Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud
ilustraciones
- Autores:
-
Saavedra Moreno, Carolina
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83962
- Palabra clave:
- Enfermedades individuales
Encuestas de morbilidad
Indicadoresd emorbimortalidad
Individual Diseases
Morbidity Surveys
Indicators of Morbidity and Mortality
Sistema de Salud
Morbilidad
Multimorbilidad
Análisis de Redes
Evaluación del Desempeño
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_73801532d0ada5456893442667063d1d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83962 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
dc.title.translated.none.fl_str_mv |
A model to assess the performance of a health system from the network analysis perspective: an approach based in morbidity patterns and their relation with health services |
title |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
spellingShingle |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud Enfermedades individuales Encuestas de morbilidad Indicadoresd emorbimortalidad Individual Diseases Morbidity Surveys Indicators of Morbidity and Mortality Sistema de Salud Morbilidad Multimorbilidad Análisis de Redes Evaluación del Desempeño |
title_short |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
title_full |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
title_fullStr |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
title_full_unstemmed |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
title_sort |
Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud |
dc.creator.fl_str_mv |
Saavedra Moreno, Carolina |
dc.contributor.advisor.none.fl_str_mv |
Hurtado Heredia, Rafael German |
dc.contributor.author.none.fl_str_mv |
Saavedra Moreno, Carolina |
dc.contributor.supervisor.none.fl_str_mv |
Velasco Rodríguez, Nubia Milena |
dc.subject.decs.spa.fl_str_mv |
Enfermedades individuales Encuestas de morbilidad Indicadoresd emorbimortalidad |
topic |
Enfermedades individuales Encuestas de morbilidad Indicadoresd emorbimortalidad Individual Diseases Morbidity Surveys Indicators of Morbidity and Mortality Sistema de Salud Morbilidad Multimorbilidad Análisis de Redes Evaluación del Desempeño |
dc.subject.decs.eng.fl_str_mv |
Individual Diseases Morbidity Surveys Indicators of Morbidity and Mortality |
dc.subject.proposal.spa.fl_str_mv |
Sistema de Salud Morbilidad Multimorbilidad Análisis de Redes Evaluación del Desempeño |
description |
ilustraciones |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-08-29 |
dc.date.accessioned.none.fl_str_mv |
2023-06-05T15:32:01Z |
dc.date.available.none.fl_str_mv |
2023-06-05T15:32:01Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83962 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83962 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abebe, F., Schneider, M., Asrat, B., & Ambaw, F. (2020). Multimorbidity of chronic non-communicable diseases in low- and middle-income countries: A scoping review. Journal of Comorbidity, 10, 2235042X2096191. https://doi.org/10.1177/2235042x20961919 Alfonso-Sierra, E., Arcila, A., Bonilla, J., Latorre, M., Porras, A., & Urquijo, L. (2016). Situación de multimorbilidad en Colombia 2012-2016. Almagro, P., Ponce, A., Komal, S., De La Asunción Villaverde, M., Castrillo, C., Grau, G., Simon, L., & De La Sierra, A. (2020). Multimorbidity gender patterns in hospitalized elderly patients. PLoS ONE, 15(1), 1–15. https://doi.org/10.1371/journal.pone.0227252 Arah, O. A., Westert, G. P., Hurst, J., & Klazinga, N. S. (2006). A conceptual framework for the OECD Health Care Quality Indicators Project. International Journal for Quality in Health Care, 18(SUPPL. 1), 5–13. https://doi.org/10.1093/intqhc/mzl024 Barabási, A. (2016). Network Science. Cambridge: Cambridge University Press. http://networksciencebook.com/ Barclay, M., Dixon-Woods, M., & Lyratzopoulos, G. (2019). The problem with composite indicators. BMJ Quality and Safety, 28(4), 338–344. https://doi.org/10.1136/bmjqs-2018-007798 Barón-Esquivias, G., Gómez-Moreno, S., Sainz-Hidalgo, I., Gómez-Barrado, J. J., Sayago, I., Martín-Santana, A. M., Sánchez-Brotons, J. A., Romero-Rodríguez, R., Fernández-Romero, A., Amo-Fernández, C., & Aguilera-Saborido, A. (2021). Clinical characteristics of patients suffering atrial fibrillation and diabetes mellitus. The attitude of the clinical cardiologist. Medicina Clínica Práctica, 4(2), 100188. https://doi.org/10.1016/j.mcpsp.2020.100188 Bennett, S., & Peters, D. H. (2015). Assessing National Health Systems: Why and How. Health Systems & Reform, 1(1), 9–17. https://doi.org/10.1080/23288604.2014.997107 Boersma, P., Black, L. I., & Ward, B. W. (2020). Prevalence of multiple chronic conditions among US adults, 2018. Preventing Chronic Disease, 17, 2–5. https://doi.org/10.5888/PCD17.200130 Bonita, R., Beaglehole, R., & Kjellstrom, T. (2006). Basic epidemiology. In Word Health Organization. WHO Library. https://doi.org/10.1017/CBO9781139696951.003 Brunson, J. C., & Laubenbacher, R. C. (2017). Applications of network analysis to routinely collected health care data: a systematic review. Journal of the American Medical Informatics Association, 0(0), 1–13. https://doi.org/10.1093/jamia/ocx052 Capobianco, E., & Lió, P. (2015). Comorbidity networks: beyond disease correlations. Journal of Complex Networks, 1–14. https://doi.org/10.1093/comnet/cnu048 Ley 1438 del 2011, Congreso de la Republica - Colombia. Consejo Privado de Competitividad, & Universidad del Rosario. (2022). Índice Departamental de Competitividad 2022. DANE. (2020). Proyecciones de población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion De La Guardia Gutiérrez, M., & Ruvalcaba, J. (2020). Health and its determinants, health promotion and health education. Journal of Negative & Positive Result, 5(1), 81–90. https://doi.org/10.19230/jonnpr.3215 Dorogovtsev, S., & Mendes, J. F. (2003). Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford Pre). Estrada, E. (2011). The structure of complex networks - Theory and Applications (Oxford Uni). Estrada, E., & Knight, P. (2015). A First Course in Network Theory. In ACM International Conference Proceeding Series (Vols. 13-May-201). Oxford University Press. https://doi.org/10.1145/2757218.2757223 Feinstein, A. R. (1970). The pre-therapeutic classification of co-morbidity in chronic disease. Journal of Chronic Diseases, 23(7), 455–468. https://doi.org/10.1016/0021-9681(70)90054-8 Fernández-Niño, J. A., & Bustos-Vázquez, E. (2016). Multimorbidity: Conceptual basis, epidemiological models and measurement challenges. Biomédica, 36(2), 188–203. https://doi.org/10.7705/biomedica.v36i2.2710 Freeman, L. C. (2004). The Development of Social Network Analysis A study in the sociology of science. In ΣP Empirical Press. GBD. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7 Gerring, J., Thacker, S. C., Enikolopov, R., Arévalo, J., & Maguire, M. (2013). Assessing health system performance: A model-based approach. Social Science and Medicine, 93, 21–28. https://doi.org/10.1016/j.socscimed.2013.06.002 Glicksberg, B. S., Li, L., Badgeley, M. A., Shameer, K., Kosoy, R., Beckmann, N. D., Ma, M., Ayers, K. L., Pho, N., Hoffman, G. E., Li, S. D., Schadt, E. E., Patel, C. J., Chen, R., & Dudley, J. T. (2016). Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks. Bioinformatics, 32, 101–110. https://doi.org/10.1093/bioinformatics/btw282 Gómez, A. (2015). Clasificación Internacional de Enfermedades (CIE): Descifrando la CIE-10 y esperando la CIE-11. Monitor Estratégico, 7, 66–73. Guo, M., Yu, Y., Wen, T., Zhang, X., Liu, B., Zhang, J., Zhang, R., Zhang, Y., & Zhou, X. (2019). Analysis of disease comorbidity patterns in a large-scale China population. BMC Medical Genomics, 12(Suppl 12), 1–10. https://doi.org/10.1186/s12920-019-0629-x Hanauer, D. A., & Ramakrishnan, N. (2012). Modeling temporal relationships in large scale clinical associations. J Am Med Inform Assoc, 1–10. https://doi.org/10.1136/amiajnl-2012-001117 Hao, T., Wang, Q., Zhao, L., Wu, D., Wang, E., & Sun, J. (2018). Analyzing of Molecular Networks for Human Diseases and Drug Discovery. Current Topics in Medicinal Chemistry, 18(12), 1007–1014. https://doi.org/10.2174/1568026618666180813143408 Hee, J., Young, K., Wook, D., Hyuk, S., Won, J., Hyun, J., So, M., Heon, E., Hun, K., & Moon, J. (2016). Network analysis of human diseases using Korean nationwide claims data. Journal of Biomedical Informatics, 61, 276–282. https://doi.org/10.1016/j.jbi.2016.05.002 Hejduková, P., & Kureková, L. (2017). Healthcare systems and performance evaluation: comparison of performance indicators in v4 countries using models of composite indicators. Ekonomika a Management, 20(3), 133–146. https://doi.org/10.15240/tul/001/2017-3-009 Hernández, B., Reilly, R. B., & Kenny, R. A. (2019). Investigation of multimorbidity and prevalent disease combinations in older Irish adults using network analysis and association rules. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51135-7 Hilarión-Gaitán, L., Díaz-Jiménez, D., Cotes-Cantillo, K., & Castañeda-Orjuela, C. (2019). Desigualdades en salud según régimen de afiliación y eventos notificados al Sistema de Vigilancia (Sivigila) en Colombia, 2015. Biomédica, 39(4), 737–747. https://doi.org/10.7705/biomedica.4453 Hossain, M. E., Uddin, S., Khan, A., & Moni, M. A. (2020). A framework to understand the progression of cardiovascular disease for type 2 diabetes mellitus patients using a network approach. International Journal of Environmental Research and Public Health, 17(2), 1–17. https://doi.org/10.3390/ijerph17020596 Huntley, A. L., Johnson, R., Purdy, S., Valderas, J. M., & Salisbury, C. (2012). Measures of Multimorbidity and Morbidity Burden for Use in Primary Care and Community Settings: A Systematic Review and Guide. Annals of Family Medicine, 10(2), 134–141. https://doi.org/10.1370/afm.1363 Hussain, M. A., Huxley, R. R., & Al Mamun, A. (2015). Multimorbidity prevalence and pattern in Indonesian adults: An exploratory study using national survey data. BMJ Open, 5(12), 1–10. https://doi.org/10.1136/bmjopen-2015-009810 Jacobs, R., Smith, P., & Goddard, M. (2004). Measuring performance: An examination of composite performance indicators (Issue July). Jani, B. D., Hanlon, P., Nicholl, B. I., McQueenie, R., Gallacher, K. I., Lee, D., & Mair, F. S. (2019). Relationship between multimorbidity, demographic factors and mortality: Findings from the UK Biobank cohort. BMC Medicine, 17(1), 1–13. https://doi.org/10.1186/s12916-019-1305-x Jensen, A. B., Moseley, P. L., Oprea, T. I., Ellesøe, S. G., Eriksson, R., Schmock, H., Jensen, P. B., Jensen, L. J., & Brunak, S. (2014). Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nature Communications, 5(4022), 1–10. https://doi.org/10.1038/ncomms5022 Jones, I., Cocker, F., Jose, M., Charleston, M., & Neil, A. L. (2022). Methods of analysing patterns of multimorbidity using network analysis: a scoping review. Journal of Public Health (Germany), 0123456789. https://doi.org/10.1007/s10389-021-01685-w Kalgotra, P., Sharda, R., & Croff, J. M. (2017). Examining health disparities by gender: A multimorbidity network analysis of electronic medical record. International Journal of Medical Informatics, 108(September), 22–28. https://doi.org/10.1016/j.ijmedinf.2017.09.014 Kalgotra, P., Sharda, R., & Croff, J. M. (2020). Examining multimorbidity differences across racial groups: a network analysis of electronic medical records. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-70470-8 Kestenbaum, B. (2009). Measures of Disease Frequency. In Springer Science+Business Media (Ed.), Epidemiology and Biostatistics: An Introduction to Clinical Research (pp. 3–12). https://doi.org/10.1007/978-3-319-27347-1_14 Khan, A., Uddin, S., & Srinivasan, U. (2018). Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression. International Journal of Medical Informatics, 115(April), 1–9. https://doi.org/10.1016/j.ijmedinf.2018.04.001 Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Statist., 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694 Latora, V., Nicosia, V., & Russo, G. (2017). Complex Networks: principles, methods and applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316216002 Lee, Y., Kim, H., Jeong, H., & Noh, Y. (2020). Patterns of multimorbidity in adults: An association rules analysis using the Korea health panel. International Journal of Environmental Research and Public Health, 17(2618). https://doi.org/10.3390/ijerph17082618 Leva, F., & Bitonti, D. (2018). Network analysis of comorbidity patterns in heart failure patients using administrative data. Epidemiology Biostatistics and Public Health, 15(2), 1–6. https://doi.org/10.2427/12779 Lipsitz, L. (2012). Understanding Health Care as a Complex System: The Foundation for Unintended Consequences. Journal of the American Medical Association, 308(3), 243–244. https://doi.org/10.1001/jama.2012.7551.Understanding Liu, J., Ma, J., Wang, J., Zeng, D. D., Song, H., Wang, L., & Cao, Z. (2016). Comorbidity analysis according to sex and age in hypertension patients in China. International Journal of Medical Sciences, 13(2), 99–107. https://doi.org/10.7150/ijms.13456 Luke, D. A., & Stamatakis, K. A. (2012). Systems Science Methods in Public Health: Dynamics, Networks, and Agents. Annual Review of Public Health, 33, 357–376. https://doi.org/10.1146/annurev-publhealth-031210-101222 Ministerio de Salud. (2021). Aseguramiento al sistema general de salud. https://www.minsalud.gov.co/proteccionsocial/Regimensubsidiado/Paginas/aseguramiento-al-sistema-general-salud.aspx Ministerio de Salud y Protección Social. (2017). Actualización de la Clasificación Única de Procedimientos en Salud (CUPS). Ministerio de Salud y Protección Social. (2019a). Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB Oficina de Tecnología de la Información y la Comunicación – OTIC. Ministerio de Salud y Protección Social. (2019b). ¿Qué es SISPRO? SISPRO- Sistema Integrado de Información de La Protección Social. https://www.sispro.gov.co/Pages/Home.aspx Ministerio de Salud y Protección Social. (2022). Mortalidad en Colombia periodo 2020-2021. Montgomery, D., & Runger, G. (2003). Applied Statistics and Probability for Engineers. In John Wiley & Sons, Inc. Newman, M. E. J. (2010). Networks an Introduction (Oxford Uni). Ng, S. K., Tawiah, R., Sawyer, M., & Scuffham, P. (2018). Patterns of multimorbid health conditions: A systematic review of analytical methods and comparison analysis. International Journal of Epidemiology, 47(5), 1687–1704. https://doi.org/10.1093/ije/dyy134 Nicholson, K., Almirall, J., & Fortin, M. (2019). The measurement of multimorbidity. Health Psychology, 38(9), 783–790. https://doi.org/10.1037/hea0000739 Nicholson, K., Makovski, T. T., Griffith, L. E., Raina, P., Stranges, S., & van den Akker, M. (2019). Multimorbidity and comorbidity revisited: refining the concepts for international health research. Journal of Clinical Epidemiology, 105, 142–146. https://doi.org/10.1016/j.jclinepi.2018.09.008 Nunes, B. P., Thumé, E., & Facchini, L. A. (2015). Multimorbidity in older adults: Magnitude and challenges for the Brazilian health system Chronic Disease epidemiology. BMC Public Health, 15(1), 1–11. https://doi.org/10.1186/s12889-015-2505-8 OCDE. (2017). Health at a Glance 2017: OECD Indicators. https://doi.org/Please cite this publication as: OECD (2017), Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris. http://dx.doi.org/10.1787/health_glance-2017-en OMS. (2000). The World Health Report 2000. Health Systems: improving performance. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 OMS. (2007). Everybody’s business: strengthening health systems to improve health outcomes: WHO’s framework for action. https://doi.org/10 July 2012 OMS. (2009). Aplicación del pensamiento sistémico al fortalecimiento de los servicios de salud. 115. OMS. (2010). Monitoring the building blocks of health systems: a handbook of indicators and their measurement strategies. Who, 1–92. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 OMS. (2018a). Global Reference List of 100 Core Health Indicators (plus health-related SDGs). https://doi.org/WHO/HIS/HSI/2015.3 OMS. (2018b). Sistemas de Salud. Temas de Salud. http://www.who.int/topics/health_systems/es/ OMS. (2018c). World health statistics 2018: monitoring health for the SDGs, sustainable development goals. OMS. (2019). Determinantes sociales de la salud. Organización Mundial de La Salud. https://www.who.int/social_determinants/es/ OPS. (2012). Salud en las Américas: panorama general y perfiles de país. OPS. (2018). Indicadores de Salud. Aspectos conceptuales y operativos. In Organización Panamericana de la Salud. Papanicolas, I., & Cylus, J. (2017). The challenges of using cross-national comparisons of efficiency to inform health policy. Eurohealth:Quarterly of the European Observatory on Health Systems an Policies, 23(2), 8–11. Papanicolas, I., & Smith, P. C. (2013). Health System Performance Comparison. An agenda for policy, information and research. In Mc Graw Hill (Ed.), European Observatory on Health Systems and Policies Series (The Europe). Peixoto, M. G. M., Musetti, M. A., & Mendonça, M. C. A. (2018). Multivariate analysis techniques applied for the performance measurement of Federal University Hospitals of Brazil. Computers and Industrial Engineering, 126(July), 16–29. https://doi.org/10.1016/j.cie.2018.09.020 Pengpid, S., & Peltzer, K. (2017). Multimorbidity in chronic conditions: Public primary care patients in four greater mekong countries. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091019 Perić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2017). Health system performance assessment landscape at the EU level: A structured synthesis of actors and actions. Archives of Public Health, 75(1), 1–10. https://doi.org/10.1186/s13690-016-0173-5 Perić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2018). Headline indicators for monitoring the performance of health systems: Findings from the european Health Systems_Indicator (euHS_I) survey. Archives of Public Health, 76(1), 1–17. https://doi.org/10.1186/s13690-018-0278-0 Pettey, W. B. P., Toth, D. J. A., Redd, A., Carter, M. E., Samore, M. H., & Gundlapalli, A. V. (2016). Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans. Journal of Biomedical Informatics, 61, 203–213. https://doi.org/10.1016/j.jbi.2016.03.023 Prados-Torres, A., Calderón-Larrañaga, A., Hancco-Saavedra, J., Poblador-Plou, B., & Van Den Akker, M. (2014). Multimorbidity patterns: A systematic review. Journal of Clinical Epidemiology, 67(3), 254–266. https://doi.org/10.1016/j.jclinepi.2013.09.021 Rentería-Ramos, R., Hurtado-Heredia, R., & Urdinola, P. (2019). Morbi-mortality of the victims of internal conflict and poor population in the Risaralda Province, Colombia. International Journal of Environmental Research and Public Health, 16(1644), 1–8. https://doi.org/10.3390/ijerph16091644 Reyes, E., González, W., Suárez, B., & Egüez, H. (2011). Caracterización clínico-epidemiológica de los pacientes con artritis reumatoide. Hospitl Universitario Arnaldo Milián Castro. Revista Cubana de Reumatología, 8(1817–5996), 8. Ricci-Cabello, I., Violán, C., Foguet-Boreu, Q., Mounce, L. T. A., & Valderas, J. M. (2015). Impact of multi-morbidity on quality of healthcare and its implications for health policy, research and clinical practice. A scoping review. European Journal of General Practice, 21(3), 192–202. https://doi.org/10.3109/13814788.2015.1046046 Rouse, W. B. (2008). Health Care as a Complex Adaptive System: Implications for Design and Management. Organization Science, 38(1), 17. https://doi.org/10.1177/1538574411407082 Schäfer, I., Kaduszkiewicz, H., Wagner, H. O., Schön, G., Scherer, M., & Van Den Bussche, H. (2014). Reducing complexity: A visualisation of multimorbidity by combining disease clusters and triads. BMC Public Health, 14(1), 1–14. https://doi.org/10.1186/1471-2458-14-1285 Schwartz, R., & Deber, R. (2016). The performance measurement-management divide in public health. Health Policy, 120(3), 273–280. https://doi.org/10.1016/j.healthpol.2016.02.003 Secretaria Distrital de Salud de Bogotá. (2019). Documento de Análisis de Situación de Salud con el Modelo de los Determinantes Sociales de Salud para el Distrito Capital. In Secretaría Distrital de Salud de Bogotá. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x Sierra, J., & Quintero, J. (2019). Alteraciones tiroideas en diabetes mellitus tipo 2. Revista Latinoamericana de Hipertensión, 14(5), 579–581. Sturmberg, J., & Lanham, H. J. (2014). Understanding health care delivery as a complex system: Achieving best possible health outcomes for individuals and communities by focusing on interdependencies. Journal of Evaluation in Clinical Practice, 20(6), 1005–1009. https://doi.org/10.1111/jep.12142 Sun, D., Ahn, H., Lievens, T., & Zeng, W. (2017). Evaluation of the performance of national health systems in 2004-2011: An analysis of 173 countries. PLoS ONE, 12(3), 1–13. https://doi.org/10.1371/journal.pone.0173346 Trninic, V., Jelaska, I., & Stalec, J. (2012). Appropriateness and limitations of factor analysis methods utilized in psychology and kinesiology: Part I. Fizicka Kultura, 66(2), 77–87. https://doi.org/10.5937/fizkul1202077t Valderas, J. M., Starfi, B., Sibbald, B., Salisbury, S., & Roland, M. (2009). Defining comorbidity: implications for understanding health and health services. Annals of Family Medicine, 7(4), 357–363. https://doi.org/10.1370/afm.983.Martin Valdés, E., & Bencosme, N. (2009). Frecuencia de la hipertensión arterial y su relación con algunas variables clínicas en pacientes con diabetes mellitus tipo 2. Revista Cubana de Endocrinología, 20(3), 77–88. Valente, T. W., & Pitts, S. R. (2017). An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities. Annual Review of Public Health, 38, 1–16. https://doi.org/10.1146/annurev-publhealth-031816-044528 Vinjerui, K. H., Bjerkeset, O., Bjorngaard, J. H., Krokstad, S., Douglas, K. A., & Sund, E. R. (2020). Socioeconomic inequalities in the prevalence of complex multimorbidity in a Norwegian population: Findings from the cross-sectional HUNT Study. BMJ Open, 10(6), 1–9. https://doi.org/10.1136/bmjopen-2020-036851 Wasserman, S., & Faust, K. (1994). Social Network Analysis Methods and applications. Cambridge University Press. Wei, M. Y., Ratz, D., & Mukamal, K. J. (2020). Multimorbidity in Medicare Beneficiaries: Performance of an ICD-Coded Multimorbidity-Weighted Index. Journal of the American Geriatrics Society, 68(5), 999–1006. https://doi.org/10.1111/jgs.16310 Zavala, C., & Florenzano, F. (2015). Diabetes y Corazón. Revista Clínica Las Condes, 26(2), 175–185. https://doi.org/10.1016/j.rmclc.2015.04.006 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
109 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Amazonía - Amazonía - Doctorado en Estudios Amazónicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Administración |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83962/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83962/2/38211249.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83962/3/38211249.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a bf80c1475ae3abce841b78bfda22f073 a475866715ac9ce0c35b1fba4d230639 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089520164896768 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hurtado Heredia, Rafael German220604b0abe6fcb0bf39d2577b4abcacSaavedra Moreno, Carolina1acce82f966fbb6bde071725a307fa7aVelasco Rodríguez, Nubia Milena2023-06-05T15:32:01Z2023-06-05T15:32:01Z2022-08-29https://repositorio.unal.edu.co/handle/unal/83962Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEl objetivo general de un sistema de salud es promover, restaurar y mantener la salud de la población, así como influir en los determinantes en salud. Para evaluar el grado de cumplimiento de este objetivo es necesario conocer el estado de salud de las poblaciones y para ello uno de los enfoques es el estudio de la morbilidad poblacional, el cual vincula información de uno o varios diagnósticos de manera independiente y cuyos indicadores en general son fragmentados. Teniendo en cuenta que es posible utilizar enfoques relacionales como el del Análisis de Redes para estudiar los patrones de morbilidad, en esta tesis se proponen representaciones relacionales para caracterizar los patrones de morbilidad y su relación con el componente de prestación de servicios del sistema, considerando los determinantes de salud de edad, sexo y condición socioeconómica. A partir de la aplicación de estas representaciones en esta tesis se propone un conjunto de medidas de red que brindan información sobre la estructura y la dinámica de los sistemas de salud que, en conjunto, configuran el modelo conceptual para evaluar el desempeño de los sistemas estudiados. (texto tomado de la fuente)The primary objective of a healthcare system is to promote, restore, and maintain the health of the population, as well as to influence the factors that affect health. The extent to which this objective is achieved can be evaluated by examining the health status of the population. One method of measuring health status is to analyze morbidity within a population, typically by gathering information on one or more diagnoses independently. This thesis proposes the use of relational representations through the Network Analysis approach to characterize morbidity patterns and their correlation with healthcare services, considering age, sex, and socioeconomic stratification as determinants of health. By employing relational representations in multiple populations, we propose a set of network measures that offer insights into the structure and dynamics of these patterns. These measures form a conceptual model for evaluating the performance of a healthcare systemDoctoradoEconofísica y Sociofísica109 páginasapplication/pdfspaModelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de saludA model to assess the performance of a health system from the network analysis perspective: an approach based in morbidity patterns and their relation with health servicesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAmazonía - Amazonía - Doctorado en Estudios AmazónicosFacultad de AdministraciónUniversidad Nacional de Colombia - Sede BogotáAbebe, F., Schneider, M., Asrat, B., & Ambaw, F. (2020). Multimorbidity of chronic non-communicable diseases in low- and middle-income countries: A scoping review. Journal of Comorbidity, 10, 2235042X2096191. https://doi.org/10.1177/2235042x20961919Alfonso-Sierra, E., Arcila, A., Bonilla, J., Latorre, M., Porras, A., & Urquijo, L. (2016). Situación de multimorbilidad en Colombia 2012-2016.Almagro, P., Ponce, A., Komal, S., De La Asunción Villaverde, M., Castrillo, C., Grau, G., Simon, L., & De La Sierra, A. (2020). Multimorbidity gender patterns in hospitalized elderly patients. PLoS ONE, 15(1), 1–15. https://doi.org/10.1371/journal.pone.0227252Arah, O. A., Westert, G. P., Hurst, J., & Klazinga, N. S. (2006). A conceptual framework for the OECD Health Care Quality Indicators Project. International Journal for Quality in Health Care, 18(SUPPL. 1), 5–13. https://doi.org/10.1093/intqhc/mzl024Barabási, A. (2016). Network Science. Cambridge: Cambridge University Press. http://networksciencebook.com/Barclay, M., Dixon-Woods, M., & Lyratzopoulos, G. (2019). The problem with composite indicators. BMJ Quality and Safety, 28(4), 338–344. https://doi.org/10.1136/bmjqs-2018-007798Barón-Esquivias, G., Gómez-Moreno, S., Sainz-Hidalgo, I., Gómez-Barrado, J. J., Sayago, I., Martín-Santana, A. M., Sánchez-Brotons, J. A., Romero-Rodríguez, R., Fernández-Romero, A., Amo-Fernández, C., & Aguilera-Saborido, A. (2021). Clinical characteristics of patients suffering atrial fibrillation and diabetes mellitus. The attitude of the clinical cardiologist. Medicina Clínica Práctica, 4(2), 100188. https://doi.org/10.1016/j.mcpsp.2020.100188Bennett, S., & Peters, D. H. (2015). Assessing National Health Systems: Why and How. Health Systems & Reform, 1(1), 9–17. https://doi.org/10.1080/23288604.2014.997107Boersma, P., Black, L. I., & Ward, B. W. (2020). Prevalence of multiple chronic conditions among US adults, 2018. Preventing Chronic Disease, 17, 2–5. https://doi.org/10.5888/PCD17.200130Bonita, R., Beaglehole, R., & Kjellstrom, T. (2006). Basic epidemiology. In Word Health Organization. WHO Library. https://doi.org/10.1017/CBO9781139696951.003Brunson, J. C., & Laubenbacher, R. C. (2017). Applications of network analysis to routinely collected health care data: a systematic review. Journal of the American Medical Informatics Association, 0(0), 1–13. https://doi.org/10.1093/jamia/ocx052Capobianco, E., & Lió, P. (2015). Comorbidity networks: beyond disease correlations. Journal of Complex Networks, 1–14. https://doi.org/10.1093/comnet/cnu048Ley 1438 del 2011, Congreso de la Republica - Colombia.Consejo Privado de Competitividad, & Universidad del Rosario. (2022). Índice Departamental de Competitividad 2022.DANE. (2020). Proyecciones de población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionDe La Guardia Gutiérrez, M., & Ruvalcaba, J. (2020). Health and its determinants, health promotion and health education. Journal of Negative & Positive Result, 5(1), 81–90. https://doi.org/10.19230/jonnpr.3215Dorogovtsev, S., & Mendes, J. F. (2003). Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford Pre).Estrada, E. (2011). The structure of complex networks - Theory and Applications (Oxford Uni).Estrada, E., & Knight, P. (2015). A First Course in Network Theory. In ACM International Conference Proceeding Series (Vols. 13-May-201). Oxford University Press. https://doi.org/10.1145/2757218.2757223Feinstein, A. R. (1970). The pre-therapeutic classification of co-morbidity in chronic disease. Journal of Chronic Diseases, 23(7), 455–468. https://doi.org/10.1016/0021-9681(70)90054-8Fernández-Niño, J. A., & Bustos-Vázquez, E. (2016). Multimorbidity: Conceptual basis, epidemiological models and measurement challenges. Biomédica, 36(2), 188–203. https://doi.org/10.7705/biomedica.v36i2.2710Freeman, L. C. (2004). The Development of Social Network Analysis A study in the sociology of science. In ΣP Empirical Press.GBD. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7Gerring, J., Thacker, S. C., Enikolopov, R., Arévalo, J., & Maguire, M. (2013). Assessing health system performance: A model-based approach. Social Science and Medicine, 93, 21–28. https://doi.org/10.1016/j.socscimed.2013.06.002Glicksberg, B. S., Li, L., Badgeley, M. A., Shameer, K., Kosoy, R., Beckmann, N. D., Ma, M., Ayers, K. L., Pho, N., Hoffman, G. E., Li, S. D., Schadt, E. E., Patel, C. J., Chen, R., & Dudley, J. T. (2016). Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks. Bioinformatics, 32, 101–110. https://doi.org/10.1093/bioinformatics/btw282Gómez, A. (2015). Clasificación Internacional de Enfermedades (CIE): Descifrando la CIE-10 y esperando la CIE-11. Monitor Estratégico, 7, 66–73.Guo, M., Yu, Y., Wen, T., Zhang, X., Liu, B., Zhang, J., Zhang, R., Zhang, Y., & Zhou, X. (2019). Analysis of disease comorbidity patterns in a large-scale China population. BMC Medical Genomics, 12(Suppl 12), 1–10. https://doi.org/10.1186/s12920-019-0629-xHanauer, D. A., & Ramakrishnan, N. (2012). Modeling temporal relationships in large scale clinical associations. J Am Med Inform Assoc, 1–10. https://doi.org/10.1136/amiajnl-2012-001117Hao, T., Wang, Q., Zhao, L., Wu, D., Wang, E., & Sun, J. (2018). Analyzing of Molecular Networks for Human Diseases and Drug Discovery. Current Topics in Medicinal Chemistry, 18(12), 1007–1014. https://doi.org/10.2174/1568026618666180813143408Hee, J., Young, K., Wook, D., Hyuk, S., Won, J., Hyun, J., So, M., Heon, E., Hun, K., & Moon, J. (2016). Network analysis of human diseases using Korean nationwide claims data. Journal of Biomedical Informatics, 61, 276–282. https://doi.org/10.1016/j.jbi.2016.05.002Hejduková, P., & Kureková, L. (2017). Healthcare systems and performance evaluation: comparison of performance indicators in v4 countries using models of composite indicators. Ekonomika a Management, 20(3), 133–146. https://doi.org/10.15240/tul/001/2017-3-009Hernández, B., Reilly, R. B., & Kenny, R. A. (2019). Investigation of multimorbidity and prevalent disease combinations in older Irish adults using network analysis and association rules. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51135-7Hilarión-Gaitán, L., Díaz-Jiménez, D., Cotes-Cantillo, K., & Castañeda-Orjuela, C. (2019). Desigualdades en salud según régimen de afiliación y eventos notificados al Sistema de Vigilancia (Sivigila) en Colombia, 2015. Biomédica, 39(4), 737–747. https://doi.org/10.7705/biomedica.4453Hossain, M. E., Uddin, S., Khan, A., & Moni, M. A. (2020). A framework to understand the progression of cardiovascular disease for type 2 diabetes mellitus patients using a network approach. International Journal of Environmental Research and Public Health, 17(2), 1–17. https://doi.org/10.3390/ijerph17020596Huntley, A. L., Johnson, R., Purdy, S., Valderas, J. M., & Salisbury, C. (2012). Measures of Multimorbidity and Morbidity Burden for Use in Primary Care and Community Settings: A Systematic Review and Guide. Annals of Family Medicine, 10(2), 134–141. https://doi.org/10.1370/afm.1363Hussain, M. A., Huxley, R. R., & Al Mamun, A. (2015). Multimorbidity prevalence and pattern in Indonesian adults: An exploratory study using national survey data. BMJ Open, 5(12), 1–10. https://doi.org/10.1136/bmjopen-2015-009810Jacobs, R., Smith, P., & Goddard, M. (2004). Measuring performance: An examination of composite performance indicators (Issue July).Jani, B. D., Hanlon, P., Nicholl, B. I., McQueenie, R., Gallacher, K. I., Lee, D., & Mair, F. S. (2019). Relationship between multimorbidity, demographic factors and mortality: Findings from the UK Biobank cohort. BMC Medicine, 17(1), 1–13. https://doi.org/10.1186/s12916-019-1305-xJensen, A. B., Moseley, P. L., Oprea, T. I., Ellesøe, S. G., Eriksson, R., Schmock, H., Jensen, P. B., Jensen, L. J., & Brunak, S. (2014). Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nature Communications, 5(4022), 1–10. https://doi.org/10.1038/ncomms5022Jones, I., Cocker, F., Jose, M., Charleston, M., & Neil, A. L. (2022). Methods of analysing patterns of multimorbidity using network analysis: a scoping review. Journal of Public Health (Germany), 0123456789. https://doi.org/10.1007/s10389-021-01685-wKalgotra, P., Sharda, R., & Croff, J. M. (2017). Examining health disparities by gender: A multimorbidity network analysis of electronic medical record. International Journal of Medical Informatics, 108(September), 22–28. https://doi.org/10.1016/j.ijmedinf.2017.09.014Kalgotra, P., Sharda, R., & Croff, J. M. (2020). Examining multimorbidity differences across racial groups: a network analysis of electronic medical records. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-70470-8Kestenbaum, B. (2009). Measures of Disease Frequency. In Springer Science+Business Media (Ed.), Epidemiology and Biostatistics: An Introduction to Clinical Research (pp. 3–12). https://doi.org/10.1007/978-3-319-27347-1_14Khan, A., Uddin, S., & Srinivasan, U. (2018). Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression. International Journal of Medical Informatics, 115(April), 1–9. https://doi.org/10.1016/j.ijmedinf.2018.04.001Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Statist., 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694Latora, V., Nicosia, V., & Russo, G. (2017). Complex Networks: principles, methods and applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316216002Lee, Y., Kim, H., Jeong, H., & Noh, Y. (2020). Patterns of multimorbidity in adults: An association rules analysis using the Korea health panel. International Journal of Environmental Research and Public Health, 17(2618). https://doi.org/10.3390/ijerph17082618Leva, F., & Bitonti, D. (2018). Network analysis of comorbidity patterns in heart failure patients using administrative data. Epidemiology Biostatistics and Public Health, 15(2), 1–6. https://doi.org/10.2427/12779Lipsitz, L. (2012). Understanding Health Care as a Complex System: The Foundation for Unintended Consequences. Journal of the American Medical Association, 308(3), 243–244. https://doi.org/10.1001/jama.2012.7551.UnderstandingLiu, J., Ma, J., Wang, J., Zeng, D. D., Song, H., Wang, L., & Cao, Z. (2016). Comorbidity analysis according to sex and age in hypertension patients in China. International Journal of Medical Sciences, 13(2), 99–107. https://doi.org/10.7150/ijms.13456Luke, D. A., & Stamatakis, K. A. (2012). Systems Science Methods in Public Health: Dynamics, Networks, and Agents. Annual Review of Public Health, 33, 357–376. https://doi.org/10.1146/annurev-publhealth-031210-101222Ministerio de Salud. (2021). Aseguramiento al sistema general de salud. https://www.minsalud.gov.co/proteccionsocial/Regimensubsidiado/Paginas/aseguramiento-al-sistema-general-salud.aspxMinisterio de Salud y Protección Social. (2017). Actualización de la Clasificación Única de Procedimientos en Salud (CUPS).Ministerio de Salud y Protección Social. (2019a). Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB Oficina de Tecnología de la Información y la Comunicación – OTIC.Ministerio de Salud y Protección Social. (2019b). ¿Qué es SISPRO? SISPRO- Sistema Integrado de Información de La Protección Social. https://www.sispro.gov.co/Pages/Home.aspxMinisterio de Salud y Protección Social. (2022). Mortalidad en Colombia periodo 2020-2021.Montgomery, D., & Runger, G. (2003). Applied Statistics and Probability for Engineers. In John Wiley & Sons, Inc.Newman, M. E. J. (2010). Networks an Introduction (Oxford Uni).Ng, S. K., Tawiah, R., Sawyer, M., & Scuffham, P. (2018). Patterns of multimorbid health conditions: A systematic review of analytical methods and comparison analysis. International Journal of Epidemiology, 47(5), 1687–1704. https://doi.org/10.1093/ije/dyy134Nicholson, K., Almirall, J., & Fortin, M. (2019). The measurement of multimorbidity. Health Psychology, 38(9), 783–790. https://doi.org/10.1037/hea0000739Nicholson, K., Makovski, T. T., Griffith, L. E., Raina, P., Stranges, S., & van den Akker, M. (2019). Multimorbidity and comorbidity revisited: refining the concepts for international health research. Journal of Clinical Epidemiology, 105, 142–146. https://doi.org/10.1016/j.jclinepi.2018.09.008Nunes, B. P., Thumé, E., & Facchini, L. A. (2015). Multimorbidity in older adults: Magnitude and challenges for the Brazilian health system Chronic Disease epidemiology. BMC Public Health, 15(1), 1–11. https://doi.org/10.1186/s12889-015-2505-8OCDE. (2017). Health at a Glance 2017: OECD Indicators. https://doi.org/Please cite this publication as: OECD (2017), Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris. http://dx.doi.org/10.1787/health_glance-2017-enOMS. (2000). The World Health Report 2000. Health Systems: improving performance. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711OMS. (2007). Everybody’s business: strengthening health systems to improve health outcomes: WHO’s framework for action. https://doi.org/10 July 2012OMS. (2009). Aplicación del pensamiento sistémico al fortalecimiento de los servicios de salud. 115.OMS. (2010). Monitoring the building blocks of health systems: a handbook of indicators and their measurement strategies. Who, 1–92. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711OMS. (2018a). Global Reference List of 100 Core Health Indicators (plus health-related SDGs). https://doi.org/WHO/HIS/HSI/2015.3OMS. (2018b). Sistemas de Salud. Temas de Salud. http://www.who.int/topics/health_systems/es/OMS. (2018c). World health statistics 2018: monitoring health for the SDGs, sustainable development goals.OMS. (2019). Determinantes sociales de la salud. Organización Mundial de La Salud. https://www.who.int/social_determinants/es/OPS. (2012). Salud en las Américas: panorama general y perfiles de país.OPS. (2018). Indicadores de Salud. Aspectos conceptuales y operativos. In Organización Panamericana de la Salud.Papanicolas, I., & Cylus, J. (2017). The challenges of using cross-national comparisons of efficiency to inform health policy. Eurohealth:Quarterly of the European Observatory on Health Systems an Policies, 23(2), 8–11.Papanicolas, I., & Smith, P. C. (2013). Health System Performance Comparison. An agenda for policy, information and research. In Mc Graw Hill (Ed.), European Observatory on Health Systems and Policies Series (The Europe).Peixoto, M. G. M., Musetti, M. A., & Mendonça, M. C. A. (2018). Multivariate analysis techniques applied for the performance measurement of Federal University Hospitals of Brazil. Computers and Industrial Engineering, 126(July), 16–29. https://doi.org/10.1016/j.cie.2018.09.020Pengpid, S., & Peltzer, K. (2017). Multimorbidity in chronic conditions: Public primary care patients in four greater mekong countries. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091019Perić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2017). Health system performance assessment landscape at the EU level: A structured synthesis of actors and actions. Archives of Public Health, 75(1), 1–10. https://doi.org/10.1186/s13690-016-0173-5Perić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2018). Headline indicators for monitoring the performance of health systems: Findings from the european Health Systems_Indicator (euHS_I) survey. Archives of Public Health, 76(1), 1–17. https://doi.org/10.1186/s13690-018-0278-0Pettey, W. B. P., Toth, D. J. A., Redd, A., Carter, M. E., Samore, M. H., & Gundlapalli, A. V. (2016). Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans. Journal of Biomedical Informatics, 61, 203–213. https://doi.org/10.1016/j.jbi.2016.03.023Prados-Torres, A., Calderón-Larrañaga, A., Hancco-Saavedra, J., Poblador-Plou, B., & Van Den Akker, M. (2014). Multimorbidity patterns: A systematic review. Journal of Clinical Epidemiology, 67(3), 254–266. https://doi.org/10.1016/j.jclinepi.2013.09.021Rentería-Ramos, R., Hurtado-Heredia, R., & Urdinola, P. (2019). Morbi-mortality of the victims of internal conflict and poor population in the Risaralda Province, Colombia. International Journal of Environmental Research and Public Health, 16(1644), 1–8. https://doi.org/10.3390/ijerph16091644Reyes, E., González, W., Suárez, B., & Egüez, H. (2011). Caracterización clínico-epidemiológica de los pacientes con artritis reumatoide. Hospitl Universitario Arnaldo Milián Castro. Revista Cubana de Reumatología, 8(1817–5996), 8.Ricci-Cabello, I., Violán, C., Foguet-Boreu, Q., Mounce, L. T. A., & Valderas, J. M. (2015). Impact of multi-morbidity on quality of healthcare and its implications for health policy, research and clinical practice. A scoping review. European Journal of General Practice, 21(3), 192–202. https://doi.org/10.3109/13814788.2015.1046046Rouse, W. B. (2008). Health Care as a Complex Adaptive System: Implications for Design and Management. Organization Science, 38(1), 17. https://doi.org/10.1177/1538574411407082Schäfer, I., Kaduszkiewicz, H., Wagner, H. O., Schön, G., Scherer, M., & Van Den Bussche, H. (2014). Reducing complexity: A visualisation of multimorbidity by combining disease clusters and triads. BMC Public Health, 14(1), 1–14. https://doi.org/10.1186/1471-2458-14-1285Schwartz, R., & Deber, R. (2016). The performance measurement-management divide in public health. Health Policy, 120(3), 273–280. https://doi.org/10.1016/j.healthpol.2016.02.003Secretaria Distrital de Salud de Bogotá. (2019). Documento de Análisis de Situación de Salud con el Modelo de los Determinantes Sociales de Salud para el Distrito Capital. In Secretaría Distrital de Salud de Bogotá.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.xSierra, J., & Quintero, J. (2019). Alteraciones tiroideas en diabetes mellitus tipo 2. Revista Latinoamericana de Hipertensión, 14(5), 579–581.Sturmberg, J., & Lanham, H. J. (2014). Understanding health care delivery as a complex system: Achieving best possible health outcomes for individuals and communities by focusing on interdependencies. Journal of Evaluation in Clinical Practice, 20(6), 1005–1009. https://doi.org/10.1111/jep.12142Sun, D., Ahn, H., Lievens, T., & Zeng, W. (2017). Evaluation of the performance of national health systems in 2004-2011: An analysis of 173 countries. PLoS ONE, 12(3), 1–13. https://doi.org/10.1371/journal.pone.0173346Trninic, V., Jelaska, I., & Stalec, J. (2012). Appropriateness and limitations of factor analysis methods utilized in psychology and kinesiology: Part I. Fizicka Kultura, 66(2), 77–87. https://doi.org/10.5937/fizkul1202077tValderas, J. M., Starfi, B., Sibbald, B., Salisbury, S., & Roland, M. (2009). Defining comorbidity: implications for understanding health and health services. Annals of Family Medicine, 7(4), 357–363. https://doi.org/10.1370/afm.983.MartinValdés, E., & Bencosme, N. (2009). Frecuencia de la hipertensión arterial y su relación con algunas variables clínicas en pacientes con diabetes mellitus tipo 2. Revista Cubana de Endocrinología, 20(3), 77–88.Valente, T. W., & Pitts, S. R. (2017). An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities. Annual Review of Public Health, 38, 1–16. https://doi.org/10.1146/annurev-publhealth-031816-044528Vinjerui, K. H., Bjerkeset, O., Bjorngaard, J. H., Krokstad, S., Douglas, K. A., & Sund, E. R. (2020). Socioeconomic inequalities in the prevalence of complex multimorbidity in a Norwegian population: Findings from the cross-sectional HUNT Study. BMJ Open, 10(6), 1–9. https://doi.org/10.1136/bmjopen-2020-036851Wasserman, S., & Faust, K. (1994). Social Network Analysis Methods and applications. Cambridge University Press.Wei, M. Y., Ratz, D., & Mukamal, K. J. (2020). Multimorbidity in Medicare Beneficiaries: Performance of an ICD-Coded Multimorbidity-Weighted Index. Journal of the American Geriatrics Society, 68(5), 999–1006. https://doi.org/10.1111/jgs.16310Zavala, C., & Florenzano, F. (2015). Diabetes y Corazón. Revista Clínica Las Condes, 26(2), 175–185. https://doi.org/10.1016/j.rmclc.2015.04.006Enfermedades individualesEncuestas de morbilidadIndicadoresd emorbimortalidadIndividual DiseasesMorbidity SurveysIndicators of Morbidity and MortalitySistema de SaludMorbilidadMultimorbilidadAnálisis de RedesEvaluación del DesempeñoLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83962/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL38211249.2023.pdf38211249.2023.pdfTesis de Doctorado en Ingeniería - Industria y Organizacionesapplication/pdf3167829https://repositorio.unal.edu.co/bitstream/unal/83962/2/38211249.2023.pdfbf80c1475ae3abce841b78bfda22f073MD52THUMBNAIL38211249.2023.pdf.jpg38211249.2023.pdf.jpgGenerated Thumbnailimage/jpeg6343https://repositorio.unal.edu.co/bitstream/unal/83962/3/38211249.2023.pdf.jpga475866715ac9ce0c35b1fba4d230639MD53unal/83962oai:repositorio.unal.edu.co:unal/839622024-08-09 23:19:59.268Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |