Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos
Los humedales son algunos de los ecosistemas más importantes de la tierra y han sido señala- dos como soluciones naturales a la crisis mundial del agua. Por esta razón su monitoreo es necesario, y para esta tarea los datos de sensores remotos han sido ampliamente usados. Sin embargo, estos ecosistem...
- Autores:
-
Rico Cabrera, Ronald
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81319
- Palabra clave:
- 680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos
Radar de Apertura Sintética
Mecanismos de dispersión
Descomposición Polarimétrica
Bosques aleatorios
Synthetic Aperture Radar
Scattering Mechanisms
Polarimetric Decomposition
Random Forests
Instrumento de medida
Measuring instruments
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_7358de09a8bf91c5222a6692f74fd4b2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81319 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
dc.title.translated.eng.fl_str_mv |
Land cover mapping in the Ciénaga Grande de Santa Marta wetland using polarimetric synthetic aperture radar data |
title |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
spellingShingle |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos 680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos Radar de Apertura Sintética Mecanismos de dispersión Descomposición Polarimétrica Bosques aleatorios Synthetic Aperture Radar Scattering Mechanisms Polarimetric Decomposition Random Forests Instrumento de medida Measuring instruments |
title_short |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
title_full |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
title_fullStr |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
title_full_unstemmed |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
title_sort |
Mapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricos |
dc.creator.fl_str_mv |
Rico Cabrera, Ronald |
dc.contributor.advisor.none.fl_str_mv |
Lizarazo Salcedo, Iván |
dc.contributor.author.none.fl_str_mv |
Rico Cabrera, Ronald |
dc.subject.ddc.spa.fl_str_mv |
680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos |
topic |
680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos Radar de Apertura Sintética Mecanismos de dispersión Descomposición Polarimétrica Bosques aleatorios Synthetic Aperture Radar Scattering Mechanisms Polarimetric Decomposition Random Forests Instrumento de medida Measuring instruments |
dc.subject.proposal.spa.fl_str_mv |
Radar de Apertura Sintética Mecanismos de dispersión Descomposición Polarimétrica Bosques aleatorios |
dc.subject.proposal.eng.fl_str_mv |
Synthetic Aperture Radar Scattering Mechanisms Polarimetric Decomposition Random Forests |
dc.subject.unesco.none.fl_str_mv |
Instrumento de medida Measuring instruments |
description |
Los humedales son algunos de los ecosistemas más importantes de la tierra y han sido señala- dos como soluciones naturales a la crisis mundial del agua. Por esta razón su monitoreo es necesario, y para esta tarea los datos de sensores remotos han sido ampliamente usados. Sin embargo, estos ecosistemas son difıciles de mapear y clasificar debido a su alto grado de variabilidad espacial y temporal, por lo que persisten incertidumbres. El objetivo de ésta investigación fue evaluar el potencial de técnicas de descomposicion polarimetrica de datos de radar de apertura sintética (SAR) de banda L en la extraccion de informacion tematica en el humedal Ciénaga Grande de Santa Marta. Para completarlo primero se obtuvieron des- criptores polarimétricos mediante las técnicas de descomposición Cloude-Pottier (CP), Touzi (TZ), Van Zyl (VZ) y Freeman-Durden (FD), que se usaron en un esquema de clasificación supervisada con el algoritmo Bosques Aleatorios (BA). Luego se analizaron los resultados de la evaluación de exactitud temática de las clasificaciones para estimar la contribución de los descriptores polarimétricos. Los resultados mostraron que, evaluadas individualmente, las descomposiciones basadas en el análisis de valores y vectores caracterı́sticos CP, TZ y VZ aventajaron a la descomposición basada en modelos de dispersión, FD. Finalmente, el escenario de clasificación polarimétrica alcanzó una exactitud global de 92.82 %, frente al 89.19 % del escenario no polarimétrico donde solo se usaron datos ópticos y intensidades lineales HH, HV y VV, sugiriendo que los descriptores polarimétricos aportan información adicional relevante para la discriminación de las coberturas del humedal. (Texto tomado de la fuente) |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12 |
dc.date.accessioned.none.fl_str_mv |
2022-03-22T19:39:02Z |
dc.date.available.none.fl_str_mv |
2022-03-22T19:39:02Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81319 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81319 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdel-Hamid, A., Dubovyk, O., Abou El-Magd, I., and Menz, G. (2018). Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data. Sustainability, 10(3):646. Al-Kahachi, N. (2013). Polarimetric SAR Modelling of a Two-Layer Structure. Belgiu, M. and Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31. Bhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., López-Martı́nez, C., and Rao, Y. (2021). Dual-polarimetric descriptors from Sentinel- 1 GRD SAR data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178:20–35. Publisher: Elsevier. Biau, G. and Scornet, E. (2016). A random forest guided tour. TEST, 25(2):197–227. Bigas, H. (2013). Water security and the global water agenda: a UN-water analytical brief. United Nations University - Institute for Water, Environment and Health, Hamilton, Ont. Boulesteix, A.-L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics: Random forests in bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):493–507. Bourgeau-Chavez (2009). Improving wetland characterization with multi-sensor, multitemporal SAR and optical/infrared data fusion. Advances in Geoscience and Remote Sensing. Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32. Brisco, B., Kapfer, M., Hirose, T., Tedford, B., and Liu, J. (2011). Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, page 12. Brisco, B., Li, K., Tedford, B., Charbonneau, F., Yun, S., and Murnaghan, K. (2013a). Compact polarimetry assessment for rice and wetland mapping. International Journal of Remote Sensing, 34(6):1949–1964. Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., and Roth, A. (2013b). SAR polarimetric change detection for flooded vegetation. International Journal of Digital Earth, 6(2):103–114. Bunting, P., Clewley, D., Lucas, R. M., and Gillingham, S. (2014). The Remote Sensing and GIS Software Library (RSGISLib). Computers & Geosciences, 62:216–226. Carlos, F., Lina M., E.-S., Sergio, R., César, A., Marcela, Q., Óscar, A., Sandra, V., and Úrsula, J. (2016). Identificación espacial de los sistemas de humedales continentales de Colombia. Biota Colombiana, 16(3):44–62. Chandrasekhar, S. (1960). Radiative transfer. New York. Chen, S.-W., Li, Y.-Z., Wang, X.-S., Xiao, S.-P., and Sato, M. (2014a). Modeling and Inter- pretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and perspectives. IEEE Signal Processing Magazine, 31(4):79–89. Chen, S.-W., Wang, X.-S., Xiao, S.-P., and Sato, M. (2018). Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar. Springer Singapore, Singapore. Chen, Y., He, X., Wang, J., and Xiao, R. (2014b). The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sensing, 6(12):12575–12592. Chen, Y., He, X., Xu, J., Zhang, R., and Lu, Y. (2020). Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sensing, 12(3):407. Clewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., and Moghaddam, M. (2014). A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sensing, 6(7):6111–6135. Clint Slatton, K., Crawford, M. M., and Chang, L.-D. (2008). Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5):559–577. Cloude, S. (1996). THE DUAL POLARISATION ENTROPY/ALPHA DECOMPOSITION: A PALSAR CASE STUDY. page 6. Cloude, S. and Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1):68–78. Cloude, S. R. (1986). Polarimetry: The Characterisation of Polarimetric Effects in EM Scattering. PhD Thesis, University of Birmingham, Faculty of Engineering, UK. Cloude, S. R. (1992). Uniqueness of Target Decomposition Theorems in Radar Polarimetry. In Boerner, W.-M., Brand, H., Cram, L. A., Holm, W. A., Stein, D. E., Wiesbeck, W., Keydel, W., Giuli, D., Gjessing, D. T., and Molinet, F. A., editors, Direct and Inverse Methods in Radar Polarimetry, pages 267–296. Springer Netherlands, Dordrecht. Cloude, S. R. and Pottier, E. (1996). A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2):498–518. Congalton, R. and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition. Corcoran, J., Knight, J., Brisco, B., Kaya, S., Cull, A., and Murnaghan, K. (2012). The integration of optical, topographic, and radar data for wetland mapping in northern Min- nesota. Canadian Journal of Remote Sensing, page 20. Corcoran, J., Knight, J., and Gallant, A. (2013). Influence of Multi-Source and Multi- Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Clas- sification of Wetlands in Northern Minnesota. Remote Sensing, 5(7):3212–3238. Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11):2783–2792. Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10):934–941. Davidson, N. C. and Finlayson, C. M. (2018). Extent, regional distribution and changes in area of different classes of wetland. Marine and Freshwater Research, 69(10):1525–1533. 1.1 Davidson, N. C., Fluet-Chouinard, E., and Finlayson, C. M. (2018). Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research, 69(4):620– 627. Dronova, I. (2015). Object-Based Image Analysis in Wetland Research: A Review. Remote Sensing, 7(5):6380–6413. Du, P., Samat, A., Waske, B., Liu, S., and Li, Z. (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105:38–53. Durden, S., Haddad, Z., Morrissey, L., and Livingston, G. (1996). Classification of radar imagery over boreal regions for methane exchange studies. International Journal of Remote Sensing, 17(6):1267–1273. Dymond, J. R., Shepherd, J. D., Newsome, P. F., Gapare, N., Burgess, D. W., and Watt, P. (2012). Remote sensing of land-use change for Kyoto Protocol reporting: the New Zealand case. Environmental Science & Policy, 16:1–8. Publisher: Elsevier. El Hajj, M., Baghdadi, N., Bazzi, H., and Zribi, M. (2018). Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sensing, 11(1):31. ESA (2007). Information on ALOS PALSAR products for ADEN users, ALOS-GSEG- EOPG-TN-07-0001. Technical report. FAO (2015). Global Forest Resources Assessments. Finlayson, C. M., Milton, R., Prentice, C., and Davidson, N. C., editors (2018). The Wetland Book: II: Distribution, Description, and Conservation. Springer Netherlands. Florez-Yepes, G. Y., Betancur-Pérez, J. F., Monterroso-Tobar, M. F., and Londoño-Bonilla, J. M. (2018). Temporary wetland evolution in the upper Chinchiná river basin and its relationship with ecosystem dynamics. DYNA, 85(207):351–359. Freeman, A. and Durden, S. L. (1998). A three-component scattering model for polarime- tric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3):963–973. Publisher: IEEE. Furtado, L. F. d. A., Silva, T. S. F., and Novo, E. M. L. d. M. (2016). Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sensing of Environment, 174:212–222. Galatowitsch, S. M. (2018). Natural and Anthropogenic Drivers of Wetland Change. In Fin- layson, C. M., Milton, G. R., Prentice, R. C., and Davidson, N. C., editors, The Wetland Book: II: Distribution, Description, and Conservation, pages 359–367. Springer Nether- lands, Dordrecht. Gallant, A. L. (2015). The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8):10938–10950. Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C. M., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D., Rosenqvist, A., and Walpole, M. (2015). State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electronic Journal. Gens, R., Atwood, D. K., and Pottier, E. (2013). Geocoding of polarimetric processing results: Alternative processing strategies. Remote Sensing Letters, 4(1):38–44. Gokce, D. (2019). Wetlands Management: Assessing Risk and Sustainable Solutions. BoD–Books on Demand. Gosselin, G., Touzi, R., and Cavayas, F. (2014). Polarimetric Radarsat-2 wetland classifica- tion using the Touzi decomposition: case of the Lac Saint-Pierre Ramsar wetland. 36(6):17. Grenier, M., Demers, A.-M., Labrecque, S., Benoit, M., Fournier, R. A., and Drolet, B. (2007). An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada. Canadian Journal of Remote Sensing, 33(sup1):S28–S45. Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors, 17(4):777. Heine, I., Jagdhuber, T., and Itzerott, S. (2016). Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sensing, 8(7):552. Henderson, F. M. and Lewis, A. J. (2008). Radar detection of wetland ecosystems: a review. International Journal of Remote Sensing, 29(20):5809–5835. Hess, L., Melack, J., Filoso, S., and Yong Wang (1995). Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33(4):896–904. Hess, L. L., Melack, J. M., and Simonett, D. S. (1990). Radar detection of flooding beneath the forest canopy: a review. International Journal of Remote Sensing, 11(7):1313–1325. Hong, S.-H., Kim, H.-O., Wdowinski, S., and Feliciano, E. (2015). Evaluation of Polari- metric SAR Decomposition for Classifying Wetland Vegetation Types. Remote Sensing, 7(7):8563–8585. Huynen, J. R. (1970). Phenomenological theory of radar targets. Technical report, University of Technology, Delft, The Netherlands. INVEMAR (2009). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilita- ción de la Ciénaga Grande de Santa Marta : informe técnico final. Invemar, Santa Marta. Ishwaran, H. (2015). The effect of splitting on random forests. Machine Learning, 99(1):75– 118. Jaramillo, U., Cortes-Duque, J., and Florez, C. (2015). Colombia Anfibia. Un paı́s de humeda- les, volume 1. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C., Colombia. Kasischke, E. S., Bourgeau-Chavez, L. L., Rober, A. R., Wyatt, K. H., Waddington, J. M., and Turetsky, M. R. (2009). Effects of soil moisture and water depth on ERS SAR backs- catter measurements from an Alaskan wetland complex. Remote Sensing of Environment, 113(9):1868–1873. Kasischke, E. S., Smith, K. B., Bourgeau-Chavez, L. L., Romanowicz, E. A., Brunzell, S., and Richardson, C. J. (2003). Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, 88(4):423–441. Knight, J. and Lunetta, R. (2003). An experimental assessment of minimum mapping unit size. IEEE Transactions on Geoscience and Remote Sensing, 41(9):2132–2134. Koch, M., Schmid, T., Reyes, M., and Gumuzzio, J. (2012). Evaluating Full Polarimetric C- and L-Band Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3):1033–1044. Kulkarni, V. Y. and Sinha, P. K. (2012). Pruning of Random Forest classifiers: A survey and future directions. In 2012 International Conference on Data Science & Engineering (ICDSE), pages 64–68, Cochin, Kerala, India. IEEE. Kumar, D. N. and Reshmidevi, T. V. (2013). Remote Sensing Applications in Water Re- sources. Journal of the Indian Institute of Science, 93(2):163–188–188. Lang, M. W. and Kasischke, E. S. (2008). Using C-Band Synthetic Aperture Radar Da- ta to Monitor Forested Wetland Hydrology in Maryland’s Coastal Plain, USA. IEEE Transactions on Geoscience and Remote Sensing, 46(2):535–546. Lee, J., Ainsworth, T., Schuler, D., Kasilingam, D., and Boerner, W. (2001). Interpreting off- diagonal terms in polarimetric coherency matrix. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remo- te Sensing Symposium (Cat. No.01CH37217), volume 2, pages 913–915, Sydney, NSW, Australia. IEEE. Lee, J.-S. and Pottier, E. (2009). Polarimetric Radar Imaging : From Basics to Applications. CRC Press. Li, J. and Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22):5051– 5069. Li, J., Chen, W., and Touzi, R. (2007). Optimum RADARSAT-1 configurations for wetlands discrimination: a case study of the Mer Bleue peat bog. Canadian Journal of Remote Sensing, 33:10. Liaw, A., Wiener, M., and others (2002). Classification and regression by randomForest. R news, 2(3):18–22. Lucas, R. M., Clewley, D., Accad, A., Butler, D., Armston, J., Bowen, M., Bunting, P., Carreiras, J., Dwyer, J., Eyre, T., and others (2014). Mapping forest growth and degra- dation stage in the Brigalow Belt Bioregion of Australia through integration of ALOS PALSAR and Landsat-derived foliage projective cover data. Remote Sensing of Environ- ment, 155:42–57. Publisher: Elsevier. Lusch, D. (1999). Introduction to Microwave Remote Sensing. Center For Remote Sensing and Geographic Information Science Michigan State University. Mahdavi, S., Maghsoudi, Y., and Amani, M. (2017a). Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area. Journal of Applied Remote Sensing, 11(3):036015. Mahdavi, S., Maghsoudi, Y., and Dehnavi, S. (2014). A Method for Soil Moisture Retrieval in Vegetated Areas Using Multi-Frequency Data Considering Different kinds of Interaction in Different Frequencies. Publisher: Unpublished. Mahdavi, S., Salehi, B., Amani, M., Granger, J. E., Student, M., Brisco, B., and Huang, W. (2017b). A COMPARISON BETWEEN DIFFERENT SYNTHETIC APERTURE RADAR (SAR) SENSORS FOR WETLAND CLASSIFICATION. page 8. Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., and Huang, W. (2018). Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing, 55(5):623–658. Mahdavi, S., Salehi, B., Moloney, C., Huang, W., and Brisco, B. (2016). A new method for speckle reduction in Synthetic Aperture Radar (SAR) images using optimal window size. In IOP Conference Series: Earth and Environmental Science, volume 34, page 012021. IOP Publishing. Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., and Granger, J. E. (2018). Fisher Linear Discriminant Analysis of coherency matrix for wetl Marechal, C., Pottier, E., Hubert-Moy, L., and Rapinel, S. (2012). One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images. Canadian Journal of Remote Sensing, 38(3):13. Martinez, J. and Letoan, T. (2007). Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, 108(3):209–223. Massonnet, D. and Souyris, J.-C. (2008). Imaging with synthetic aperture radar. CRC Press. McNairn, H., Champagne, C., Shang, J., Holmstrom, D., and Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5):434–449. Medasani, S. and Reddy, G. U. (2017). Analysis and Evaluation of Speckle Filters for Polarimetric Synthetic Aperture Radar (PolSAR) Data. 12(15):12. Medasani, S. and Reddy, G. U. (2018). Speckle Filtering and its Influence on the Decom- position and Classification of Hybrid Polarimetric Data of RISAT-1. Remote Sensing Applications: Society and Environment, 10:1–6. Melack, J. M. and Hess, L. L. (2010). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In Amazonian floodplain forests, pages 43–59. Springer. Merchant, M. A., Adams, J. R., Berg, A. A., Baltzer, J. L., Quinton, W. L., and Chasmer, L. E. (2017). Contributions of C-Band SAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4):1467–1482. Millard, K., Richardson, M., and Building, N. (2013). Wetland mapping with LiDAR deri- vatives, SAR polarimetric decompositions, and LiDAR-SAR fusion using a random forest classifier. Canadian Journal of Remote Sensing, page 19. Mitsch, W. J. and Gosselink, J. G. (2015). Wetlands. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1):6–43. Moser, L., Schmitt, A., Wendleder, A., and Roth, A. (2016). Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sensing, 8(4):302. Mott, H. (2007). Remote Sensing with Polarimetric Radar. John Wiley & Sons. Mousavi, M., Amini, J., and Maghsoudi, Y. (2015). PolSAR Speckle Filtering Techniques and Their Effects On classification. page 9. Nagabhatla, N. and Metcalfe, C. D., editors (2018). Multifunctional Wetlands: Pollution Aba- tement and Other Ecological Services from Natural and Constructed Wetlands. Environ- mental Contamination Remediation and Management. Springer International Publishing. Nembrini, S., König, I. R., and Wright, M. N. (2018). The revival of the Gini importance? Bioinformatics, 34(21):3711–3718. Olofsson, P. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, page 10. Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148:42–57. Ozesmi, S. L. and Bauer, M. E. (2002). Satellite remote sensing of wetlands. page 22. Pelletier, C., Valero, S., Inglada, J., Champion, N., and Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187:156–168. Pritchard, D. (2010). Manuales Ramsar para el uso racional de los humedales, 4a edición: Manual 1 Uso racional de los humedales: Conceptos y enfoques para el uso racional de los humedales. Publisher: Gland, Suiza: Secretarı́a de la Convención de Ramsar. Pulvirenti, L., Chini, M., Pierdicca, N., and Boni, G. (2016). Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1532–1544. Ramsar (2018). Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical report, Gland, Switzerland: Ramsar Convention Secretariat. Ramsey, E., Zhong Lu, Suzuoki, Y., Rangoonwala, A., and Werle, D. (2011). Monitoring Duration and Extent of Storm-Surge and Flooding in Western Coastal Louisiana Marshes With Envisat ASAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):387–399. Richards, J. A. (2009). Remote Sensing with Imaging Radar. Signals and Communication Technology. Springer-Verlag, Berlin Heidelberg. Richards, J. A., Woodgate, P. W., and Skidmore, A. K. (1987). An explanation of enhan- ced radar backscattering from flooded forests. International Journal of Remote Sensing, 8(7):1093–1100. Russi, D., ten Brink, P., Farmer, A., and Badura, T. (2013). The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands. Rutchey, K. and Godin, J. (2009). Determining an appropriate minimum mapping unit in vegetation mapping for ecosystem restoration: a case study from the Everglades, USA. Landscape Ecology, 24(10):1351–1362. Saura, S. (2002). Effects of minimum mapping unit on land cover data spatial configuration and composition. International Journal of Remote Sensing, 23(22):4853–4880. Schmitt, A. and Brisco, B. (2013). Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery. Water, 5(3):1036–1051. Schmitt, A., Wendleder, A., and Hinz, S. (2015). The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS Journal of Photogrammetry and Remote Sensing, 102:122–139. Schumann, G. J.-P. and Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, Parts A/B/C, 83-84:84–95. Shepherd, J., Bunting, P., and Dymond, J. (2019). Operational Large-Scale Segmentation of Imagery Based on Iterative Elimination. Remote Sensing, 11(6):658. Sierszen, M. E., Morrice, J. A., Trebitz, A. S., and Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 15(1):92–106. Sokol, J., Pultz, T. J., and Bulzgis, V. (2001). Monitoring wetland hydrology in Atlantic Canada using multi-temporal and multi-beam Radarsat data. IAHS PUBLICATION, pages 526–530. Souza-Filho, P. W. M., Paradella, W. R., Rodrigues, S. W., Costa, F. R., Mura, J. C., and Gonçalves, F. D. (2011). Discrimination of coastal wetland environments in the Ama- zon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery. Estuarine, Coastal and Shelf Science, 95(1):88–98. Tiner, R. W., Lang, M. W., and Klemas, V. V. (2015). Remote Sensing of Wetlands: Appli- cations and Advances. Tinoco, J. (2004). Los manglares de la ecorregión Ciénaga Grande de Santa Marı́a: pasado, presente y futuro. Serie Publicaciones especiales. Instituto de Investigaciones Marinas y Costeras ”José Benito Vives de Andréis”vinculado al Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Topouzelis, K. and Psyllos, A. (2012). Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68:135–143. Touzi, R. (2007). Target Scattering Decomposition in Terms of Roll-Invariant Target Para- meters. IEEE Transactions on Geoscience and Remote Sensing, 45(1):73–84. Touzi, R., Boerner, W. M., Lee, J. S., and Lueneburg, E. (2004). A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Canadian Journal of Remote Sensing, 30(3):28. Touzi, R., Deschamps, A., and Rother, G. (2007). Wetland characterization using polarime- tric RADARSAT-2 capability. Canadian Journal of Remote Sensing, 33:12. Touzi, R., Deschamps, A., and Rother, G. (2009). Phase of target scattering for wetland characterization using polarimetric C-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(9):3241–3261. Tsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R. (2018). SAR-based detection of flooded vegetation – a review of characteristics and approaches. International Journal of Remote Sensing, 39(8):2255–2293. Turkar, V. (2011). Applying Coherent and Incoherent Target Decomposition Techniques to Polarimetric SAR Data. page 7. Töyrä, J., Pietroniro, A., and Martz, L. W. (2001). Multisensor Hydrologic Assessment of a Freshwater Wetland. Remote Sensing of Environment, 75(2):162–173. Ullmann, T., Schmitt, A., Roth, A., Banks, S., Baumhauer, R., and Dech, S. (2013). CLAS- SIFICATION OF COASTAL ARCTIC LAND COVER BY MEANS OF TERRASAR-X DUAL CO-POLARIZED DATA. page 4. van Beijma, S., Comber, A., and Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149:118–129. van Zyl, J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27(1):36–45. van Zyl, J. J. (1993). Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar polarimetry, volume 1748, pages 184–191. International Society for Optics and Photonics. Vilardy, S., Jaramillo, U., Flórez, C., Cortés-Duque, J., Estupiñán, L., and Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales: una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá. Wang, J., Shang, J., Brisco, B., and Brown, R. J. (1998). Evaluation of Multidate ERS-1 and Multispectral Landsat Imagery for Wetland Detection in Southern Ontario. Canadian Journal of Remote Sensing, 24(1):60–68. Wen, H. (2006). An Improved Cloude-Pottier Decomposition. page 4. Whitcomb, J., Moghaddam, M., McDonald, K., Podest, E., and Kellndorfer, J. (2007). Wetlands map of Alaska using L-Band radar satellite imagery. In 2007 IEEE Interna- tional Geoscience and Remote Sensing Symposium, pages 2487–2490, Barcelona, Spain. IEEE. White, L., Brisco, B., Dabboor, M., Schmitt, A., and Pratt, A. (2015). A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sensing, 7(6):7615–7645. White, L., Brisco, B., Pregitzer, M., Tedford, B., and Boychuk, L. (2014). RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping. Canadian Journal of Remote Sensing, 40(2):135–151. Woodhouse, I. H. (2017). Introduction to Microwave Remote Sensing. CRC Press. Woźniak, E., Kofman, W., Wajer, P., Lewiński, S., and Nowakowski, A. (2016). The influence of filtration and decomposition window size on the threshold value and accuracy of land- cover classification of polarimetric SAR images. International Journal of Remote Sensing, 37(1):212–228. Xiao, X., Gertner, G., Wang, G., and Anderson, A. B. (2005). Optimal Sampling Scheme for Estimation Landscape Mapping of Vegetation Cover. Landscape Ecology, 20(4):375–387. Yommy, A. S., Liu, R., and Wu, A. S. (2015). SAR Image Despeckling Using Refined Lee Filter. In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, pages 260–265, Hangzhou, China. IEEE. Zafari, A., Zurita-Milla, R., and Izquierdo-Verdiguier, E. (2019). Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote Sensing, 11(5):575. Zedler, J. B. and Kercher, S. (2005). WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30(1):39–74. Zhen, J., Liao, J., and Shen, G. (2018). Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors, 18(11):4012. Zhu, S. (2012). A Bayesian Approach for Inverse Problems in SyntheticAperture Radar Imaging. PhD Thesis, Université Paris Sud - Paris XI,. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 106 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81319/3/TesisMaestria.pdf https://repositorio.unal.edu.co/bitstream/unal/81319/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81319/5/TesisMaestria.pdf.jpg |
bitstream.checksum.fl_str_mv |
86da2c817303c94fba67b071613fb7a4 8153f7789df02f0a4c9e079953658ab2 fba7e021d19a131c3011be77c45e465b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089960919138304 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Salcedo, Ivána821b494af5e84e5da6d5b71608c7218Rico Cabrera, Ronaldc991a62ee57491fee16274e204fcdcac2022-03-22T19:39:02Z2022-03-22T19:39:02Z2021-12https://repositorio.unal.edu.co/handle/unal/81319Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Los humedales son algunos de los ecosistemas más importantes de la tierra y han sido señala- dos como soluciones naturales a la crisis mundial del agua. Por esta razón su monitoreo es necesario, y para esta tarea los datos de sensores remotos han sido ampliamente usados. Sin embargo, estos ecosistemas son difıciles de mapear y clasificar debido a su alto grado de variabilidad espacial y temporal, por lo que persisten incertidumbres. El objetivo de ésta investigación fue evaluar el potencial de técnicas de descomposicion polarimetrica de datos de radar de apertura sintética (SAR) de banda L en la extraccion de informacion tematica en el humedal Ciénaga Grande de Santa Marta. Para completarlo primero se obtuvieron des- criptores polarimétricos mediante las técnicas de descomposición Cloude-Pottier (CP), Touzi (TZ), Van Zyl (VZ) y Freeman-Durden (FD), que se usaron en un esquema de clasificación supervisada con el algoritmo Bosques Aleatorios (BA). Luego se analizaron los resultados de la evaluación de exactitud temática de las clasificaciones para estimar la contribución de los descriptores polarimétricos. Los resultados mostraron que, evaluadas individualmente, las descomposiciones basadas en el análisis de valores y vectores caracterı́sticos CP, TZ y VZ aventajaron a la descomposición basada en modelos de dispersión, FD. Finalmente, el escenario de clasificación polarimétrica alcanzó una exactitud global de 92.82 %, frente al 89.19 % del escenario no polarimétrico donde solo se usaron datos ópticos y intensidades lineales HH, HV y VV, sugiriendo que los descriptores polarimétricos aportan información adicional relevante para la discriminación de las coberturas del humedal. (Texto tomado de la fuente)Wetlands are some of the most important ecosystems on earth and have been identified as natural solutions to the global water crisis. For this reason their monitoring is necessary, and for this task remote sensing data have been widely used. However, these ecosystems are difficult to map and classify due to their high degree of spatial and temporal variability, and uncertainties persist. The objective of this research was to evaluate the potential of polarimetric decomposition techniques of L-band synthetic aperture radar (SAR) data in the extraction of thematic information in the Ciénaga Grande de Santa Marta wetland. To complete it, polarimetric descriptors were first obtained using Cloude-Pottier (CP), Touzi (TZ), Van Zyl (VZ) and Freeman-Durden (FD) decomposition techniques, which were used in a supervised classification scheme with the Random Forests (BA) algorithm. The results of the thematic accuracy assessment of the classifications were then analyzed to estimate the contribution of the polarimetric descriptors. The results showed that, evaluated individually, the decompositions based on CP, TZ and VZ characteristic values and vectors analysis outperformed the decomposition based on dispersion models, FD. Finally, the polarimetric classification scenario achieved an overall accuracy of 92.82 %, compared to 89.19 % for the non-polarimetric scenario where only optical data and linear intensities HH, HV and VV were used, suggesting that polarimetric descriptors provide additional relevant information for wetland cover discrimination.MaestríaMagíster en GeomáticaGeoinformación para el uso sostenible de los recursos naturalesxvi, 106 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivosRadar de Apertura SintéticaMecanismos de dispersiónDescomposición PolarimétricaBosques aleatoriosSynthetic Aperture RadarScattering MechanismsPolarimetric DecompositionRandom ForestsInstrumento de medidaMeasuring instrumentsMapeo de coberturas en el humedal Ciénaga Grande de Santa Marta usando datos de radar de apertura sintética polarimétricosLand cover mapping in the Ciénaga Grande de Santa Marta wetland using polarimetric synthetic aperture radar dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdel-Hamid, A., Dubovyk, O., Abou El-Magd, I., and Menz, G. (2018). Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data. Sustainability, 10(3):646.Al-Kahachi, N. (2013). Polarimetric SAR Modelling of a Two-Layer Structure.Belgiu, M. and Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31.Bhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., López-Martı́nez, C., and Rao, Y. (2021). Dual-polarimetric descriptors from Sentinel- 1 GRD SAR data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178:20–35. Publisher: Elsevier.Biau, G. and Scornet, E. (2016). A random forest guided tour. TEST, 25(2):197–227.Bigas, H. (2013). Water security and the global water agenda: a UN-water analytical brief. United Nations University - Institute for Water, Environment and Health, Hamilton, Ont.Boulesteix, A.-L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics: Random forests in bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):493–507.Bourgeau-Chavez (2009). Improving wetland characterization with multi-sensor, multitemporal SAR and optical/infrared data fusion. Advances in Geoscience and Remote Sensing.Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.Brisco, B., Kapfer, M., Hirose, T., Tedford, B., and Liu, J. (2011). Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, page 12.Brisco, B., Li, K., Tedford, B., Charbonneau, F., Yun, S., and Murnaghan, K. (2013a). Compact polarimetry assessment for rice and wetland mapping. International Journal of Remote Sensing, 34(6):1949–1964.Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., and Roth, A. (2013b). SAR polarimetric change detection for flooded vegetation. International Journal of Digital Earth, 6(2):103–114.Bunting, P., Clewley, D., Lucas, R. M., and Gillingham, S. (2014). The Remote Sensing and GIS Software Library (RSGISLib). Computers & Geosciences, 62:216–226.Carlos, F., Lina M., E.-S., Sergio, R., César, A., Marcela, Q., Óscar, A., Sandra, V., and Úrsula, J. (2016). Identificación espacial de los sistemas de humedales continentales de Colombia. Biota Colombiana, 16(3):44–62.Chandrasekhar, S. (1960). Radiative transfer. New York.Chen, S.-W., Li, Y.-Z., Wang, X.-S., Xiao, S.-P., and Sato, M. (2014a). Modeling and Inter- pretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and perspectives. IEEE Signal Processing Magazine, 31(4):79–89.Chen, S.-W., Wang, X.-S., Xiao, S.-P., and Sato, M. (2018). Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar. Springer Singapore, Singapore.Chen, Y., He, X., Wang, J., and Xiao, R. (2014b). The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sensing, 6(12):12575–12592.Chen, Y., He, X., Xu, J., Zhang, R., and Lu, Y. (2020). Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sensing, 12(3):407.Clewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., and Moghaddam, M. (2014). A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sensing, 6(7):6111–6135.Clint Slatton, K., Crawford, M. M., and Chang, L.-D. (2008). Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5):559–577.Cloude, S. (1996). THE DUAL POLARISATION ENTROPY/ALPHA DECOMPOSITION: A PALSAR CASE STUDY. page 6.Cloude, S. and Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1):68–78.Cloude, S. R. (1986). Polarimetry: The Characterisation of Polarimetric Effects in EM Scattering. PhD Thesis, University of Birmingham, Faculty of Engineering, UK.Cloude, S. R. (1992). Uniqueness of Target Decomposition Theorems in Radar Polarimetry. In Boerner, W.-M., Brand, H., Cram, L. A., Holm, W. A., Stein, D. E., Wiesbeck, W., Keydel, W., Giuli, D., Gjessing, D. T., and Molinet, F. A., editors, Direct and Inverse Methods in Radar Polarimetry, pages 267–296. Springer Netherlands, Dordrecht.Cloude, S. R. and Pottier, E. (1996). A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2):498–518.Congalton, R. and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition.Corcoran, J., Knight, J., Brisco, B., Kaya, S., Cull, A., and Murnaghan, K. (2012). The integration of optical, topographic, and radar data for wetland mapping in northern Min- nesota. Canadian Journal of Remote Sensing, page 20.Corcoran, J., Knight, J., and Gallant, A. (2013). Influence of Multi-Source and Multi- Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Clas- sification of Wetlands in Northern Minnesota. Remote Sensing, 5(7):3212–3238.Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11):2783–2792.Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10):934–941.Davidson, N. C. and Finlayson, C. M. (2018). Extent, regional distribution and changes in area of different classes of wetland. Marine and Freshwater Research, 69(10):1525–1533. 1.1Davidson, N. C., Fluet-Chouinard, E., and Finlayson, C. M. (2018). Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research, 69(4):620– 627.Dronova, I. (2015). Object-Based Image Analysis in Wetland Research: A Review. Remote Sensing, 7(5):6380–6413.Du, P., Samat, A., Waske, B., Liu, S., and Li, Z. (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105:38–53.Durden, S., Haddad, Z., Morrissey, L., and Livingston, G. (1996). Classification of radar imagery over boreal regions for methane exchange studies. International Journal of Remote Sensing, 17(6):1267–1273.Dymond, J. R., Shepherd, J. D., Newsome, P. F., Gapare, N., Burgess, D. W., and Watt, P. (2012). Remote sensing of land-use change for Kyoto Protocol reporting: the New Zealand case. Environmental Science & Policy, 16:1–8. Publisher: Elsevier.El Hajj, M., Baghdadi, N., Bazzi, H., and Zribi, M. (2018). Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sensing, 11(1):31.ESA (2007). Information on ALOS PALSAR products for ADEN users, ALOS-GSEG- EOPG-TN-07-0001. Technical report.FAO (2015). Global Forest Resources Assessments.Finlayson, C. M., Milton, R., Prentice, C., and Davidson, N. C., editors (2018). The Wetland Book: II: Distribution, Description, and Conservation. Springer Netherlands.Florez-Yepes, G. Y., Betancur-Pérez, J. F., Monterroso-Tobar, M. F., and Londoño-Bonilla, J. M. (2018). Temporary wetland evolution in the upper Chinchiná river basin and its relationship with ecosystem dynamics. DYNA, 85(207):351–359.Freeman, A. and Durden, S. L. (1998). A three-component scattering model for polarime- tric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3):963–973. Publisher: IEEE.Furtado, L. F. d. A., Silva, T. S. F., and Novo, E. M. L. d. M. (2016). Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sensing of Environment, 174:212–222.Galatowitsch, S. M. (2018). Natural and Anthropogenic Drivers of Wetland Change. In Fin- layson, C. M., Milton, G. R., Prentice, R. C., and Davidson, N. C., editors, The Wetland Book: II: Distribution, Description, and Conservation, pages 359–367. Springer Nether- lands, Dordrecht.Gallant, A. L. (2015). The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8):10938–10950.Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C. M., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D., Rosenqvist, A., and Walpole, M. (2015). State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electronic Journal.Gens, R., Atwood, D. K., and Pottier, E. (2013). Geocoding of polarimetric processing results: Alternative processing strategies. Remote Sensing Letters, 4(1):38–44.Gokce, D. (2019). Wetlands Management: Assessing Risk and Sustainable Solutions. BoD–Books on Demand.Gosselin, G., Touzi, R., and Cavayas, F. (2014). Polarimetric Radarsat-2 wetland classifica- tion using the Touzi decomposition: case of the Lac Saint-Pierre Ramsar wetland. 36(6):17.Grenier, M., Demers, A.-M., Labrecque, S., Benoit, M., Fournier, R. A., and Drolet, B. (2007). An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada. Canadian Journal of Remote Sensing, 33(sup1):S28–S45.Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors, 17(4):777.Heine, I., Jagdhuber, T., and Itzerott, S. (2016). Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sensing, 8(7):552.Henderson, F. M. and Lewis, A. J. (2008). Radar detection of wetland ecosystems: a review. International Journal of Remote Sensing, 29(20):5809–5835.Hess, L., Melack, J., Filoso, S., and Yong Wang (1995). Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33(4):896–904.Hess, L. L., Melack, J. M., and Simonett, D. S. (1990). Radar detection of flooding beneath the forest canopy: a review. International Journal of Remote Sensing, 11(7):1313–1325.Hong, S.-H., Kim, H.-O., Wdowinski, S., and Feliciano, E. (2015). Evaluation of Polari- metric SAR Decomposition for Classifying Wetland Vegetation Types. Remote Sensing, 7(7):8563–8585.Huynen, J. R. (1970). Phenomenological theory of radar targets. Technical report, University of Technology, Delft, The Netherlands.INVEMAR (2009). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilita- ción de la Ciénaga Grande de Santa Marta : informe técnico final. Invemar, Santa Marta.Ishwaran, H. (2015). The effect of splitting on random forests. Machine Learning, 99(1):75– 118.Jaramillo, U., Cortes-Duque, J., and Florez, C. (2015). Colombia Anfibia. Un paı́s de humeda- les, volume 1. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C., Colombia.Kasischke, E. S., Bourgeau-Chavez, L. L., Rober, A. R., Wyatt, K. H., Waddington, J. M., and Turetsky, M. R. (2009). Effects of soil moisture and water depth on ERS SAR backs- catter measurements from an Alaskan wetland complex. Remote Sensing of Environment, 113(9):1868–1873.Kasischke, E. S., Smith, K. B., Bourgeau-Chavez, L. L., Romanowicz, E. A., Brunzell, S., and Richardson, C. J. (2003). Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, 88(4):423–441.Knight, J. and Lunetta, R. (2003). An experimental assessment of minimum mapping unit size. IEEE Transactions on Geoscience and Remote Sensing, 41(9):2132–2134.Koch, M., Schmid, T., Reyes, M., and Gumuzzio, J. (2012). Evaluating Full Polarimetric C- and L-Band Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3):1033–1044.Kulkarni, V. Y. and Sinha, P. K. (2012). Pruning of Random Forest classifiers: A survey and future directions. In 2012 International Conference on Data Science & Engineering (ICDSE), pages 64–68, Cochin, Kerala, India. IEEE.Kumar, D. N. and Reshmidevi, T. V. (2013). Remote Sensing Applications in Water Re- sources. Journal of the Indian Institute of Science, 93(2):163–188–188.Lang, M. W. and Kasischke, E. S. (2008). Using C-Band Synthetic Aperture Radar Da- ta to Monitor Forested Wetland Hydrology in Maryland’s Coastal Plain, USA. IEEE Transactions on Geoscience and Remote Sensing, 46(2):535–546.Lee, J., Ainsworth, T., Schuler, D., Kasilingam, D., and Boerner, W. (2001). Interpreting off- diagonal terms in polarimetric coherency matrix. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remo- te Sensing Symposium (Cat. No.01CH37217), volume 2, pages 913–915, Sydney, NSW, Australia. IEEE.Lee, J.-S. and Pottier, E. (2009). Polarimetric Radar Imaging : From Basics to Applications. CRC Press.Li, J. and Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22):5051– 5069.Li, J., Chen, W., and Touzi, R. (2007). Optimum RADARSAT-1 configurations for wetlands discrimination: a case study of the Mer Bleue peat bog. Canadian Journal of Remote Sensing, 33:10.Liaw, A., Wiener, M., and others (2002). Classification and regression by randomForest. R news, 2(3):18–22.Lucas, R. M., Clewley, D., Accad, A., Butler, D., Armston, J., Bowen, M., Bunting, P., Carreiras, J., Dwyer, J., Eyre, T., and others (2014). Mapping forest growth and degra- dation stage in the Brigalow Belt Bioregion of Australia through integration of ALOS PALSAR and Landsat-derived foliage projective cover data. Remote Sensing of Environ- ment, 155:42–57. Publisher: Elsevier.Lusch, D. (1999). Introduction to Microwave Remote Sensing. Center For Remote Sensing and Geographic Information Science Michigan State University.Mahdavi, S., Maghsoudi, Y., and Amani, M. (2017a). Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area. Journal of Applied Remote Sensing, 11(3):036015.Mahdavi, S., Maghsoudi, Y., and Dehnavi, S. (2014). A Method for Soil Moisture Retrieval in Vegetated Areas Using Multi-Frequency Data Considering Different kinds of Interaction in Different Frequencies. Publisher: Unpublished.Mahdavi, S., Salehi, B., Amani, M., Granger, J. E., Student, M., Brisco, B., and Huang, W. (2017b). A COMPARISON BETWEEN DIFFERENT SYNTHETIC APERTURE RADAR (SAR) SENSORS FOR WETLAND CLASSIFICATION. page 8.Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., and Huang, W. (2018). Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing, 55(5):623–658.Mahdavi, S., Salehi, B., Moloney, C., Huang, W., and Brisco, B. (2016). A new method for speckle reduction in Synthetic Aperture Radar (SAR) images using optimal window size. In IOP Conference Series: Earth and Environmental Science, volume 34, page 012021. IOP Publishing.Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., and Granger, J. E. (2018). Fisher Linear Discriminant Analysis of coherency matrix for wetlMarechal, C., Pottier, E., Hubert-Moy, L., and Rapinel, S. (2012). One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images. Canadian Journal of Remote Sensing, 38(3):13.Martinez, J. and Letoan, T. (2007). Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, 108(3):209–223.Massonnet, D. and Souyris, J.-C. (2008). Imaging with synthetic aperture radar. CRC Press.McNairn, H., Champagne, C., Shang, J., Holmstrom, D., and Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5):434–449.Medasani, S. and Reddy, G. U. (2017). Analysis and Evaluation of Speckle Filters for Polarimetric Synthetic Aperture Radar (PolSAR) Data. 12(15):12.Medasani, S. and Reddy, G. U. (2018). Speckle Filtering and its Influence on the Decom- position and Classification of Hybrid Polarimetric Data of RISAT-1. Remote Sensing Applications: Society and Environment, 10:1–6.Melack, J. M. and Hess, L. L. (2010). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In Amazonian floodplain forests, pages 43–59. Springer.Merchant, M. A., Adams, J. R., Berg, A. A., Baltzer, J. L., Quinton, W. L., and Chasmer, L. E. (2017). Contributions of C-Band SAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4):1467–1482.Millard, K., Richardson, M., and Building, N. (2013). Wetland mapping with LiDAR deri- vatives, SAR polarimetric decompositions, and LiDAR-SAR fusion using a random forest classifier. Canadian Journal of Remote Sensing, page 19.Mitsch, W. J. and Gosselink, J. G. (2015). Wetlands.Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1):6–43.Moser, L., Schmitt, A., Wendleder, A., and Roth, A. (2016). Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sensing, 8(4):302.Mott, H. (2007). Remote Sensing with Polarimetric Radar. John Wiley & Sons.Mousavi, M., Amini, J., and Maghsoudi, Y. (2015). PolSAR Speckle Filtering Techniques and Their Effects On classification. page 9.Nagabhatla, N. and Metcalfe, C. D., editors (2018). Multifunctional Wetlands: Pollution Aba- tement and Other Ecological Services from Natural and Constructed Wetlands. Environ- mental Contamination Remediation and Management. Springer International Publishing.Nembrini, S., König, I. R., and Wright, M. N. (2018). The revival of the Gini importance? Bioinformatics, 34(21):3711–3718.Olofsson, P. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, page 10.Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148:42–57.Ozesmi, S. L. and Bauer, M. E. (2002). Satellite remote sensing of wetlands. page 22.Pelletier, C., Valero, S., Inglada, J., Champion, N., and Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187:156–168.Pritchard, D. (2010). Manuales Ramsar para el uso racional de los humedales, 4a edición: Manual 1 Uso racional de los humedales: Conceptos y enfoques para el uso racional de los humedales. Publisher: Gland, Suiza: Secretarı́a de la Convención de Ramsar.Pulvirenti, L., Chini, M., Pierdicca, N., and Boni, G. (2016). Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1532–1544.Ramsar (2018). Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical report, Gland, Switzerland: Ramsar Convention Secretariat.Ramsey, E., Zhong Lu, Suzuoki, Y., Rangoonwala, A., and Werle, D. (2011). Monitoring Duration and Extent of Storm-Surge and Flooding in Western Coastal Louisiana Marshes With Envisat ASAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):387–399.Richards, J. A. (2009). Remote Sensing with Imaging Radar. Signals and Communication Technology. Springer-Verlag, Berlin Heidelberg.Richards, J. A., Woodgate, P. W., and Skidmore, A. K. (1987). An explanation of enhan- ced radar backscattering from flooded forests. International Journal of Remote Sensing, 8(7):1093–1100.Russi, D., ten Brink, P., Farmer, A., and Badura, T. (2013). The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands.Rutchey, K. and Godin, J. (2009). Determining an appropriate minimum mapping unit in vegetation mapping for ecosystem restoration: a case study from the Everglades, USA. Landscape Ecology, 24(10):1351–1362.Saura, S. (2002). Effects of minimum mapping unit on land cover data spatial configuration and composition. International Journal of Remote Sensing, 23(22):4853–4880.Schmitt, A. and Brisco, B. (2013). Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery. Water, 5(3):1036–1051.Schmitt, A., Wendleder, A., and Hinz, S. (2015). The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS Journal of Photogrammetry and Remote Sensing, 102:122–139.Schumann, G. J.-P. and Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, Parts A/B/C, 83-84:84–95.Shepherd, J., Bunting, P., and Dymond, J. (2019). Operational Large-Scale Segmentation of Imagery Based on Iterative Elimination. Remote Sensing, 11(6):658.Sierszen, M. E., Morrice, J. A., Trebitz, A. S., and Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 15(1):92–106.Sokol, J., Pultz, T. J., and Bulzgis, V. (2001). Monitoring wetland hydrology in Atlantic Canada using multi-temporal and multi-beam Radarsat data. IAHS PUBLICATION, pages 526–530.Souza-Filho, P. W. M., Paradella, W. R., Rodrigues, S. W., Costa, F. R., Mura, J. C., and Gonçalves, F. D. (2011). Discrimination of coastal wetland environments in the Ama- zon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery. Estuarine, Coastal and Shelf Science, 95(1):88–98.Tiner, R. W., Lang, M. W., and Klemas, V. V. (2015). Remote Sensing of Wetlands: Appli- cations and Advances.Tinoco, J. (2004). Los manglares de la ecorregión Ciénaga Grande de Santa Marı́a: pasado, presente y futuro. Serie Publicaciones especiales. Instituto de Investigaciones Marinas y Costeras ”José Benito Vives de Andréis”vinculado al Ministerio de Ambiente, Vivienda y Desarrollo Territorial.Topouzelis, K. and Psyllos, A. (2012). Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68:135–143.Touzi, R. (2007). Target Scattering Decomposition in Terms of Roll-Invariant Target Para- meters. IEEE Transactions on Geoscience and Remote Sensing, 45(1):73–84.Touzi, R., Boerner, W. M., Lee, J. S., and Lueneburg, E. (2004). A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Canadian Journal of Remote Sensing, 30(3):28.Touzi, R., Deschamps, A., and Rother, G. (2007). Wetland characterization using polarime- tric RADARSAT-2 capability. Canadian Journal of Remote Sensing, 33:12.Touzi, R., Deschamps, A., and Rother, G. (2009). Phase of target scattering for wetland characterization using polarimetric C-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(9):3241–3261.Tsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R. (2018). SAR-based detection of flooded vegetation – a review of characteristics and approaches. International Journal of Remote Sensing, 39(8):2255–2293.Turkar, V. (2011). Applying Coherent and Incoherent Target Decomposition Techniques to Polarimetric SAR Data. page 7.Töyrä, J., Pietroniro, A., and Martz, L. W. (2001). Multisensor Hydrologic Assessment of a Freshwater Wetland. Remote Sensing of Environment, 75(2):162–173.Ullmann, T., Schmitt, A., Roth, A., Banks, S., Baumhauer, R., and Dech, S. (2013). CLAS- SIFICATION OF COASTAL ARCTIC LAND COVER BY MEANS OF TERRASAR-X DUAL CO-POLARIZED DATA. page 4.van Beijma, S., Comber, A., and Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149:118–129.van Zyl, J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27(1):36–45.van Zyl, J. J. (1993). Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar polarimetry, volume 1748, pages 184–191. International Society for Optics and Photonics.Vilardy, S., Jaramillo, U., Flórez, C., Cortés-Duque, J., Estupiñán, L., and Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales: una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá.Wang, J., Shang, J., Brisco, B., and Brown, R. J. (1998). Evaluation of Multidate ERS-1 and Multispectral Landsat Imagery for Wetland Detection in Southern Ontario. Canadian Journal of Remote Sensing, 24(1):60–68.Wen, H. (2006). An Improved Cloude-Pottier Decomposition. page 4.Whitcomb, J., Moghaddam, M., McDonald, K., Podest, E., and Kellndorfer, J. (2007). Wetlands map of Alaska using L-Band radar satellite imagery. In 2007 IEEE Interna- tional Geoscience and Remote Sensing Symposium, pages 2487–2490, Barcelona, Spain. IEEE.White, L., Brisco, B., Dabboor, M., Schmitt, A., and Pratt, A. (2015). A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sensing, 7(6):7615–7645.White, L., Brisco, B., Pregitzer, M., Tedford, B., and Boychuk, L. (2014). RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping. Canadian Journal of Remote Sensing, 40(2):135–151.Woodhouse, I. H. (2017). Introduction to Microwave Remote Sensing. CRC Press.Woźniak, E., Kofman, W., Wajer, P., Lewiński, S., and Nowakowski, A. (2016). The influence of filtration and decomposition window size on the threshold value and accuracy of land- cover classification of polarimetric SAR images. International Journal of Remote Sensing, 37(1):212–228.Xiao, X., Gertner, G., Wang, G., and Anderson, A. B. (2005). Optimal Sampling Scheme for Estimation Landscape Mapping of Vegetation Cover. Landscape Ecology, 20(4):375–387.Yommy, A. S., Liu, R., and Wu, A. S. (2015). SAR Image Despeckling Using Refined Lee Filter. In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, pages 260–265, Hangzhou, China. IEEE.Zafari, A., Zurita-Milla, R., and Izquierdo-Verdiguier, E. (2019). Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote Sensing, 11(5):575.Zedler, J. B. and Kercher, S. (2005). WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30(1):39–74.Zhen, J., Liao, J., and Shen, G. (2018). Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors, 18(11):4012.Zhu, S. (2012). A Bayesian Approach for Inverse Problems in SyntheticAperture Radar Imaging. PhD Thesis, Université Paris Sud - Paris XI,.ORIGINALTesisMaestria.pdfTesisMaestria.pdfTesis de Maestría en Geomáticaapplication/pdf34780038https://repositorio.unal.edu.co/bitstream/unal/81319/3/TesisMaestria.pdf86da2c817303c94fba67b071613fb7a4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81319/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILTesisMaestria.pdf.jpgTesisMaestria.pdf.jpgGenerated Thumbnailimage/jpeg4686https://repositorio.unal.edu.co/bitstream/unal/81319/5/TesisMaestria.pdf.jpgfba7e021d19a131c3011be77c45e465bMD55unal/81319oai:repositorio.unal.edu.co:unal/813192023-08-03 23:03:37.553Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |