.O’Shaughnessy, S., & Gray, G. (2011). Development and evaluation of a dataset generator tool for generating synthetic log files containing computer attack signatures. International Journal of Ambient Computing and Intelligence (IJACI), 3(2), 64–76.Oladokun, V. O., Adebanjo, A. T., & Charles-Owaba, O. E. (2008). Predicting students academic performance using artificial neural network: A case study of an engineering course.Orduña, P., García-Zubia, J., Rodriguez-Gil, L., Irurzun, J., López-de-Ipiña, D., & Gazzola, F. (2012). Using LabVIEW remote panel in remote laboratories: Advantages and disadvantages. Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), 1–7.Osmanbegović, E., AGIĆ, H., & Suljić, M. (2014). PREDICTION OF STUDENTS’SUCCESS BY APPLYING DATA MINING ALGORITHAMS. Journal of Theoretical & Applied Information Technology, 61(2).Osmanbegovic, E., & Suljic, M. (2012). Data mining approach for predicting student performance. Economic Review: Journal of Economics and Business, 10(1), 3–12.Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147–158.Padua Rodríguez, L. M. (2019). Factores individuales y familiares asociados al bajo rendimiento académico en estudiantes universitarios. Revista Mexicana de Investigación Educativa, 24(80), 173–195.Pakhomova, T. O., Komova, O. S., Belia, V. V, Yivzhenko, Y. V, & Demidko, E. V. (2021). Transformation of the pedagogical process in higher education during the quarantine. Linguistics and Culture Review, 5(S2), 215–230.Pal, A. K., & Pal, S. (2013). Analysis and mining of educational data for predicting the performance of students. International Journal of Electronics Communication and Computer Engineering, 4(5), 1560–1565.Palvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., & Sindhi, S. (2018). Online education: Worldwide status, challenges, trends, and implications. Taylor & Francis.Papageorgiou, K., & Halabi, A. K. (2014). Factors contributing toward student performance in a distance education accounting degree. Meditari Accountancy Research, 22(2), 211–223. https://doi.org/10.1108/MEDAR-08-2013-0032Parack, S., Zahid, Z., & Merchant, F. (2012). Application of data mining in educational databases for predicting academic trends and patterns. 2012 IEEE International Conference on Technology Enhanced Education (ICTEE), 1–4.Patterson, R. W., & Patterson, R. M. (2017). Computers and productivity: Evidence from laptop use in the college classroom. Economics of Education Review, 57, 66–79.Perin, D. (2006). Academic progress of community college nursing aspirants: An institutional research profile. Community College Journal of Research and Practice, 30(8), 657–670.Phan, D.-V., Chan, C.-L., Pan, R.-H., Yang, N.-P., Hsu, H.-C., Ting, H.-W., & Lai, K. R. (2018). A Study of the Effects of Daily Physical Activity on Memory and Attention Capacities in College Students. Journal of Healthcare Engineering, 2018, 2942930. https://doi.org/10.1155/2018/2942930Polsani, P. R. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4).Quadri, M. M. N., & Kalyankar, N. V. (2010). Drop out feature of student data for academic performance using decision tree techniques. Global Journal of Computer Science and Technology.Quinn, R. J., & Gray, G. (2019). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1). https://doi.org/10.22554/ijtel.v5i1.57Quinn, R. J., & Gray, G. (2020). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1).R. (2021). The Comprehensive R Archive Network. https://cran.r-project.org/Radović-Marković, M. (2010). Advantages and disadvantages of e-learning in comparison to traditional forms of learning. Annals of the University of Petroşani, Economics, 10(2), 289–298.Ramesh, V., Parkavi, P., & Ramar, K. (2013). Predicting student performance: a statistical and data mining approach. International Journal of Computer Applications, 63(8).Rana, P., Raj Gupta, L., Dubey, M. K., & Kumar, G. (2021). Review on evaluation techniques for better student learning outcomes using machine learning. Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 86–90. https://doi.org/10.1109/ICIEM51511.2021.9445294Ribeiro, Í. J. S., Pereira, R., Freire, I. V, de Oliveira, B. G., Casotti, C. A., & Boery, E. N. (2018). Stress and Quality of Life Among University Students: A Systematic Literature Review. Health Professions Education, 4(2), 70–77. https://doi.org/https://doi.org/10.1016/j.hpe.2017.03.002Rivas, A., Gonzalez-Briones, A., Hernandez, G., Prieto, J., & Chamoso, P. (2021). Artificial neural network analysis of the academic performance of students in virtual learning environments. Neurocomputing, 423, 713–720.Rodríguez Ayán, M. N., & Ruiz Díaz, M. Á. (2011). Indicadores de rendimiento de estudiantes universitarios: calificaciones versus créditos acumulados. Revista de Educación.Roll, I., Macfadyen, L. P., & Sandilands, D. (2015). Evaluating the Relationship Between Course Structure, Learner Activity, and Perceived Value of Online Courses. Proceedings of the Second (2015) ACM Conference on Learning@ Scale, 385–388.Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472.Sagoo, M. G., Smith, C. F., & Gosden, E. (2016). Assessment of anatomical knowledge by practical examinations: The effect of question design on student performance. Anatomical Sciences Education, 9(5), 446–452. https://doi.org/10.1002/ase.1597Salazar, M. E. L., & de León, A. L. E. (2008). Desempeño académico de estudiantes en educación virtual. Algunos factores negativos.Saltos, W. R. F., & Maldonado, C. G. (2019). Predictive models for the detection of problems in autonomous learning in higher education students virtual modality. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 1–6.Sekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student Performance Prediction and Classification Using Machine Learning Algorithms. Proceedings of the 2019 8th International Conference on Educational and Information Technology, 7–11. https://doi.org/10.1145/3318396.3318419Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011a). Prediction of student academic performance by an application of data mining techniques. 6, 110–114.Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011b). Prediction of student academic performance by an application of data mining techniques. International Conference on Management and Artificial Intelligence IPEDR, 6(1), 110–114.Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. https://doi.org/10.1016/j.procs.2015.12.157Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.Siemens, G. (2010). 1st international conference on learning analytics & knowledge (lak 2011).Simsek, A., & Balaban, J. (2010). Learning Strategies of Successful and Unsuccessful University Students. Online Submission, 1(1), 36–45.Smith, M. W., Miller, D. W., & Seager, S. (2011). Enhancing undergraduate education in aerospace engineering and planetary sciences at MIT through the development of a CubeSat mission. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V, 8146, 81460S.Sorrell, S. (2007). Improving the evidence base for energy policy: the role of systematic reviews. Energy Policy, 35(3), 1858–1871.Stephens, N. M., Brannon, T. N., Markus, H. R., & Nelson, J. E. (2015). Feeling at home in college: Fortifying school‐relevant selves to reduce social class disparities in higher education. Social Issues and Policy Review, 9(1), 1–24.Stephens, N. M., Hamedani, M. G., & Destin, M. (2014). Closing the social-class achievement gap: A difference-education intervention improves first-generation students’ academic performance and all students’ college transition. Psychological Science, 25(4), 943–953.Stephens, N. M., Townsend, S. S. M., Hamedani, M. G., Destin, M., & Manzo, V. (2015). A difference-education intervention equips first-generation college students to thrive in the face of stressful college situations. Psychological Science, 26(10), 1556–1566.Subirà, M. P.-M., & Catasús, M. G. (2011). Aprender y enseñar en línea. Universitat Oberta de Catalunya.Surenthiran, S., Rajalakshmi, R., & Sujatha, S. S. (2021). Student Performance Prediction Using Atom Search Optimization Based Deep Belief Neural Network. Optical Memory and Neural Networks (Information Optics), 30(2), 157–171. https://doi.org/10.3103/S1060992X21020119Suresh, K., Meghana, J., & Pooja, M. E. (2021). Predicting the E-Learners Learning Style by using Support Vector Regression Technique. Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 350–355. https://doi.org/10.1109/ICAIS50930.2021.9396018Talebian, S., Mohammadi, H. M., & Rezvanfar, A. (2014). Information and communication technology (ICT) in higher education: advantages, disadvantages, conveniences and limitations of applying e-learning to agricultural students in Iran. Procedia-Social and Behavioral Sciences, 152, 300–305.Tempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408–420. https://doi.org/https://doi.org/10.1016/j.chb.2017.08.010Tempelaar, D. T., Rienties, B., & Nguyen, Q. (2017). Towards actionable learning analytics using dispositions. IEEE Transactions on Learning Technologies, 10(1), 6–16.Ten Ham-Baloyi, W., & Jordan, P. (2016). Systematic review as a research method in post-graduate nursing education. Health {SA} Gesondheid, 21, 120–128. https://doi.org/http://dx.doi.org/10.1016/j.hsag.2015.08.002Toskova, A., Toskov, B., Doukovska, L., Daskalov, B., & Radeva, I. (2018). Neural Networks in the Intelligent Educational Space. ANNA ’18; Advances in Neural Networks and Applications 2018, 1–6.Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222.Tucker, B. (2012). The flipped classroom. Education Next, 12(1), 82–83.Umer, R., Susnjak, T., Mathrani, A., & Suriadi, L. (2021). Current stance on predictive analytics in higher education: opportunities, challenges and future directions. Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1933542Vamanan, R., Parkavi, P., & Ramar, K. (2013). Predicting Student Performance: A Statistical and Data Mining Approach. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS, 63, 975–8887. https://doi.org/10.5120/10489-5242Vasudevan, V., Almozini, B., Almuhanna, S., & Aljubair, A. (n.d.). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques.Vasudevan, V., & Almuhanna, S. (2018). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques. 7.Velásquez, J. . (2014). Una guía corta para escribir Revisiones Sistemáticas de Literatura. DYNA, 81(187), 9–10. http://www.bdigital.unal.edu.co/44811/1/46758-226992-1-PB.pdfVirvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine learning paradigms: Advances in learning analytics. In Intelligent Systems Reference Library (Vol. 158, pp. 1–5). https://doi.org/10.1007/978-3-030-13743-4_1Waheed, H., Anas, M., Hassan, S.-U., Aljohani, N. R., Alelyani, S., Edifor, E. E., & Nawaz, R. (2021). Balancing sequential data to predict students at-risk using adversarial networks. Computers & Electrical Engineering, 93, 107274.Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104, 106189.Wasif, M., Waheed, H., Aljohani, N. R., & Hassan, S.-U. (2019). Understanding student learning behavior and predicting their performance. In Cognitive Computing in Technology-Enhanced Learning (pp. 1–28). IGI Global.Webster, M. (2006). Merriam-Webster online dictionary. Retrieved June, 20, 2013.Woolf, B. P. (2009). Chapter 7 - Machine Learning. In B. P. Woolf (Ed.), Building Intelligent Interactive Tutors (pp. 221–297). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00007-1Wu, J. (2020). Machine Learning in Education. Proceedings - 2020 International Conference on Modern Education and Information Management, ICMEIM 2020, 56–63. https://doi.org/10.1109/ICMEIM51375.2020.00020Xu, J., Moon, K. H., & Van Der Schaar, M. (2017). A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs. IEEE Journal on Selected Topics in Signal Processing, 11(5), 742–753. https://doi.org/10.1109/JSTSP.2017.2692560Yadav, N., & Srivastava, K. (2020). Student Performance Prediction from E-mail Assessments Using Tiny Neural Networks. 2020 9th IEEE Integrated STEM Education Conference, ISEC 2020, 2020-Janua. https://doi.org/10.1109/ISEC49744.2020.9397817Yadav, S. K., & Pal, S. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification. 2(2), 51–56. http://arxiv.org/abs/1203.3832Yang, F., & Li, F. W. B. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers & Education, 123, 97–108. https://doi.org/https://doi.org/10.1016/j.compedu.2018.04.006Yang, S. J. H., Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Ogata, H., & Lin, A. J. Q. (2018). Predicting students’ academic performance using multiple linear regression and principal component analysis. Journal of Information Processing, 26, 170–176.Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.Yu, T., & Jo, I.-H. (2014). Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 269–270.Zacharis, N. Z. (2010). The impact of learning styles on student achievement in a web-based versus an equivalent face-to-face course. College Student Journal, 44(3), 591–598.Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44–53.Zacharis, N. Z. (2016). Predicting student academic performance in blended learning using artificial neural networks. International Journal of Artificial Intelligence and Applications, 7(5), 17–29.Zaporozhko, V. V, Parfenov, D. I., & Shardakov, V. M. (2019). Development Approach of Formation of Individual Educational Trajectories Based on Neural Network Prediction of Student Learning Outcomes. International Conference of Artificial Intelligence, Medical Engineering, Education, 305–314.Zhang, Q., Wang, K., & Zhou, S. (2020). Application and Practice of VR Virtual Education Platform in Improving the Quality and Ability of College Students. IEEE Access, 8, 162830–162837.Zomaya, A. Y. (2017). Foreword. In J. Miguel, S. Caballé, & F. Xhafa (Eds.), Intelligent Data Analysis for e-Learning (pp. xvii–xviii). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804535-0.09995-0InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81113/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54ORIGINAL1152186415.2021.pdf1152186415.2021.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf3504123https://repositorio.unal.edu.co/bitstream/unal/81113/3/1152186415.2021.pdf2b83a57575d7cec7c8ee1b7b1e3c017aMD53THUMBNAIL1152186415.2021.pdf.jpg1152186415.2021.pdf.jpgGenerated Thumbnailimage/jpeg5035https://repositorio.unal.edu.co/bitstream/unal/81113/5/1152186415.2021.pdf.jpg593899619d90e48803ae20bc15344303MD55unal/81113oai:repositorio.unal.edu.co:unal/811132023-10-25 11:02:37.903Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |