Source code analysis on student assignments using machine learning techniques
Abstract. To increase the success in computer programming courses, it is important to understand the learning process and common difficulties faced by students. Although several studies have investigated possible relationships between students performance and self-regulated learning characteristics,...
- Autores:
-
Castellanos Morales, Hugo Armando
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60068
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60068
http://bdigital.unal.edu.co/58004/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
37 Educación / Education
Motivation
Learning strategies
Machine learning
Source code analysis
Self-regulation
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_733d4fe13f3e16629c62ff19a86255f2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60068 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Source code analysis on student assignments using machine learning techniques |
title |
Source code analysis on student assignments using machine learning techniques |
spellingShingle |
Source code analysis on student assignments using machine learning techniques 0 Generalidades / Computer science, information and general works 37 Educación / Education Motivation Learning strategies Machine learning Source code analysis Self-regulation |
title_short |
Source code analysis on student assignments using machine learning techniques |
title_full |
Source code analysis on student assignments using machine learning techniques |
title_fullStr |
Source code analysis on student assignments using machine learning techniques |
title_full_unstemmed |
Source code analysis on student assignments using machine learning techniques |
title_sort |
Source code analysis on student assignments using machine learning techniques |
dc.creator.fl_str_mv |
Castellanos Morales, Hugo Armando |
dc.contributor.advisor.spa.fl_str_mv |
Gonzalez Osorio, Fabio Augusto (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Castellanos Morales, Hugo Armando |
dc.contributor.spa.fl_str_mv |
Restrepo Calle, Felipe |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 37 Educación / Education |
topic |
0 Generalidades / Computer science, information and general works 37 Educación / Education Motivation Learning strategies Machine learning Source code analysis Self-regulation |
dc.subject.proposal.spa.fl_str_mv |
Motivation Learning strategies Machine learning Source code analysis Self-regulation |
description |
Abstract. To increase the success in computer programming courses, it is important to understand the learning process and common difficulties faced by students. Although several studies have investigated possible relationships between students performance and self-regulated learning characteristics, little attention has been given the source code produced by students in this regard. Such source code might contain valuable information about their learning process, specially in a context where practical programming assignments are frequent and students write source code constantly during the course. This poses the following research questions: What is the relationship between the characteristics of students source code and their performance in a computer programming course?. What is the relationship between source code features and self-regulated learning characteristics (i.e., motivation and learning strategies) in a computer programming course?. How the source code and self-regulated features can predict the students' performance? In order to answer these questions, a strategy to support the correlation analysis among students performance, motivation, use of learning strategies, and source code metrics in computer programming courses is proposed. A comprehensive case study is presented to evaluate the strategy. Additionally, an automatic grading tool for programming assignments was used, which facilitated to obtain the source code of the participants for further automatic source code analysis. Moreover, self-regulated learning characteristics were collected using the Motivated Strategies for Learning Questionnaire (MSLQ). Results show that the main features from source code which are significantly related to students performance and self-regulated learning features are: length-related metrics, with mainly positive correlations; and Halstead complexity measures, correlated negatively. In the light of the findings of this study, it is possible to understand better students source code as an artifact that can be used to monitorize several characteristics related to self-regulated learning, course performance, and in general, their learning process. In this way, more research in the area is required to verify if these relationships could give to computing educators new ways to identify and help students with problems. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T17:26:49Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T17:26:49Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60068 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58004/ |
url |
https://repositorio.unal.edu.co/handle/unal/60068 http://bdigital.unal.edu.co/58004/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Castellanos Morales, Hugo Armando (2017) Source code analysis on student assignments using machine learning techniques. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60068/1/HugoA.CastellanosMorales.2017.pdf https://repositorio.unal.edu.co/bitstream/unal/60068/2/HugoA.CastellanosMorales.2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
958720ac1f644ac26d09f495da080d86 5e958048a40255885dc603945739a6b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090240935067648 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Restrepo Calle, FelipeGonzalez Osorio, Fabio Augusto (Thesis advisor)cdc14b69-bf63-4f8c-ab69-fd166d3c8142-1Castellanos Morales, Hugo Armandob5af9c95-7a06-465d-876b-7c04a14720f43002019-07-02T17:26:49Z2019-07-02T17:26:49Z2017https://repositorio.unal.edu.co/handle/unal/60068http://bdigital.unal.edu.co/58004/Abstract. To increase the success in computer programming courses, it is important to understand the learning process and common difficulties faced by students. Although several studies have investigated possible relationships between students performance and self-regulated learning characteristics, little attention has been given the source code produced by students in this regard. Such source code might contain valuable information about their learning process, specially in a context where practical programming assignments are frequent and students write source code constantly during the course. This poses the following research questions: What is the relationship between the characteristics of students source code and their performance in a computer programming course?. What is the relationship between source code features and self-regulated learning characteristics (i.e., motivation and learning strategies) in a computer programming course?. How the source code and self-regulated features can predict the students' performance? In order to answer these questions, a strategy to support the correlation analysis among students performance, motivation, use of learning strategies, and source code metrics in computer programming courses is proposed. A comprehensive case study is presented to evaluate the strategy. Additionally, an automatic grading tool for programming assignments was used, which facilitated to obtain the source code of the participants for further automatic source code analysis. Moreover, self-regulated learning characteristics were collected using the Motivated Strategies for Learning Questionnaire (MSLQ). Results show that the main features from source code which are significantly related to students performance and self-regulated learning features are: length-related metrics, with mainly positive correlations; and Halstead complexity measures, correlated negatively. In the light of the findings of this study, it is possible to understand better students source code as an artifact that can be used to monitorize several characteristics related to self-regulated learning, course performance, and in general, their learning process. In this way, more research in the area is required to verify if these relationships could give to computing educators new ways to identify and help students with problems.Para mejorar el éxito de los estudiantes en los cursos de programación, es importante entender el proceso de aprendizaje y las dificultades comunes que enfrentan los estudiantes. Aunque muchos estudios han investigado las posibles relaciones entre el rendimiento de los estudiantes y aspectos de la auto-regulación del aprendizaje, poca atención se le ha dado al código fuente producido por los estudiantes. El cual puede contener información valiosa acerca de su proceso de aprendizaje. Esto es especialmente cierto en contextos donde las actividades prácticas de programación son frecuentes y los estudiantes escriben código fuente constantemente durante el desarrollo del curso. Lo anterior, plantea las siguientes preguntas de investigación: ¿Cuál es la relación entre las características del código fuente de los estudiantes y su rendimiento en un curso de programación de computadores?. ¿Cuál es la relación entre las características del código fuente y características de aprendizaje auto-regulado (motivación y estrategias de aprendizaje) en un curso de programación de computadores?. ¿Cómo el código fuente y las características de aprendizaje auto-regulado pueden predecir el rendimiento de los estudiantes? Para responder estas preguntas, se presenta una estrategia para realizar el análisis de correlaciones entre el rendimiento de los estudiantes, motivación, el uso de estrategias de aprendizaje, y las métricas de código fuente en cursos de programación de computadores. Un caso de estudio exhaustivo es presentado para evaluar la estrategia propuesta usando datos recolectados de estudiantes. Además se usaba una herramienta de calificación automática para evaluar las practicas, lo cual facilitaba la obtención de código fuente de estudiantes para su análisis posterior. Las características de aprendizaje auto-regulado fueron obtenidas usando el cuestionario: Motivated Strategies for Learning Questionnaire Colombia (MSLQColombia). Los resultados muestran que las principales características del código fuente que están relacionadas con el rendimiento de los estudiantes y características auto-reguladas son: las métricas de longitud, que se correlaciona positivamente; y las medidas de complejidad de Halstead, las cuales se correlacionan negativamente. Dados los resultados, es posible entender mejor el código fuente de los estudiantes como un artefacto que puede ser usado para monitorear características relacionadas con el aprendizaje auto-regulado, rendimiento en el curso, y en general, su proceso de aprendizaje. De esta forma, investigaciones adicionales son necesarias para verificar si dichas relaciones pueden dar a los educadores nuevas herramientas para identificar y ayudar a estudiantes con problemas.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasCastellanos Morales, Hugo Armando (2017) Source code analysis on student assignments using machine learning techniques. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general works37 Educación / EducationMotivationLearning strategiesMachine learningSource code analysisSelf-regulationSource code analysis on student assignments using machine learning techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALHugoA.CastellanosMorales.2017.pdfapplication/pdf1390912https://repositorio.unal.edu.co/bitstream/unal/60068/1/HugoA.CastellanosMorales.2017.pdf958720ac1f644ac26d09f495da080d86MD51THUMBNAILHugoA.CastellanosMorales.2017.pdf.jpgHugoA.CastellanosMorales.2017.pdf.jpgGenerated Thumbnailimage/jpeg4399https://repositorio.unal.edu.co/bitstream/unal/60068/2/HugoA.CastellanosMorales.2017.pdf.jpg5e958048a40255885dc603945739a6b3MD52unal/60068oai:repositorio.unal.edu.co:unal/600682024-04-11 23:09:15.569Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |