Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano
ilustraciones, diagramas
- Autores:
-
Abril Poveda, Sara Paola
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84241
- Palabra clave:
- 540 - Química y ciencias afines::543 - Química analítica
540 - Química y ciencias afines::547 - Química orgánica
Factor de Protección Solar
Sun Protection Factor
ALGAS
Algae
Fotoprotección
Perfilado metabólico
Algas marinas
Factores de protección solar
Actividad antioxidante
Photoprotection
Metabolic profiling
Algae
Sun protection factors
Antioxidant activity
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_72d54eb54d07a9402fbed6e13c09aee5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84241 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
dc.title.translated.eng.fl_str_mv |
Promissory photoprotective extracts from Colombian Caribbean algae |
title |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
spellingShingle |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano 540 - Química y ciencias afines::543 - Química analítica 540 - Química y ciencias afines::547 - Química orgánica Factor de Protección Solar Sun Protection Factor ALGAS Algae Fotoprotección Perfilado metabólico Algas marinas Factores de protección solar Actividad antioxidante Photoprotection Metabolic profiling Algae Sun protection factors Antioxidant activity |
title_short |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
title_full |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
title_fullStr |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
title_full_unstemmed |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
title_sort |
Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano |
dc.creator.fl_str_mv |
Abril Poveda, Sara Paola |
dc.contributor.advisor.none.fl_str_mv |
Ramos Rodríguez, Freddy Alejandro |
dc.contributor.author.none.fl_str_mv |
Abril Poveda, Sara Paola |
dc.contributor.researchgroup.spa.fl_str_mv |
Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::543 - Química analítica 540 - Química y ciencias afines::547 - Química orgánica |
topic |
540 - Química y ciencias afines::543 - Química analítica 540 - Química y ciencias afines::547 - Química orgánica Factor de Protección Solar Sun Protection Factor ALGAS Algae Fotoprotección Perfilado metabólico Algas marinas Factores de protección solar Actividad antioxidante Photoprotection Metabolic profiling Algae Sun protection factors Antioxidant activity |
dc.subject.decs.spa.fl_str_mv |
Factor de Protección Solar |
dc.subject.decs.eng.fl_str_mv |
Sun Protection Factor |
dc.subject.lemb.spa.fl_str_mv |
ALGAS |
dc.subject.lemb.eng.fl_str_mv |
Algae |
dc.subject.proposal.spa.fl_str_mv |
Fotoprotección Perfilado metabólico Algas marinas Factores de protección solar Actividad antioxidante |
dc.subject.proposal.eng.fl_str_mv |
Photoprotection Metabolic profiling Algae Sun protection factors Antioxidant activity |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:47:45Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:47:45Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84241 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84241 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Grupo de estudios Económicos (Superintendencia de Industria y Comercio). Estudios Económicos Sectoriales: Protectores Solares en Colombia (2015-2019). 2020. p. 0–37. Saewan N, Jimtaisong A. Natural products as photoprotection. J Cosmet Dermatol. 2015;14(1):47–63. HelioScreen. In vitro Sun Protection Evaluation [Internet]. France; 2020. Disponible en: www.helioscreen.fr Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain [Internet]. el 24 de junio de 2019;2(7):569–79. Disponible en: https://www.nature.com/articles/s41893-019-0314-2 Shaath Nadim. Sunscreen Evolution. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 3–16. Lim HW, Arellano-Mendoza MI, Stengel F. Current challenges in photoprotection. J Am Acad Dermatol [Internet]. 2017;76(3):S91–9. Disponible en: http://dx.doi.org/10.1016/j.jaad.2016.09.040 Schwen R. Safety considerations for sunscreens in the USA. En: Sunscreens: Regulations and commercial development. Third Edit. Massachusetts: Taylor& Francis Group; 2005. p. 55–68. Derikvand P, Llewellyn CA, Purton S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur J Phycol [Internet]. 2017;52(1):43–56. Disponible en: http://dx.doi.org/10.1080/09670262.2016.1214882 Raffa RB, Pergolizzi J v., Taylor R, Kitzen JM. Sunscreen bans: Coral reefs and skin cancer. J Clin Pharm Ther. 2019;44(1):134–9. Kim SK, Chojnacka K. Introduction of Marine Algae Extracts. En: Kim SK, Chojnacka K, editores. Marine algae extracts: processes, products, and applications [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1–11. Disponible en: http://doi.wiley.com/10.1002/9783527679577 Pangestuti R, Siahaan E, Kim SK. Photoprotective Substances Derived from Marine Algae. Mar Drugs [Internet]. el 23 de octubre de 2018;16(11):399. Disponible en: http://www.mdpi.com/1660-3397/16/11/399 He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine and Pharmacotherapy. 2021;134(December 2020). Reis Mansur MCPP, Leitão SG, Cerqueira-Coutinho C, Vermelho AB, Silva RS, Presgrave OAF, et al. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Revista Brasileira de Farmacognosia [Internet]. 2016;26(2):251–8. Disponible en: http://dx.doi.org/10.1016/j.bjp.2015.11.006 Fabrowska J, Łeska B, Schroeder G, Messyasz B, Pikosz M. Biomass and extracts of algae as material for cosmetics. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 681–701. Procolombia (Gobierno de Colombia). El crecimiento del sector de aseo y cosméticos en Colombia continúa [Internet]. 2020 [citado el 10 de marzo de 2021]. Disponible en: https://procolombia.co/noticias/covid-19/el-crecimiento-del-sector-de-aseo-y-cosmeticos-en-colombia-continua Rincón Díaz MN, Gavio B. Diversidad de Macroalgas Marinas del Caribe colombiano. v2.8. Instituto de Investigaciones Marinas y Costeras - Invemar. [Internet]. 2020. Disponible en: https://ipt.biodiversidad.co/sibm/resource.do?r=macroalgas_caribe_colombia Wang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Vol. 184, Bioresource Technology. Elsevier Ltd; 2015. p. 355–62. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar Drugs. 2020;18(6). Berthon JY, Nachat-Kappes R, Bey M, Cadoret JP, Renimel I, Filaire E. Marine algae as attractive source to skin care. Free Radic Res [Internet]. el 3 de junio de 2017;51(6):555–67. Disponible en: https://www.tandfonline.com/doi/full/10.1080/10715762.2017.1355550 Universidad Nacional de Colombia. Herbario Nacional Colombiano. Instituto de Ciencias Naturales; Sistema de Información sobre Biodiversidad de Colombia. Biodiversidad en Cifras [Internet]. [citado el 10 de marzo de 2021]. Disponible en: https://cifras.biodiversidad.co/ Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Biodiversidad colombiana: números para tener en cuenta [Internet]. 2017 [citado el 10 de marzo de 2021]. Disponible en: http://www.humboldt.org.co/es/boletines-y-comunicados/item/1087-biodiversidad-colombiana-numero-tener-en-cuenta Nelson C. Photoprotection. En: Sunscreens: Regulations and commercial development. Third Edit. Taylor& Francis Group; 2005. p. 19–39. Rai R, Shanmuga S, Srinivas CR. Update on photoprotection. Indian J Dermatol. 2012;57(5):335–42. Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochemical and Photobiological Sciences. 2013;12(1):54–64. Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, et al. Visible Light Part I. Properties and Cutaneous Effects of Visible Light. J Am Acad Dermatol [Internet]. 2021 [citado el 22 de marzo de 2021]; Disponible en: https://doi.org/10.1016/j.jaad.2021.02.048 Randhawa M, Seo IS, Liebel F, Southall MD, Kollias N, Ruvolo E. Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One. 2015;10(6):1–14. Lyons AB, Trullas C, Kohli I, Hamzavi IH, Lim HW. Photoprotection beyond ultraviolet radiation: A review of tinted sunscreens. J Am Acad Dermatol [Internet]. mayo de 2021 [citado el 22 de marzo de 2021];84(5):1393–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0190962220306940 Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible Light Part II. Photoprotection against visible and ultraviolet light. J Am Acad Dermatol [Internet]. febrero de 2021;144034. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.144034 Shaath, Nadim (Alpha research and development L. The Chemistry of Ultraviolet Filters. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 218–38. Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, Cooper KD, et al. Non-sunscreen photoprotection: Antioxidants add value to a sunscreen. Vol. 14, Journal of Investigative Dermatology Symposium Proceedings. 2009. p. 56–9. Torres A, Enk CD, Hochberg M, Srebnik M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochemical and Photobiological Sciences. 2006;5(4):432–5. Cockell CS, Knowland J. Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc. 1999;74(3):311–45. Velasco MVR, Sarruf FD, Salgado-Santos IMN, Haroutiounian-Filho CA, Kaneko TM, Baby AR. Broad spectrum bioactive sunscreens. Int J Pharm. 2008;363(1–2):50–7. European Commission. Search Results: UV Filter- CosIng [Internet]. [citado el 18 de diciembre de 2022]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.results&function=62&search European Commission. List of Functions-CosIng - Cosmetics - [Internet]. [citado el 18 de diciembre de 2022]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=ref_data.functions Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol [Internet]. 2021;7(1):45–69. Disponible en: https://doi.org/10.1016/j.ijwd.2020.08.008 Parlamento Europeo y del Consejo de la Unión Europea. Reglamento (CE) No. 1223/2009 del Parlamento Europeo y del Consejo de la Unión Europea. [citado el 9 de julio de 2021]; Disponible en: https://eur-lex.europa.eu/eli/reg/2009/1223/oj Darvin ME, Fluhr JW, Meinke MC, Zastrow L, Sterry W, Lademann J. Topical beta-carotene protects against infra-red-light-induced free radicals. Exp Dermatol. 2011;20(2):125–9. Schroeder P, Lademann J, Darvin ME, Stege H, Marks C, Bruhnke S, et al. Infrared radiation-induced matrix metalloproteinase in human skin: Implications for protection. Journal of Investigative Dermatology [Internet]. 2008;128(10):2491–7. Disponible en: http://dx.doi.org/10.1038/jid.2008.116 Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Deliv Sci Technol [Internet]. diciembre de 2020;60:102000. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1773224720312892 Darr D, Dunston S, Faust H, Pinnell S. Effectiveness of antioxidants (vitamin C and E) with and without sunscreens as topical photoprotectants. Acta Derm Venereol [Internet]. el 1 de julio de 1996;76(4):264–8. Disponible en: https://medicaljournalssweden.se/actadv/article/view/15103 Johnson & Johnson Consumer Inc. Ultra Sheer® Face Serum with Vitamin E SPF 60+ | NEUTROGENA® [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://es.neutrogena.com/products/sun/ultra-sheer-oil-free-face-serum-with-vitamin-e-spf-60/6810355.html?cgid=sunscreen-for-face&tilePosition=3 SkinCeuticals. The benefits of using Vitamin C and SPF for your skin | Understanding Skin | SkinCeuticals [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://www.skinceuticals.co.uk/en_GB/the-benefits-of-using-vitamin-c-and-spf-for-your-skin.html CeraVe. Skin Renewing Retinol Day Cream with SPF | Moisturizer | CeraVe [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://www.cerave.com/skincare/moisturizers/skin-renewing-day-cream Shaath, Nadim (Alpha research and development L, Flores F (International F and fragrances). Modern Analytical Techniques in the Sunscreen Industry. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 752–65. Diffey BL. A perspective on the need for topical sunscreens. En: Sunscreens: Regulations and commercial development. Third Edit. New Castle: Taylor& Francis Group; 2005. p. 45–52. Dutra EA, Da Costa E Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences. 2004;40(3):381–5. José L. Rojas, Mauricio Díaz-Santos, Norma A. Valencia-Islas. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. el 1 de julio de 2015;18–26. Diffey BL. A method for broad spectrum classification of sunscreens. Int J Cosmet Sci. 1994;16(2):47–52. Stanfield J (Suncare RL. In vitro Techniques in Sunscreen Development. En: Sunscreens: Regulations and commercial development. North Carolina: Taylor& Francis Group; 2005. p. 854–77. Mansur J, Breder M, Mansur M, Azulay R. Determination of Sun protection factor by spectrophotometry. An Bras Dermatol. 1986;61:121–4. Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol [Internet]. marzo de 1979;29(3):559–66. Disponible en: http://doi.wiley.com/10.1111/j.1751-1097.1979.tb07090.x Diffey BL, Robson J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J Soc Cosmet Chem. 1989;40(3):127–33. Zarkogianni M, Nikolaidis N. Determination of Sun Protection Factor (SPF) and Stability of Oil-in-Water Emulsions Containing Greek Red Saffron (Crocus Sativus L.) as a Main Antisolar Agent. International Journal of Advanced Research in Chemical Science [Internet]. 2016;3(7):1–7. Disponible en: https://www.arcjournals.org/pdfs/ijarcs/v3-i7/1.pdf Diffey BL, Tanner PR, Matts PJ, Nash JF. In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products. J Am Acad Dermatol. 2000;43(6):1024–35. Florida Suncare Testing Inc. VITRO-SKIN® - IMS [Internet]. [citado el 17 de marzo de 2021]. Disponible en: https://ims-usa.com/vitro-skin-substrates/vitro-skin/ IMS Inc. In vitro SPF/UVA Protocol for use with with VITRO-SKIN® Substrate. :1–3. Disponible en: https://www.ims-usa.com/pdf/HydrationProtocol_UpdatedbyPTSJanuary2012rev1308.pdf Crovara Pescia A, Astolfi P, Puglia C, Bonina F, Perrotta R, Herzog B, et al. On the assessment of photostability of sunscreens exposed to UVA irradiation: From glass plates to pig/human skin, which is best? Int J Pharm [Internet]. 2012;427(2):217–23. Disponible en: http://dx.doi.org/10.1016/j.ijpharm.2012.02.001 Lott DL, Stanfield J, Sayre RM, Dowdy JC. Uniformity of sunscreen product application: a problem in testing, a problem for consumers. Photodermatol Photoimmunol Photomed [Internet]. febrero de 2003;19(1):17–20. Disponible en: http://doi.wiley.com/10.1034/j.1600-0781.2003.00007.x Herzog B (Ciba SCI. Prediction of Sun Protection Factors and UV-A Parameters by Calculation of UV Transmissions Through Sunscreen Films of Inhomogenous Surface Structure. En: Sunscreens: Regulations and commercial development. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 882–9. Pearse AD, Edwards C. Human stratum corneum as a substrate for in vitro sunscreen testing. Int J Cosmet Sci. 1993;15(6):234–44. Taylor, Jeffrey L. (PerkinElmer Inc). Integrating Sphere Functionality : The Scatter Transmission Measurement. PerkinElmer Inc; 2013. p. 1–6. Dlugos JF (PerkinElmer I. Materials Characterization : UV / Vis / NIR Spectroscopy in vitro Method for the Calculation of Sunscreen SPF Values. Shelton, USA; Shimadzu Corporation. Integrating Spheres [Internet]. [citado el 25 de marzo de 2021]. Disponible en: https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamentals-uv/integratingspheres.html Optometrics Corporation. SPF-290S Analyzer System [Internet]. p. 1–10. Disponible en: https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/optometr/spf-catalog.pdf&no_cache=1 Labsphere. UV-2000S - Labsphere | Internationally Recognized Photonics Company [Internet]. [citado el 17 de marzo de 2021]. Disponible en: https://www.labsphere.com/labsphere-products-solutions/components-accessories/spf-upf-testers/uv-2000s/ U.S. Food and Drug administration. “Cosmeceutical” | FDA [Internet]. [citado el 18 de enero de 2022]. Disponible en: https://www.fda.gov/cosmetics/cosmetics-labeling-claims/cosmeceutical Milito A, Castellano I, Damiani E. From sea to skin: Is there a future for natural photoprotectants? Vol. 19, Marine Drugs. MDPI; 2021. Schroeder G, Łeska B, Fabrowska J, Messyasz B, Pikosz M. Analysis of Green Algae Extracts. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 81–93. Radoslaw W, Chojnacka K. Downstream Processing in the Technology of Algal Extracts – From the Component to the Final Formulations. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 161–77. Saeid A, Chojnacka K. Algae Biomass as a Raw Material for Production of Algal Extracts. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 179–89. Serban RM, Cracium N, Munteanu C, Munteanu D, Stoian G. Ceramium Red Algae Extract Enriched in Biological Active Compounds Has a radioprotective effect. HFSP J. 2016;(October). Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. Science of The Total Environment [Internet]. 2021;772:144905. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.144905 Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics. 2021;8(1):8. Geraldes V, Pinto E. Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals. 2021;14(1):1–17. de la Coba F, Aguilera J, de Gálvez M v., Álvarez M, Gallego E, Figueroa FL, et al. Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci. 2009;55(3):161–9. Navarro N, Figueroa FL, Korbee N, Bonomi J, Gómez FA, de la Coba F. Mycosporine-like amino acids from red algae to develop natural UV sunscreens. En: Sunscreens: Source, Formulations, Efficacy and Recommendations. Nova Science Publishers, Inc.; 2018. p. 99–129. Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting effects of brown algae-derived phytochemicals: A review on molecular mechanisms. Mar Drugs. 2017;15(10). Mekinić IG, Skroza D, Šimat V, Hamed I, Čagalj M, Perković ZP. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules. 2019;9(6). Wang T, Jónsdóttir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem [Internet]. 2009;116(1):240–8. Disponible en: http://dx.doi.org/10.1016/j.foodchem.2009.02.041 Heo SJ, Ko SC, Cha SH, Kang DH, Park HS, Choi YU, et al. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicology in Vitro [Internet]. 2009;23(6):1123–30. Disponible en: http://dx.doi.org/10.1016/j.tiv.2009.05.013 Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym [Internet]. 2011;84(1):14–21. Disponible en: http://dx.doi.org/10.1016/j.carbpol.2010.10.062 Choi DS, Athukorala Y, Jeon YJ, Senevirathne M, Cho KR, Kim SH. Antioxidant Activity of Sulfated Polysaccharides Isolated from Sargassum fulvellum. Prev Nutr Food Sci [Internet]. el 30 de junio de 2007;12(2):65–73. Disponible en: http://www.dbpia.co.kr/Journal/ArticleDetail/NODE00848829 Mibelle group. HelioguardTM 365 | Mibelle Biochemistry [Internet]. [citado el 22 de marzo de 2021]. Disponible en: https://mibellebiochemistry.com/helioguardtm-365 GELYMA. HELIONORI® - GELYMA [Internet]. [citado el 22 de marzo de 2021]. Disponible en: http://www.gelyma.com/helionori.html Aethic. Products - Aethic [Internet]. [citado el 22 de marzo de 2021]. Disponible en: https://aethic.com/products/ Aethic. Exclusive worldwide licence - Aethic [Internet]. 2017 [citado el 22 de marzo de 2021]. Disponible en: https://aethic.com/aethic-granted-exclusive-worldwide-license-use-seaweed-compound/ Deutscher Wetterdienst. Deutscher Wetterdienst - Tägliche Vorhersagen des UV Index [Internet]. [citado el 11 de abril de 2021]. Disponible en: https://kunden.dwd.de/uvi_de/index.jsp Tanaka Y, Ashaari A, Mohamad FS, Lamit N. Bioremediation potential of tropical seaweeds in aquaculture: low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture [Internet]. marzo de 2020;518:734853. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0044848619316023 Karsten U, Sawall T, Wiencke C. A survey of the distribution of UV‐absorbing substances in tropical macroalgae. Phycological Res [Internet]. el 22 de diciembre de 1998;46(4):271–9. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1440-1835.1998.00144.x Sami FJ, Soekamto NH, Firdaus, Latip J. Bioactivity profile of three types of seaweed as an antioxidant, UV-protection as sunscreen and their correlation activity. Food Res [Internet]. el 13 de febrero de 2021;5(1):441–7. Disponible en: https://www.myfoodresearch.com/uploads/8/4/8/5/84855864/_56__fr-2020-389_sami.pdf Ersalina EB, Abdillah AA, Sulmartiwi L. Potential of Caulerpa racemosa extracts as sunscreen creams. IOP Conf Ser Earth Environ Sci [Internet]. el 25 de febrero de 2020;441:012007. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/441/1/012007 Tuya F, Betancor S, Fabbri F, Espino F, Haroun R. Photo-physiological performance and short-term acclimation of two coexisting macrophytes (Cymodocea nodosa and Caulerpa prolifera) with depth. Sci Mar [Internet]. el 30 de junio de 2016;80(2):247–59. Disponible en: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1636/2080 García-Sánchez M, Korbee N, Pérez-Ruzafa IM, Marcos C, Domínguez B, Figueroa FL, et al. Physiological response and photoacclimation capacity of Caulerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). Mar Environ Res [Internet]. agosto de 2012;79:37–47. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113612000888 Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Jeon YJ. Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. J Food Biochem [Internet]. octubre de 2018;42(5):e12628. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/jfbc.12628 Wiraguna AAGP, Pangkahila W, Astawa INM. Antioxidant properties of topical Caulerpa sp. extract on UVB-induced photoaging in mice. Dermatol Reports [Internet]. el 1 de octubre de 2018;10(2). Disponible en: https://www.pagepress.org/journals/index.php/dr/article/view/7597 Othman R, Amin NA, Sani MSA, Fadzillah NA, Jamaludin MA. Carotenoid and Chlorophyll Profiles in Five Species of Malaysian Seaweed as Potential Halal Active Pharmaceutical Ingredient (API). Int J Adv Sci Eng Inf Technol [Internet]. el 30 de septiembre de 2018;8(4–2):1610. Disponible en: http://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=7041 Wiraguna AAGP, Indira I, Vibriyanti N. Topical Applications of Caulerpa spp. Extract Preventing Skin Aging through Improving Skin Moisture, Pigmentationand Decrease Laxity. Journal of global pharma technology. 2020;12(1):397–402. Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, et al. An Inventory of UV-Absorbing Mycosporine-Like Amino Acids in Macroalgae from Polar to Warm-Temperate Regions. Botanica Marina [Internet]. 1998;41(1–6). Disponible en: https://www.degruyter.com/document/doi/10.1515/botm.1998.41.1-6.443/html Bischof K, Rautenberger R, Brey L, Pérez-Lloréns J. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser [Internet]. el 11 de enero de 2006;306:165–75. Disponible en: http://www.int-res.com/abstracts/meps/v306/p165-175/ O’Neal SW, Hoover AM. Comparison of UVB effects on growth and induction of UVB screening compounds in isolates of metaphytic algae from temperate zone streams and ponds. Graham L, editor. J Phycol [Internet]. diciembre de 2018;54(6):818–28. Disponible en: http://doi.wiley.com/10.1111/jpy.12786 Pescheck F. UV-A screening in Cladophora sp. lowers internal UV-A availability and photoreactivation as compared to non-UV screening in Ulva intestinalis. Photochemical & Photobiological Sciences [Internet]. 2019;18(2):413–23. Disponible en: http://xlink.rsc.org/?DOI=C8PP00432C Bautista-Saraiva AIN, Bonomi-Barufi J, Figueroa FL, Necchi O. UV-radiation effects on photosynthesis, photosynthetic pigments and UV-absorbing substances in three species of tropical lotic macroalgae. Theor Exp Plant Physiol [Internet]. el 7 de septiembre de 2018;30(3):181–92. Disponible en: http://link.springer.com/10.1007/s40626-018-0113-6 Abdel-Kare MSM. UV-Absorbing Pigments from Some Saudi-Arabian Algal Species. International Journal of Botany [Internet]. el 15 de septiembre de 2008;4(4):361–8. Disponible en: https://www.scialert.net/abstract/?doi=ijb.2008.361.368 Schneider G, Figueroa FL, Vega J, Chaves P, Álvarez-Gómez F, Korbee N, et al. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res [Internet]. agosto de 2020;49:101956. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926419306903 Vasquez RD, Lirio S. Content Analysis, Cytotoxic, and Anti-metastasis Potential of Bioactive Polysaccharides from Green Alga Codium intricatum Okamura. Curr Bioact Compd [Internet]. el 10 de junio de 2020;16(3):320–8. Disponible en: https://www.eurekaselect.com/166464/article Heo SJ, Ko SC, Kang SM, Cha SH, Lee SH, Kang DH, et al. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food and Chemical Toxicology [Internet]. mayo de 2010;48(5):1355–61. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S027869151000150X Valentão P, Trindade P, Gomes D, Guedes de Pinho P, Mouga T, Andrade PB. Codium tomentosum and Plocamium cartilagineum : Chemistry and antioxidant potential. Food Chem [Internet]. abril de 2010;119(4):1359–68. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814609010590 Sánchez-Lamar Á, González-Pumariega M, Fuentes-León F, Vernhes Tamayo M, Schuch A, Menck C. Evaluation of Genotoxic and DNA Photo-Protective Activity of Bryothamnion triquetrum and Halimeda incrassata Seaweeds Extracts. Cosmetics [Internet]. el 13 de julio de 2017 [citado el 29 de marzo de 2021];4(3):23. Disponible en: http://www.mdpi.com/2079-9284/4/3/23 Mantiri DMH, Kepel RC, Rumengan AP, Kase AO. Analysis of antioxidant and chlorophyll in green algae from Totok bay and Tongkaina waters, North Sulawesi. Ecology, Environment and Conservation. 2019;25(August Supplement):S135–40. Carefoot TH, Karentz D, Pennings SC, Young CL. Distribution of mycosporine-like amino acids in the sea hare Aplysia dactylomela : effect of diet on amounts and types sequestered over time in tissues and spawn. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol [Internet]. mayo de 2000;126(1):91–104. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0742841300000980 Eismann AI, Perpetuo Reis R, Ferreira da Silva A, Negrão Cavalcanti D. Ulva spp. carotenoids: Responses to environmental conditions. Algal Res [Internet]. junio de 2020;48:101916. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926419305181 Ma J, Wang W, Qu L, Liu X, Wang Z, Qiao S, et al. Differential Photosynthetic Response of a Green Tide Alga Ulva linza to Ultraviolet Radiation, Under Short- and Long-term Ocean Acidification Regimes. Photochem Photobiol [Internet]. julio de 2019;95(4):990–8. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/php.13083 Han YS, Han T. UV-B induction of UV-B protection in Ulva Pertusa (Chlorophyta). J Phycol [Internet]. el 18 de mayo de 2005;41(3):523–30. Disponible en: http://doi.wiley.com/10.1111/j.1529-8817.2005.00072.x Shiu CT, Lee TM. Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot [Internet]. el 1 de noviembre de 2005;56(421):2851–65. Disponible en: http://academic.oup.com/jxb/article/56/421/2851/593450/UltravioletBinduced-oxidative-stress-and-responses Wang Y, Qu T, Zhao X, Tang X, Xiao H, Tang X. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence. Springerplus [Internet]. el 17 de diciembre de 2016;5(1):775. Disponible en: http://springerplus.springeropen.com/articles/10.1186/s40064-016-2488-7 Altamirano M, Flores-Moya A, Figueroa FL. Long-Term Effects of Natural Sunlight under Various Ultraviolet Radiation Conditions on Growth and Photosynthesis of Intertidal Ulva rigida (Chlorophyceae) Cultivated In Situ. Botanica Marina [Internet]. el 8 de enero de 2000;43(2). Disponible en: https://www.degruyter.com/document/doi/10.1515/BOT.2000.012/html Cabello-Pasini A, Macías-Carranza V, Abdala R, Korbee N, Figueroa FL. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J Appl Phycol [Internet]. el 6 de junio de 2011;23(3):363–9. Disponible en: http://link.springer.com/10.1007/s10811-010-9548-0 Bhatia S, Sardana S, Sharma A, Vargas De La Cruz CB, Chaugule B, Khodaie L. Development of broad spectrum mycosporine loaded sunscreen formulation from Ulva fasciata delile. Biomedicine (Taipei) [Internet]. el 27 de septiembre de 2019;9(3):17. Disponible en: https://biomedicine.edp-open.org/10.1051/bmdcn/2019090317 Bernardi Vasconcelos J. Preliminary data of antioxidant activity of green seaweeds (Ulvophyceae) from the Southwestern Atlantic and Antarctic Maritime islands. Hidrobiológica [Internet]. el 15 de agosto de 2016;26(2):233–9. Disponible en: http://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/499 Park JJ, Han T, Choi EM. Differences in the oxidative stress and antioxidant responses of three marine macroalgal species upon UV exposure. Toxicol Environ Health Sci [Internet]. el 19 de junio de 2016;8(2):101–7. Disponible en: http://link.springer.com/10.1007/s13530-016-0267-z Aslan E, Aksu A, Korkmaz NE, Taskin OS, Caglar NB. Monitoring the antioxidant activities by extracting the polyphenolic contents of algae collected from the Bosphorus. Mar Pollut Bull [Internet]. abril de 2019;141:313–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0025326X19301596 Álvarez-Gomez F, Korbee N, Figueroa FL. Analysis of antioxidant capacity and bioactive compounds in marine macroalgal and lichenic extracts using different solvents and evaluation methods. Cienc Mar [Internet]. el 20 de diciembre de 2016;42(4):271–88. Disponible en: http://cienciasmarinas.com.mx/index.php/cmarinas/article/view/2677 Cruces E, Huovinen P, Gomez I. Stress proteins and auxiliary anti stress compounds in intertidal macroalgae. Lat Am J Aquat Res [Internet]. el 10 de noviembre de 2012;40(4):822–34. Disponible en: http://www.lajar.cl/pdf/imar/v40n4/Articulo_40_4_01.pdf Lamare MD, Lesser MP, Barker MF, Barry TM, Schimanski KB. Variation in sunscreen compounds (mycosporine‐like amino acids) for marine species along a gradient of ultraviolet radiation transmission within doubtful sound, New Zealand. N Z J Mar Freshwater Res [Internet]. diciembre de 2004;38(5):775–93. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00288330.2004.9517277 Farvin KHS, Surendraraj A, Al-Ghunaim A, Al-Yamani F. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. J Appl Phycol [Internet]. el 30 de agosto de 2019;31(4):2653–68. Disponible en: http://link.springer.com/10.1007/s10811-019-1739-8 Shanura Fernando IP, Asanka Sanjeewa KK, Samarakoon KW, Kim HS, Gunasekara UKDSS, Park YJ, et al. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. J Appl Phycol [Internet]. el 3 de diciembre de 2018;30(6):3223–32. Disponible en: http://link.springer.com/10.1007/s10811-018-1415-4 Guinea M, Franco V, Araujo-Bazán L, Rodríguez-Martín I, González S. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae. Food and Chemical Toxicology [Internet]. marzo de 2012;50(3–4):1109–17. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0278691512000130 Beach KS, Borgeas HB, Smith CM. Ecophysiological implications of the measurement of transmittance and reflectance of tropical macroalgae. Phycologia [Internet]. el 28 de julio de 2006;45(4):450–7. Disponible en: https://www.tandfonline.com/doi/full/10.2216/05-30.1 Mikami K, Hosokawa M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int J Mol Sci [Internet]. el 2 de julio de 2013;14(7):13763–81. Disponible en: http://www.mdpi.com/1422-0067/14/7/13763 Nurjanah, Suwandi R, Anwar E, Maharany F, Hidayat T. Characterization and formulation of sunscreen from seaweed Padina australis and Euchema cottonii slurry. IOP Conf Ser Earth Environ Sci [Internet]. el 19 de diciembre de 2019;404:012051. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012051 García-Sánchez M, Korbee N, Pérez-Ruzafa IM, Marcos C, Figueroa FL, Pérez-Ruzafa Á. Living in a coastal lagoon environment: Photosynthetic and biochemical mechanisms of key marine macroalgae. Mar Environ Res [Internet]. octubre de 2014;101:8–21. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113614001421 Oliveira NM, Meira CLC, Aguiar RM, De Oliveira DM, Moura CWN, Augusto Vieira Filho S c. Biological activities of extracts from Padina boergesenii and Sargassum stenophyllum , Seaweeds naturally found in baia de todos os santos, Brazil. Int J Pharm Pharm Sci. 2015;7(1):350–3. Nurjanah, Luthfiyana N, Hidayat T, Nurilmala M, Anwar E. Utilization of seaweed porridge Sargassum sp. and Eucheuma cottonii as cosmetic in protecting skin. IOP Conf Ser Earth Environ Sci [Internet]. el 23 de mayo de 2019;278:012055. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/278/1/012055 Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon YJ, et al. Fucoidan refined by Sargassum confusum indicate protective effects suppressing photo-oxidative stress and skin barrier perturbation in UVB-induced human keratinocytes. Int J Biol Macromol [Internet]. diciembre de 2020;164:149–61. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813020338903 Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-Photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms. Mar Drugs [Internet]. el 15 de agosto de 2020;18(8):427. Disponible en: https://www.mdpi.com/1660-3397/18/8/427 Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon YJ, et al. Step gradient alcohol precipitation for the purification of low molecular weight fucoidan from Sargassum siliquastrum and its UVB protective effects. Int J Biol Macromol [Internet]. noviembre de 2020;163:26–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813020336813 Prasedya, Syafitri, Geraldine, Hamdin, Frediansyah, Miyake, et al. UVA Photoprotective Activity of Brown Macroalgae Sargassum cristafolium. Biomedicines [Internet]. el 27 de septiembre de 2019;7(4):77. Disponible en: https://www.mdpi.com/2227-9059/7/4/77 Xiao X, de Bettignies T, Olsen YS, Agusti S, Duarte CM, Wernberg T. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming. Munderloh UG, editor. PLoS One [Internet]. el 2 de diciembre de 2015;10(12):e0143031. Disponible en: https://dx.plos.org/10.1371/journal.pone.0143031 Harnita ANI, Santosa IgnE, Martono S, Sudarsono S, Widyarini S, Harren FJM. Inhibition of Lipid Peroxidation Induced by Ultraviolet Radiation by Crude Phlorotannis Isolated from Brown Algae Sargassum hystrix v. buxifolium C. Agardh. Indonesian Journal of Chemistry [Internet]. el 6 de mayo de 2013;13(1):14–20. Disponible en: http://10.13.241.244/index.php/ijc/article/view/21320 Jiang H, Yang S, Chakka VP, Qian W, Wei X, Zhu Q, et al. Purification and Biological Activities of Enzymatically Degraded Sargassum fusiforme Polysaccharides. Chem Biodivers [Internet]. el 10 de marzo de 2021;18(3). Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/cbdv.202000930 Kim JA, Ahn BN, Kong CS, Kim SK. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. British Journal of Dermatology [Internet]. mayo de 2013;168(5):968–76. Disponible en: http://doi.wiley.com/10.1111/bjd.12187 Fernando PMDJ, Piao MJ, Hewage SRKM, Kang HK, Yoo ES, Koh YS, et al. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes. Environ Toxicol Pharmacol [Internet]. abril de 2016;43:112–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1382668916300345 Shank GC, Lee R, Vähätalo A, Zepp RG, Bartels E. Production of chromophoric dissolved organic matter from mangrove leaf litter and floating Sargassum colonies. Mar Chem [Internet]. abril de 2010;119(1–4):172–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304420310000204 Wang L, Lee W, Oh J, Cui Y, Ryu B, Jeon YJ. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways in vitro in Human Dermal Fibroblasts. Mar Drugs [Internet]. el 17 de julio de 2018;16(7):239. Disponible en: http://www.mdpi.com/1660-3397/16/7/239 Hwang PA, Yan MD, Kuo KL, Phan NN, Lin YC. A mechanism of low molecular weight fucoidans degraded by enzymatic and acidic hydrolysis for the prevention of UVB damage. J Appl Phycol [Internet]. el 24 de febrero de 2017;29(1):521–9. Disponible en: http://link.springer.com/10.1007/s10811-016-0929-x Lee C, Park GH, Ahn EM, Park CI, Jang JH. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses. Evidence-Based Complementary and Alternative Medicine [Internet]. 2013;2013:1–10. Disponible en: http://www.hindawi.com/journals/ecam/2013/747846/ Budhiyanti SA, Raharjo S, Marseno DW, Lelana IYB. Antioxidant activity of brown algae Sargassum species extracts from the coastline of Java island. Am J Agric Biol Sci [Internet]. el 1 de marzo de 2012;7(3):337–46. Disponible en: http://thescipub.com/abstract/10.3844/ajabssp.2012.337.346 Polo LK, de L. Felix MR, Kreusch M, Pereira DT, Costa GB, Simioni C, et al. Photoacclimation Responses of the Brown Macroalga Sargassum Cymosum to the Combined Influence of UV Radiation and Salinity: Cytochemical and Ultrastructural Organization and Photosynthetic Performance. Photochem Photobiol [Internet]. mayo de 2014;90(3):560–73. Disponible en: http://doi.wiley.com/10.1111/php.12224 Yu Y, Wang L, Fu X, Wang L, Fu X, Yang M, et al. Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum . J Oceanol Limnol [Internet]. el 28 de mayo de 2019;37(3):836–47. Disponible en: http://link.springer.com/10.1007/s00343-019-8138-5 Polo LK, Chow F. Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory. Sci Mar [Internet]. el 3 de marzo de 2020;84(1):59. Disponible en: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844 Lim SN, Cheung PCK, Ooi VEC, Ang PO. Evaluation of Antioxidative Activity of Extracts from a Brown Seaweed, Sargassum siliquastrum. J Agric Food Chem [Internet]. junio de 2002;50(13):3862–6. Disponible en: https://pubs.acs.org/doi/10.1021/jf020096b Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B [Internet]. 2009;95(2):101–7. Disponible en: http://dx.doi.org/10.1016/j.jphotobiol.2008.11.011 Jesumani V, Du H, Pei P, Aslam M, Huang N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum . Achal V, editor. PLoS One [Internet]. el 7 de enero de 2020;15(1):e0227308. Disponible en: https://dx.plos.org/10.1371/journal.pone.0227308 Ayyad SE, Basaif S, Badria A, Ezmirly S, Alarif W, Badria F. Antioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum sp. Pharmacognosy Res [Internet]. 2011;3(3):160. Disponible en: http://www.phcogres.com/text.asp?2011/3/3/160/85000 Sari D, Saputra E, Alamsjah M. Potential of Fucoxanthin Content in Sargassum sp. on Sunscreen Cream Preparation. International Journal of recent technology and engineering. abril de 2019;7(6S2). Guan W, Chen H, Wang T, Chen S, Xu J. Effect of the solar ultraviolet radiation on the growth and fluorescence parameters of Sargassum horneri. Journal of Fisheries of China. el 1 de enero de 2016;40(1):83–91. Nurilmala M, Anwar E, Luthfiyana N, Hidayat T. Identification of Bioactive Compounds of Seaweed Sargassum sp. and Eucheuma cottonii Doty as a Raw Sunscreen Cream. Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences B Life and Environmental Sciences. 2017;54(4):311–8. Vasconcelos JB, de Vasconcelos ERTPP, Urrea-Victoria V, Bezerra PS, Reis TNV, Cocentino ALM, et al. Antioxidant activity of three seaweeds from tropical reefs of Brazil: potential sources for bioprospecting. J Appl Phycol [Internet]. el 15 de abril de 2019 [citado el 29 de marzo de 2021];31(2):835–46. Disponible en: https://link.springer.com/article/10.1007/s10811-018-1556-5 Prasedya ES, Ariyana M, Hamdin CD, Nikmatullah A, Yoshie S, Miyake M, et al. Evaluation of Indonesian selected macroalgae for their antitumor and cytoprotective activity. J Appl Pharm Sci [Internet]. noviembre de 2018;8(11):123–30. Disponible en: http://www.japsonline.com/abstract.php?article_id=2772 Movahhedin N, Nazemiyeh H, Barar J, Esnaashari S, Movahhedin AH. Chemical Constituent and Biological Activities of Spatoglossum asperum J. Agardh from Oman Sea. Lett Drug Des Discov [Internet]. el 31 de enero de 2018;15(3). Disponible en: http://www.eurekaselect.com/151409/article Venkatesan M, Arumugam V, Pugalendi R, Ramachandran K, Sengodan K, Vijayan SR, et al. Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Process Biochemistry [Internet]. septiembre de 2019;84:196–204. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1359511319300558 European Commission. CosIng - Cosmetics - GROWTH - European Commission [Internet]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simple Carefoot TH, Harris M, Taylor BE, Donovan D, Karentz D. Mycosporine-like amino acids: possible UV protection in eggs of the sea hare Aplysia dactylomela. Mar Biol [Internet]. el 9 de febrero de 1998;130(3):389–96. Disponible en: http://link.springer.com/10.1007/s002270050259 Pereira DT, Pereira B, Fonseca A, Ramlov F, Maraschin M, Álvarez‐Gómez F, et al. Effects of Ultraviolet Radiation UV‐A+UV‐B) on the Antioxidant Metabolism of the Red Macroalga Species Acanthophora spicifera (Rhodophyta, Ceramiales) From Different Salinity and Nutrient Conditions. Photochem Photobiol [Internet]. el 15 de marzo de 2019;php.13094. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/php.13094 Ouriques LC, Pereira DT, Simioni C, Ramlov F, Maraschin M, Bouzon ZL, et al. Physiological, morphological and ultrastructural responses to exposure to ultraviolet radiation in the red alga Aglaothamnion uruguayense (W.R. Taylor). Brazilian Journal of Botany [Internet]. el 31 de septiembre de 2017;40(3):783–91. Disponible en: http://link.springer.com/10.1007/s40415-017-0372-5 Figueroa FL, Bueno A, Korbee N, Santos R, Mata L, Schuenhoff A. Accumulation of Mycosporine-like amino acids in Asparagopsis armata Grown in Tanks with Fishpond Effluents of Gilthead Sea Bream, Sparus aurata . J World Aquac Soc [Internet]. octubre de 2008;39(5):692–9. Disponible en: http://doi.wiley.com/10.1111/j.1749-7345.2008.00199.x Gambichler V, Zuccarello GC, Karsten U. Seasonal changes in stress metabolites of native and introduced red algae in New Zealand. J Appl Phycol [Internet]. el 23 de abril de 2021;33(2):1157–70. Disponible en: http://link.springer.com/10.1007/s10811-020-02365-0 Orfanoudaki M, Hartmann A, Miladinovic H, Nguyen Ngoc H, Karsten U, Ganzera M. Bostrychines A–F, Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from the Red Alga Bostrychia scorpioides . Mar Drugs [Internet]. el 14 de junio de 2019;17(6):356. Disponible en: https://www.mdpi.com/1660-3397/17/6/356 Lalegerie F, Lajili S, Bedoux G, Taupin L, Stiger-Pouvreau V, Connan S. Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs). Mar Environ Res [Internet]. mayo de 2019;147:37–48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113618308766 Karsten U, Sawall T, West J, Wiencke C. Ultraviolet sunscreen compounds in epiphytic red algae from mangroves. Hydrobiologia [Internet]. 2000 [citado el 29 de marzo de 2021];432(1–3):159–71. Disponible en: https://link.springer.com/article/10.1023/A:1004046909810 Kannaujiya VK, Richa, Sinha RP. Peroxide scavenging potential of ultraviolet-B-absorbing mycosporine-like amino acids isolated from a marine red alga Bryocladia sp. Front Environ Sci [Internet]. el 25 de junio de 2014;2. Disponible en: http://journal.frontiersin.org/article/10.3389/fenvs.2014.00026/full van de Poll WH, Bischof K, Buma AGJ, Breeman AM. Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiol Plant [Internet]. el 1 de mayo de 2003 [citado el 29 de marzo de 2021];118(1):74–83. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12702016/ Hartmann A, Becker K, Karsten U, Remias D, Ganzera M. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens . Mar Drugs [Internet]. el 9 de octubre de 2015;13(10):6291–305. Disponible en: http://www.mdpi.com/1660-3397/13/10/6291 Helbling EW, Barbieri ES, Sinha RP, Villafañe VE, Häder DP. Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation. J Photochem Photobiol B [Internet]. julio de 2004;75(1–2):63–71. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134404000673 Häder DP, Lebert M, Walter Helbling E. Variable fluorescence parameters in the filamentous Patagonian rhodophytes, Callithamnion gaudichaudii and Ceramium sp. under solar radiation. J Photochem Photobiol B [Internet]. enero de 2004;73(1–2):87–99. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134403001672 Orfanoudaki M, Hartmann A, Karsten U, Ganzera M. Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. Müller K, editor. J Phycol [Internet]. el 31 de abril de 2019;55(2):393–403. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12827 Véliz K, Chandía N, Bischof K, Thiel M. Geographic Variation of UV Stress Tolerance in Red Seaweeds Does Not Scale with Latitude Along the SE Pacific Coast. Amsler C, editor. J Phycol [Internet]. agosto de 2020;56(4):1090–102. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.13009 Véliz K, Chandía N, Karsten U, Lara C, Thiel M. Geographic variation in biochemical and physiological traits of the red seaweeds Chondracanthus chamissoi and Gelidium lingulatum from the south east Pacific coast. J Appl Phycol [Internet]. el 4 de febrero de 2019;31(1):665–82. Disponible en: http://link.springer.com/10.1007/s10811-018-1532-0 Pandey A, Pandey S, Rajneesh -, Pathak J, Ahmed H, Singh V, et al. Mycosporine-Like Amino Acids (MAAs) Profile of Two Marine Red Macroalgae, Gelidium sp. and Ceramium sp. Int J Appl Sci Biotechnol. 2017;5(1):12–21. Jofre J, Celis-Plá PSM, Figueroa FL, Navarro NP. Seasonal Variation of Mycosporine-Like Amino Acids in Three Subantarctic Red Seaweeds. Mar Drugs [Internet]. el 24 de enero de 2020;18(2):75. Disponible en: https://www.mdpi.com/1660-3397/18/2/75 Yang Y, Liu D, Wu J, Chen Y, Wang S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int J Biol Macromol [Internet]. diciembre de 2011;49(5):1031–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813011003412 Ryu B, Qian Z ji, Kim M moo, Wan K, Kim S kwon. Anti-photoaging activity and inhibition of matrix metalloproteinase ( MMP ) by marine red alga Corallina pilulifera methanol extract. 2009;78:98–105. Häder DP, Lebert M, Walter Helbling E. Effects of Solar Radiation on the Patagonian Rhodophyte Corallina officinatis (L.). Photosynth Res [Internet]. 2003;78(2):119–32. Disponible en: http://link.springer.com/10.1023/B:PRES.0000004300.20503.18 Pallela R, Na-Young Y, Kim SK. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms. Mar Drugs [Internet]. el 8 de abril de 2010;8(4):1189–202. Disponible en: http://www.mdpi.com/1660-3397/8/4/1189 Raikou V, Protopapa E, Kefala V. Photo-protection from Marine organisms. Review of Clinical Pharmacology and Pharmacokinetics. 2011;25(3):131–6. Betancor S, Domínguez B, Tuya F, Figueroa FL, Haroun R. Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquat Bot [Internet]. febrero de 2015;121:16–25. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304377014001612 Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C. Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Botanica Marina [Internet]. el 26 de enero de 2004;47(1). Disponible en: https://www.degruyter.com/document/doi/10.1515/BOT.2004.003/html Khatulistiani TS, Noviendri D, Munifah I, Melanie S. Bioactivities of red seaweed extracts from Banten, Indonesia. IOP Conf Ser Earth Environ Sci [Internet]. el 19 de diciembre de 2019;404:012065. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012065 de la Coba F, Aguilera J, Korbee N, de Gálvez M, Herrera-Ceballos E, Álvarez-Gómez F, et al. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). Mar Drugs [Internet]. el 14 de enero de 2019;17(1):55. Disponible en: http://www.mdpi.com/1660-3397/17/1/55 Vega J, Bonomi-barufi J, G JL, Figueroa FL. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs. 2020;18(659). Parailloux M, Godin S, Fernandes SCM, Lobinski R. Untargeted Analysis for Mycosporines and Mycosporine-Like Amino Acids by Hydrophilic Interaction Liquid Chromatography (HILIC)—Electrospray Orbitrap MS2/MS3. Antioxidants [Internet]. el 26 de noviembre de 2020;9(12):1185. Disponible en: https://www.mdpi.com/2076-3921/9/12/1185 Lee TM, Shiu CT. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii. Mar Environ Res [Internet]. febrero de 2009;67(1):8–16. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113608002158 de la Coba F, Aguilera J, Figueroa FL, de Gálvez M v., Herrera E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J Appl Phycol [Internet]. el 21 de abril de 2009;21(2):161–9. Disponible en: http://link.springer.com/10.1007/s10811-008-9345-1 Zheng Y. Combined effects of light and nitrate supplies on the growth, photosynthesis and ultraviolet-absorbing compounds in marine macroalga Gracilaria lemaneiformis (Rhodophyta), with special reference to the effects of solar ultraviolet radiation. Phycological Res [Internet]. abril de 2013;61(2):89–97. Disponible en: http://doi.wiley.com/10.1111/pre.12002 Andriani Y, Syamsumir DF, Yee TC, Harisson FS, Herng GM, Abdullah SA, et al. Biological Activities of Isolated Compounds from Three Edible Malaysian Red Seaweeds, Gracilaria changii , G. manilaensis and Gracilaria sp. Nat Prod Commun [Internet]. el 1 de agosto de 2016;11(8):1934578X1601100. Disponible en: http://journals.sagepub.com/doi/10.1177/1934578X1601100822 Beach KS, Borgeas HB, Nishimura NJ, Smith CM. In vivo absorbance spectra and the ecophysiology of reef macroalgae. Coral Reefs [Internet]. el 20 de febrero de 1997;16(1):21–8. Disponible en: http://link.springer.com/10.1007/s003380050055 Roleda MY, Nyberg CD, Wulff A. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta). Physiol Plant [Internet]. octubre de 2012;146(2):205–16. Disponible en: http://doi.wiley.com/10.1111/j.1399-3054.2012.01615.x Barufi JB, Korbee N, Oliveira MC, Figueroa FL. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J Appl Phycol [Internet]. el 20 de junio de 2011;23(3):457–66. Disponible en: http://link.springer.com/10.1007/s10811-010-9603-x Cardozo KHM, Marques LG, Carvalho VM, Carignan MO, Pinto E, Marinho-Soriano E, et al. Analyses of photoprotective compounds in red algae from the Brazilian coast. Revista Brasileira de Farmacognosia [Internet]. abril de 2011;21(2):202–8. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2011000200002&lng=en&nrm=iso&tlng=en Xu J, Gao K. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J Photochem Photobiol B [Internet]. septiembre de 2010;100(3):117–22. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134410001284 Gao K, Xu J. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur J Phycol [Internet]. agosto de 2008;43(3):297–307. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/09670260801986837 Xu J, Gao K. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. J Appl Phycol [Internet]. el 7 de octubre de 2008;20(5):681–6. Disponible en: http://link.springer.com/10.1007/s10811-007-9247-7 Iyapparaj P, Immanuel G, Ramasubburayan R, Esakkiraj P, Sankaralingam S, Navin Chandran M, et al. Effect of ultra violet radiation on pigments profile of seaweeds Gracillaria edulis and Hypnea musciformis. Biosci Biotechnol Res Asia. 2010;7(1):199–207. Malida Ver M, Putu Wiraw IG, Made Jawi I, Sritamin M, Ayu Dewi NN, Ayu Mirah AA. Anti-inflammatory Effect of Red Macroalgae Bulung Sangu (Gracilaria sp.) Extract in UVB-Irradiated Mice. Pakistan Journal of Biological Sciences [Internet]. el 15 de diciembre de 2021;24(1):80–9. Disponible en: https://www.scialert.net/abstract/?doi=pjbs.2021.80.89 Bonomi-Barufi J, Figueroa FL, Korbee N, Momoli MM, Martins AP, Colepicolo P, et al. How macroalgae can deal with radiation variability and photoacclimation capacity: The example of Gracilaria tenuistipitata (Rhodophyta) in laboratory. Algal Res [Internet]. septiembre de 2020;50:102007. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926420301260 Cruces E, Flores-Molina MR, Díaz MJ, Huovinen P, Gómez I. Phenolics as photoprotective mechanism against combined action of UV radiation and temperature in the red alga Gracilaria chilensis? J Appl Phycol [Internet]. el 15 de abril de 2018;30(2):1247–57. Disponible en: http://link.springer.com/10.1007/s10811-017-1304-2 Wu S, Lu M, Wang S. Amylase-assisted extraction and antioxidant activity of polysaccharides from Gracilaria lemaneiformis . 3 Biotech [Internet]. el 24 de mayo de 2017;7(1):38. Disponible en: http://link.springer.com/10.1007/s13205-017-0697-6 Chaves-Peña P, de la Coba F, Figueroa FL, Korbee N. Quantitative and Qualitative HPLC Analysis of Mycosporine-Like Amino Acids Extracted in Distilled Water for Cosmetical Uses in Four Rhodophyta. Mar Drugs [Internet]. el 28 de diciembre de 2019;18(1):27. Disponible en: https://www.mdpi.com/1660-3397/18/1/27 Álvarez‐Gómez F, Korbee N, Figueroa FL. Effects of UV Radiation on Photosynthesis, Antioxidant Capacity and the Accumulation of Bioactive Compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta). Henley W, editor. J Phycol [Internet]. el 19 de diciembre de 2019;55(6):1258–73. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12899 Álvarez-Gómez F, Korbee N, Casas-Arrojo V, Abdala-Díaz R, Figueroa F. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules [Internet]. el 18 de enero de 2019;24(2):341. Disponible en: http://www.mdpi.com/1420-3049/24/2/341 Álvarez-Gómez F, Bouzon ZL, Korbee N, Celis-Plá P, Schmidt ÉC, Figueroa FL. Combined effects of UVR and nutrients on cell ultrastructure, photosynthesis and biochemistry in Gracilariopsis longissima (Gracilariales, Rhodophyta). Algal Res [Internet]. septiembre de 2017;26:190–202. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926417304125 Torres PB, Chow F, Ferreira MJP, dos Santos DYAC. Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) and its variation under high light. J Appl Phycol [Internet]. el 10 de junio de 2016;28(3):2035–40. Disponible en: http://link.springer.com/10.1007/s10811-015-0708-0 Torres PB, Chow F, Santos DYAC. Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture. J Appl Phycol [Internet]. el 25 de junio de 2015;27(3):1243–51. Disponible en: http://link.springer.com/10.1007/s10811-014-0418-z Félix C, Félix R, Carmona AM, Januário AP, Dias PDM, Vicente TFL, et al. Cosmeceutical Potential of Grateloupia turuturu : Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Applied Sciences [Internet]. el 12 de febrero de 2021;11(4):1650. Disponible en: https://www.mdpi.com/2076-3417/11/4/1650 Félix R, Carmona AM, Félix C, Novais SC, Lemos MFL. Industry-Friendly Hydroethanolic Extraction Protocols for Grateloupia turuturu UV-Shielding and Antioxidant Compounds. Applied Sciences [Internet]. el 31 de julio de 2020;10(15):5304. Disponible en: https://www.mdpi.com/2076-3417/10/15/5304 Hoyer K, Karsten U, Wiencke C. Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar Biol [Internet]. el 1 de octubre de 2002;141(4):619–27. Disponible en: http://link.springer.com/10.1007/s00227-002-0871-0 Figueroa FL, Korbee N, Abdala R, Jerez CG, López-de la Torre M, Güenaga L, et al. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta). Mar Pollut Bull [Internet]. febrero de 2012;64(2):310–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0025326X11006047 Schmidt ÉC, Pereira B, dos Santos RW, Gouveia C, Costa GB, Faria GSM, et al. Responses of the macroalgae Hypnea musciformis after in vitro exposure to UV-B. Aquat Bot [Internet]. julio de 2012;100:8–17. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304377012000393 Beach KS, Smith CM. Ecophysiology of tropical rodophytes. I. Microscale acclimation in pigmentation. J Phycol [Internet]. octubre de 1996;32(5):701–10. Disponible en: http://doi.wiley.com/10.1111/j.0022-3646.1996.00701.x Karentz D, McEuen FS, Land MC, Dunlap WC. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar Biol [Internet]. febrero de 1991;108(1):157–66. Disponible en: http://link.springer.com/10.1007/BF01313484 Walter Helbling E, Fernando Menchi C, Villafañe VE. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem Photobiol Sci [Internet]. 2002;1(10):820–5. Disponible en: http://xlink.rsc.org/?DOI=B206584C Hartmann A, Murauer A, Ganzera M. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. J Pharm Biomed Anal [Internet]. mayo de 2017;138:153–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0731708516312250 Mercurio DG, Wagemaker TAL, Alves VM, Benevenuto CG, Gaspar LR, Maia Campos PMBG. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J Photochem Photobiol B [Internet]. diciembre de 2015;153:121–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134415003073 Bhatia S, Sharma K, Namdeo A, Chaugule B, Kavale M, Nanda S. Broad-spectrum sun-protective action of Porphyra-334 derived from Porphyra vietnamensis . Pharmacognosy Res [Internet]. 2010;2(1):45. Disponible en: http://www.phcogres.com/text.asp?2010/2/1/45/60578 Karsten U, Escoubeyrou K, Charles F. The effect of re-dissolution solvents and HPLC columns on the analysis of mycosporine-like amino acids in the eulittoral macroalgae Prasiola crispa and Porphyra umbilicalis. Helgol Mar Res [Internet]. el 14 de septiembre de 2009;63(3):231–8. Disponible en: http://link.springer.com/10.1007/s10152-009-0152-0 Fu S, Xue S, Chen J, Shang S, Xiao H, Zang Y, et al. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int J Mol Sci [Internet]. el 22 de febrero de 2021;22(4):2180. Disponible en: https://www.mdpi.com/1422-0067/22/4/2180 Ishihara K, Oyamada C, Sato Y, Danno H, Kimiya T, Kaneniwa M, et al. Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori Porphyra yezoensis. Fisheries Science [Internet]. febrero de 2008;74(1):167–73. Disponible en: http://link.springer.com/10.1111/j.1444-2906.2007.01506.x Conde FR, Churio MS, Previtali CM. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol B [Internet]. julio de 2000;56(2–3):139–44. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S101113440000066X Guinobert I, Blondeau C, Burnet H, Antonowicz K, Guilbot A. Effet d’une association de Porphyra umbilicalis, de Polypodium leucotomos et de vitamines C et E sur la dose érythémateuse minimale chez des volontaires sains. Phytothérapie [Internet]. el 31 de agosto de 2016;14(4):246–50. Disponible en: http://link.springer.com/10.1007/s10298-016-1067-y Kulkarni A, Lee JH, Seo HH, Kim HS, Cho MJ, Shin DS, et al. Photoinduced conductivity in mycosporine-like amino acids. Mater Chem Phys [Internet]. febrero de 2015;151:1–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0254058414007706 Becker K, Hartmann A, Ganzera M, Fuchs D, Gostner J. Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Mar Drugs [Internet]. el 21 de junio de 2016;14(6):119. Disponible en: http://www.mdpi.com/1660-3397/14/6/119 Ying R, Zhang Z, Zhu H, Li B, Hou H. The Protective Effect of Mycosporine-Like Amino Acids (MAAs) from Porphyra yezoensis in a Mouse Model of UV Irradiation-Induced Photoaging. Mar Drugs [Internet]. el 14 de agosto de 2019;17(8):470. Disponible en: https://www.mdpi.com/1660-3397/17/8/470 Guihéneuf F, Gietl A, Stengel DB. Temporal and spatial variability of mycosporine-like amino acids and pigments in three edible red seaweeds from western Ireland. J Appl Phycol [Internet]. el 21 de agosto de 2018;30(4):2573–86. Disponible en: http://link.springer.com/10.1007/s10811-018-1436-z Hartmann A, Gostner J, Fuchs J, Chaita E, Aligiannis N, Skaltsounis L, et al. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. Planta Med [Internet]. el 3 de junio de 2015;81(10):813–20. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0035-1546105 Jiang H, Gao K, Walter Helbling E. The conchocelis of Porphyra Haitanensis (Rhodophyta) is protected from harmful UV radiation by the covering calcareous matrix. J Phycol [Internet]. diciembre de 2009;45(6):1270–7. Disponible en: http://doi.wiley.com/10.1111/j.1529-8817.2009.00755.x Ryu J, Park SJ, Kim IH, Choi YH, Nam TJ. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med [Internet]. septiembre de 2014;34(3):796–803. Disponible en: https://www.spandidos-publications.com/10.3892/ijmm.2014.1815 Korbee N, Figueroa FL, Aguilera J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B [Internet]. agosto de 2005;80(2):71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134405000606 Jiang H, Gao K, Helbling EW. UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of desiccation. J Appl Phycol [Internet]. el 30 de agosto de 2008;20(4):387–95. Disponible en: http://link.springer.com/10.1007/s10811-007-9268-2 Rui Y, Zhaohui Z, Wenshan S, Bafang L, Hu H. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J Photochem Photobiol B [Internet]. marzo de 2019;192:26–33. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134418309096 Arróniz-Crespo M, Sinha RP, Martínez-Abaigar J, Núñez-Olivera E, Häder DP. Ultraviolet Radiation-Induced Changes in Mycosporine-Like Amino Acids and Physiological Variables in the Red Alga Lemanea fluviatilis. J Freshw Ecol [Internet]. diciembre de 2005;20(4):677–87. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/02705060.2005.9664791 Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol [Internet]. el 11 de marzo de 2005;146(4):645–54. Disponible en: http://link.springer.com/10.1007/s00227-004-1484-6 Tartarotti B, Sommaruga R. The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and Zooplankton. Fundamental and Applied Limnology [Internet]. el 7 de agosto de 2002;154(4):691–703. Disponible en: http://www.schweizerbart.de/papers/fal/detail/154/85788/The_effect_of_different_methanol_concentrations_an?af=crossref Peinado NK, Abdala Díaz RT, Figueroa FL, Helbling EW. Ammonium and UV radiation stimulate the accumulation of Mycosporine-like amino acids in Porphyra Columbina (Rhodophyta) from Patagonia, Argentina. J Phycol [Internet]. abril de 2004;40(2):248–59. Disponible en: http://doi.wiley.com/10.1046/j.1529-8817.2004.03013.x Sivalingam PM, Ikawa T, Nisizawa K. Isolation and Physico-chemical Properties of a Substance 334 from the Red Alga, Porphyra yezoensis Ueda. Botanica Marina [Internet]. 1976;19(1):1–8. Disponible en: https://www.degruyter.com/document/doi/10.1515/botm.1976.19.1.1/html Gröniger A, Hallier C, Häder DP. Influence of UV radiation and visible light on Porphyra umbilicalis: Photoinhibition and MAA concentration. J Appl Phycol [Internet]. 1999 [citado el 29 de marzo de 2021];11(5):437–45. Disponible en: https://link.springer.com/article/10.1023/A:1008179322198 Ying R, Zhang Z, Duan X, Zhao T, Liu A, Li B. Effects of mycosporine-like amino acids from Porphyra haitanensis on skin photoaging. Journal of Fisheries of China. el 1 de junio de 2017;41(6):937–43. Pliego-Cortés H, Bedoux G, Boulho R, Taupin L, Freile-Pelegrín Y, Bourgougnon N, et al. Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Res [Internet]. agosto de 2019;41:101542. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926418310828 Yuan Y V., Westcott ND, Hu C, Kitts DD. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem [Internet]. enero de 2009;112(2):321–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814608006286 Yuan Y V., Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food and Chemical Toxicology [Internet]. julio de 2005;43(7):1073–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0278691505000761 van de Poll WH, Eggert A, Buma AGJ, Breeman AM. Effects of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: Habitat-related differences in UV-B tolerance. J Phycol [Internet]. el 6 de febrero de 2001;37(1):30–8. Disponible en: http://doi.wiley.com/10.1046/j.1529-8817.2001.037001030.x Boulho R, Le Roux J, Le Quémener C, Audo G, Bourgougnon N, Bedoux G. Fractionation of UV-B absorbing molecules and of free radical scavenging compounds from Solieria chordalis by using centrifugal partition chromatography. Phytochem Lett [Internet]. junio de 2017;20:410–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1874390017301738 Bedoux G, Hardouin K, Marty C, Taupin L, Vandanjon L, Bourgougnon N. Chemical characterization and photoprotective activity measurement of extracts from the red macroalga Solieria chordalis . Botanica Marina [Internet]. el 1 de enero de 2014;57(4). Disponible en: https://www.degruyter.com/document/doi/10.1515/bot-2013-0118/html Algae Biomass Organization. Why Algae? - Algae Biomass Organization [Internet]. [citado el 19 de diciembre de 2022]. Disponible en: https://algaebiomass.org/resource-center/why-algae-2/ McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Scientific Reports 2017 7:1 [Internet]. el 5 de diciembre de 2017 [citado el 19 de diciembre de 2022];7(1):1–12. Disponible en: https://www.nature.com/articles/s41598-017-17197-1 US Department of Commerce NO and AA. How does climate change affect coral reefs? Wang H, Wang G, Gu W. Macroalgal blooms caused by marine nutrient changes resulting from human activities. Journal of Applied Ecology [Internet]. el 1 de abril de 2020 [citado el 19 de diciembre de 2022];57(4):766–76. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13587 Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep. el 1 de enero de 2021;38(11):2100–29. Kurita KL, Glassey E, Linington RG. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci U S A [Internet]. el 29 de septiembre de 2015 [citado el 19 de diciembre de 2022];112(39):11999–2004. Disponible en: https://www.pnas.org/doi/abs/10.1073/pnas.1507743112 Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, Rollinger JM, et al. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery 2021 20:3 [Internet]. el 28 de enero de 2021 [citado el 19 de diciembre de 2022];20(3):200–16. Disponible en: https://www.nature.com/articles/s41573-020-00114-z Du X, Zeisel SH. Spectral Deconvolution for Gas Chromatography Mass Spectrometry-Based Metabolomics: Current Status and Future Perspectives. Comput Struct Biotechnol J [Internet]. 2013 [citado el 19 de diciembre de 2022];4(5):e201301013. Disponible en: /pmc/articles/PMC3962095/ Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017 13:9 [Internet]. el 9 de agosto de 2017 [citado el 19 de diciembre de 2022];13(9):1–16. Disponible en: https://link.springer.com/article/10.1007/s11306-017-1242-7 Peng TQ, Yin XL, Gu HW, Sun W, Ding B, Hu XC, et al. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem. el 15 de junio de 2021;347. Jaumot J, Gargallo R, de Juan A, Tauler R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems. el 28 de marzo de 2005;76(1):101–10. de Juan A, Tauler R. Multivariate Curve Resolution-Alternating Least Squares for Spectroscopic Data. En: Data Handling in Science and Technology. Elsevier Ltd; 2016. p. 5–51. Azzouz T, Tauler R. Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples. Talanta. el 15 de febrero de 2008;74(5):1201–10. Sepúlveda, Lady. Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano. [Tesis de Maestría ]. [Bogotá]: Universidad Nacional de Colombia; 2022. Plazas EA, Avila MC, Delgado WA, Patino OJ, Cuca LE. In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants. el 1 de enero de 2018;12(1):9–18. Origin Lab Corporation. Origin(Pro). Northampton, MA; 2019. RStudio Team. RStudio: Integrated Development environment for R [Internet]. Boston,MA; 2022. Disponible en: http://www.rstudio.com/ Microsoft Corporation. Microsoft Excel [Internet]. Disponible en: https://office.microsoft.com/excel The MathWorks Inc. MATLAB R2022a. Natick, MA; 2022. Umetrics. SIMCA 14. Gager L, Connan S, Molla M, Couteau C, Arbona JF, Coiffard L, et al. Active phlorotannins from seven brown seaweeds commercially harvested in Brittany (France) detected by 1H NMR and in vitro assays: temporal variation and potential valorization in cosmetic applications. J Appl Phycol. el 6 de agosto de 2020;32(4):2375–86. Zárate R, Portillo E, Teixidó S, de Carvalho MAAP, Nunes N, Ferraz S, et al. Pharmacological and cosmeceutical potential of Seaweed Beach-casts of macaronesia. Applied Sciences (Switzerland). el 1 de septiembre de 2020;10(17). Springsteen A, Yurek R, Frazier M, Carr KF. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Anal Chim Acta. febrero de 1999;380(2–3):155–64. Valencia-Islas NA, Argüello JJ, Rojas JL. Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum , A lichen from the Andean Páramo. Pharmaceutical Sciences. el 1 de junio de 2021;27(2):281–90. Nash JF, Tanner PR, Matts PJ. Ultraviolet a radiation: Testing and labeling for sunscreen products. Vol. 24, Dermatologic Clinics. 2006. p. 63–74. Fernando IPS, Fernando PWP, Kim T, Ahn G. Structural diversity, biosynthesis, and health-promoting properties of brown algal meroditerpenoids. Critical Reviews in Biotechnology. Taylor and Francis Ltd.; 2021. Gerwick WH, Fenical W, Fritsch N, Clardy J. Stypotriol and stypoldione; ichthyotoxins of mixed biogenesis from the marine alga. Tetrahedron Lett. 1979;20(2):145–8. Soares AR, Duarte HM, Tinnoco LW, Pereira RC, Teixeira VL. Intraspecific variation of meroditerpenoids in the brown alga Stypopodium zonale guiding the isolation of new compounds. Revista Brasileira de Farmacognosia. el 1 de noviembre de 2015;25(6):627–33. Fattorusso E, Gerwick WH, Taglialatela-Scafati O. Handbook of Marine Natural Products [Internet]. Fattorusso E, Gerwick WH, Taglialatela-Scafati O, editores. Dordrecht: Springer Netherlands; 2012. Disponible en: https://link.springer.com/10.1007/978-90-481-3834-0 Instituto de Investigaciones Marinas. Biodiversidad del Margen Continental del Caribe Colombiano. Invemar; 2010. Guiry MD, Guiry GM. AlgaeBase [Internet]. World-wide electronic publication. 2023 [citado el 2 de enero de 2023]. Disponible en: https://www.algaebase.org Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, et al. Diterpenes from the marine algae of the genus dictyota. Vol. 16, Marine Drugs. MDPI AG; 2018. Buitrago P. Estudio de diterpenos marinos de algas del género Dictyota del Caribe Colombiano. Universidad Nacional de Colombua; 2017. Rushdi MI, Abdel-Rahman IAM, Attia EZ, Saber H, Saber AA, Bringmann G, et al. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Vol. 27, Molecules. MDPI; 2022. Rao CB, Trimurtulu G, Sreedhara CH, Rao DV, Boaztnt SC, Faulkner DJ. Diterpenes from the brown alga Dictyota Bartayresiana . 1994;37(2):509–13. Kelecom A, Teixeira VL. Dolastane diterpenes from the marine brown alga Dictyota Cervicornis. Vol. 27, Phytochemistry. 1988. Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, et al. The genus Turbinaria: chemical and pharmacological diversity. Vol. 35, Natural Product Research. Taylor and Francis Ltd.; 2021. p. 4560–78. Caamal-Fuentes E, Moo-Puc R, Freile-Pelegrín Y, Robledo D. Cytotoxic and antiproliferative constituents from Dictyota ciliolata , Padina sanctae-crucis and Turbinaria tricostata . Pharm Biol. el 27 de octubre de 2014;52(10):1244–8. Stranska-Zachariasova M, Kurniatanty I, Gbelcova H, Jiru M, Rubert J, Nindhia TGT, et al. Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chem Biodivers. el 1 de febrero de 2017;14(2). Arguelles EDLR, Sapin AB. Bioprospecting of Turbinaria ornata (Fucales, phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities. Journal of the International Society for Southeast Asian Agricultural Sciences. 2020;26(2):30–41. Nurrochmad A, Wirasti, Dirman A, Lukitaningsih E, Rahmawati A, Fakhrudin N. Effects of antioxidant, anti-collagenase, anti-elastase, anti-tyrosinase of the extract and fraction from Turbinaria decurrens Bory. Indonesian Journal of Pharmacy. 2018;29(4):188–99. Wang L, Jayawardena TU, Hyun J, Wang K, Fu X, Xu J, et al. Antioxidant and anti-photoaging effects of a fucoidan isolated from Turbinaria ornata . Int J Biol Macromol. enero de 2023;225:1021–7. Iglesias MJ, Soengas R, Probert I, Guilloud E, Gourvil P, Mehiri M, et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry. el 1 de agosto de 2019;164:192–205. Smith KM, Goff DA, Abraham RJ. The NMR spectra of porphyrins. 27—proton NMR spectra of chlorophyll-a and pheophytin-a. Organic Magnetic Resonance [Internet]. diciembre de 1984;22(12):779–83. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/mrc.1270221210 Valverde J, This H. 1H NMR quantitative determination of photosynthetic pigments from green beans ( Phaseolus vulgaris L.). J Agric Food Chem. el 23 de enero de 2008;56(2):314–20. Chakdar H, Pabbi S. Algal Pigments for Human Health and Cosmeceuticals. En: Algal Green Chemistry. Elsevier; 2017. p. 171–88. Mohammed HA, Al-Omar MS, El-Readi MZ, Alhowail AH, Aldubayan MA, Abdellatif AAH. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities. Molecules. el 17 de abril de 2019;24(8):1501. Okai Y, Higashi-Okai K. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int J Immunopharmacol [Internet]. junio de 1997 [citado el 24 de enero de 2023];19(6):355–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9467755/ Higashi-Okai K, Otani S, Okai Y. Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin. Cancer Lett [Internet]. el 19 de junio de 1998 [citado el 24 de enero de 2023];129(2):223–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9719465/ Friday C, Igwe OU, Akwada UC. NMR characterization and free radical scavenging activity of pheophytin “a” from the leaves of Dissotis rotundifolia. Bull Chem Soc Ethiop. el 1 de mayo de 2021;35(1):207–15. Lötjönen S, Hynninen PH. Carbon-13 NMR spectra of chlorophyll a, chlorophyll a′, pyrochlorophyll a and the corresponding pheophytins. Organic Magnetic Resonance. diciembre de 1983;21(12):757–65. Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamura M, et al. Fucoxanthin and Its Metabolites in Edible Brown Algae Cultivated in Deep Seawater. Mar Drugs [Internet]. 2004;2:63–72. Disponible en: www.mdpi.net/marinedrugs/ Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae – Recent advances in cultivation strategies and downstream processing. Bioresour Technol. enero de 2022;344:126170. Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira AG, Garcia-Oliveira P, et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol [Internet]. el 1 de noviembre de 2021;117:163–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0924224421002041 Tavares RSN, Kawakami CM, Pereira K de C, do Amaral GT, Benevenuto CG, Maria-Engler SS, et al. Fucoxanthin for Topical Administration, a Phototoxic vs. Photoprotective Potential in a Tiered Strategy Assessed by In Vitro Methods. Antioxidants. el 17 de abril de 2020;9(4):328. Matsui M, Tanaka K, Higashiguchi N, Okawa H, Yamada Y, Tanaka K, et al. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. J Pharmacol Sci. septiembre de 2016;132(1):55–64. Shimoda H, Tanaka J, Shan SJ, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. Journal of Pharmacy and Pharmacology. el 2 de agosto de 2010;62(9):1137–45. Teixeira VL, Tomassini T, Fleury BG, Kelecom A. Dolastane and Secodolastane Diterpenes from the Marine Brown Alga, Dictyota cericornis. J Nat Prod [Internet]. el 1 de julio de 1986;49(4):570–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/np50046a002 De Oliveira AS, Cavalcanti DN, Bianco ÉM, De Paula JC, Pereira RC, Yoneshigue-Valentin Y, et al. Chemical Composition of Diterpenes from the Brown Alga Canistrocarpus cervicornis (Dictyotaceae, Phaeophyceae). https://doi.org/101177/1934578X0800300913 [Internet]. el 1 de septiembre de 2008 [citado el 23 de enero de 2023];3(9):1469–72. Disponible en: https://journals.sagepub.com/doi/abs/10.1177/1934578X0800300913 Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, et al. Diterpenes from the marine algae of the genus dictyota. Vol. 16, Marine Drugs. MDPI AG; 2018. Kobayashi T, Tomita Y, Kawamoto Y, Ito H. Highly stereocontrolled total synthesis of secodolastane diterpenoid isolinearol. Org Biomol Chem. el 7 de octubre de 2020;18(37):7316–20. De-Paula JC, De Gusmão Pedrini A, Pinheiro MD, Pereira RC, Teixeira VL. Chemical similarity between the brown algae Dictyota cervicornis and D. Pardalis (Dictyotales, Phaeophyta). Biochem Syst Ecol [Internet]. 2001 [citado el 23 de enero de 2023];29(4):425–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11182491/ Domingos TFS, Vallim MA, Cavalcanti DN, Sanchez EF, Teixeira VL, Fuly AL. Effect of diterpenes isolated of the marine alga Canistrocarpus cervicornis against some toxic effects of the venom of the Bothrops jararaca snake. Molecules. el 1 de marzo de 2015;20(3):3515–26. Vallim MA, De Paula JC, Pereira RC, Teixeira VL. The diterpenes from Dictyotacean marine brown algae in the Tropical Atlantic American region. Biochem Syst Ecol. 2005;33(1):1–16. De Clerck O, Leliaert F, Verbruggen H, Lane CE, De Paula JC, Payo DA, et al. A revised classification of the Dictyoteae (Dictyotales, phaeophyceae) based on rbc L and 26S ribosomal DNA sequence analyses 1. J Phycol. el 16 de diciembre de 2006;42(6):1271–88. de Paula JC, Vallim MA, Teixeira VL. What are and where are the bioactive terpenoids metabolites from Dictyotaceae (Phaeophyceae). Revista Brasileira de Farmacognosia [Internet]. 2011 [citado el 24 de enero de 2023];21(2):216–28. Disponible en: http://www.scielo.br/j/rbfar/a/j7xM3XSqgLwVdKGGPj4NnHd/?lang=en Bano S, Parveen S, Ahmad VU. Marine Natural Products, XIV. Secodolastane Diterpenoids of Dictyota indica from the Arabian Sea. J Nat Prod [Internet]. el 1 de marzo de 1990 [citado el 23 de enero de 2023];53(2):492–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/np50068a035 Chee CF, Lee HB, Ong HC, Ho ASH. Photocytotoxic pheophorbide-related compounds from Aglaonema simplex. Chem Biodivers. 2005;2(12):1648–55. Saide A, Lauritano C, Ianora A. Pheophorbide a: State of the Art. Mar Drugs. el 14 de mayo de 2020;18(5):257. Lee H, Park HY, Jeong TS. Pheophorbide a Derivatives Exert Antiwrinkle Effects on UVB-Induced Skin Aging in Human Fibroblasts. Life. el 15 de febrero de 2021;11(2):147. Hwang SH, Jang JM, Lim SS. Isolation of fucosterol from Pelvetia siliquosa by high-speed countercurrent chromatography. Fish Aquatic Sci. 2012;15(3):191–5. Meinita MDN, Harwanto D, Tirtawijaya G, Negara BFSP, Sohn JH, Kim JS, et al. Fucosterol of Marine Macroalgae: Bioactivity, Safety and Toxicity on Organism. Mar Drugs [Internet]. el 27 de septiembre de 2021;19(10):545. Disponible en: https://www.mdpi.com/1660-3397/19/10/545 Hwang E, Park SY, Sun Z wang, Shin HS, Lee DG, Yi TH. The Protective Effects of Fucosterol Against Skin Damage in UVB-Irradiated Human Dermal Fibroblasts. Marine Biotechnology. el 20 de junio de 2014;16(3):361–70. Mori K, Koga Y. Synthesis and absolute configuration of (−)-stypoldione. Bioorg Med Chem Lett. enero de 1992;2(5):391–4. Gerwick WH, Fenical W. Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem. el 1 de enero de 1981;46(1):22–7. Mestrelab research. Mnova NMR to visualize, process, analyze & report 1D and 2D NMR data [Internet]. [citado el 10 de abril de 2023]. Disponible en: https://mestrelab.com/software/mnova/nmr/ Arslan Burnaz N, Küçük M, Akar Z. An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J Chromatogr B Analyt Technol Biomed Life Sci. el 1 de mayo de 2017;1052:66–72. Koleva II, Niederländer HAG, Van Beek TA. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures. Anal Chem. 2000;72(10):2323–8. Koleva II, Niederländer HAG, Van Beek TA. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates. Anal Chem. el 15 de julio de 2001;73(14):3373–81. Çelik SE, Asfoor A, Şenol O, Apak R. Screening method for argan oil adulteration with vegetable oils: An online hplc assay with postcolumn detection utilizing chemometric multidata analysis. J Agric Food Chem. el 1 de julio de 2019;67(29):8279–89. Bandoniene D, Murkovic M, Pfannhauser W, Venskutonis PR, Gruzdiene D. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods. European Food Research and Technology. 2002;214(2):143–7. Bandoniene D, Murkovic M. On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J Agric Food Chem. el 24 de abril de 2002;50(9):2482–7. International Conference on harmonisation of technical requirements for registration of pharmaceutical for human use (ICH). Validation of analytical procedures: text and methodology Q2(R1). Garcia-Perez P, Lourenço-Lopes C, Silva A, Pereira AG, Fraga-Corral M, Zhao C, et al. Pigment Composition of Nine Brown Algae from the Iberian Northwestern Coastline: Influence of the Extraction Solvent. Mar Drugs [Internet]. el 31 de enero de 2022;20(2):113. Disponible en: https://www.mdpi.com/1660-3397/20/2/113 Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C. Production, Characterization, and Antioxidant Activity of Fucoxanthin from the Marine Diatom Odontella aurita. Mar Drugs. el 23 de julio de 2013;11(7):2667–81. Wang LJ, Fan Y, Parsons R, Hu GR, Zhang PY, Li FL. A rapid method for the determination of fucoxanthin in Diatom. Mar Drugs. el 22 de enero de 2018;16(1):33. Rückmann I, Zeug A, von Feilitzsch T, Röder B. Orientational relaxation of pheophorbide-a molecules in the ground and in the first excited state measured by transient dichroism spectroscopy. Opt Commun. noviembre de 1999;170(4–6):361–72. Technology – SEDERE. El detector Evaporativo a Difusión de la Luz con evaporación a baja temperatura (LT-ELSD) [Internet]. [citado el 10 de abril de 2022]. Disponible en: https://sedere.com/technology/?lang=es Wang T, Wei J, Wang L, Lu Y, Zhang Q, Wang Y. Effect of Dibutyl phthalate on antioxidant parameters and related gene expression in Daphnia magna . IOP Conf Ser Earth Environ Sci. el 2 de marzo de 2019;227:052052. Sicińska P, Kik K, Bukowska B. Human Erythrocytes Exposed to Phthalates and Their Metabolites Alter Antioxidant Enzyme Activity and Hemoglobin Oxidation. Int J Mol Sci. el 24 de junio de 2020;21(12):4480. Nahas R, Abatis D, Anagnostopoulou MA, Kefalas P, Vagias C, Roussis V. Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 2007;102(3):577–81. Li H, Li L, Zheng Q, Kuroda C, Wang Q. Phaeophytin analogues from Ligularia knorringiana. Molecules. mayo de 2012;17(5):5219–24. Lee S, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa . Arch Pharm Res. septiembre de 2003;26(9):719–22. Ko W, Lee H, Kim N, Jo HG, Woo ER, Lee K, et al. The Anti-Oxidative and Anti-Neuroinflammatory Effects of Sargassum horneri by Heme Oxygenase-1 Induction in BV2 and HT22 Cells. Antioxidants. el 27 de mayo de 2021;10(6):859. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxvii, 208 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84241/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84241/2/1015447265_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84241/3/1015447265_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a cbe492dd15982e3e3c8ab3b9b6a63d57 3e33a7097f49e372464819558e7bc078 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089874930663424 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramos Rodríguez, Freddy Alejandrod29e7005494a89dc2c5c7de26df7eb3bAbril Poveda, Sara Paolac84e3bd3c528aa9028806424b42bb093Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia2023-07-21T15:47:45Z2023-07-21T15:47:45Z2023https://repositorio.unal.edu.co/handle/unal/84241Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos altos índices de cáncer de piel y enfermedades asociadas a la exposición a la radiación reflejan la necesidad de desarrollar métodos efectivos para la protección de la piel. Estos métodos incluyen diferentes sustancias que por su naturaleza química puedan absorber o reflejar la radiación de diferentes longitudes de onda, o bien puedan intervenir en reacciones inducidas por especies reactivas de oxígeno o nitrógeno. Aunque en el mercado existen formulaciones que brindan la protección necesaria para la piel, el aumento en los niveles de radiación que llegan a la superficie de la tierra, las reacciones adversas en algunos usuarios y la acumulación de estos productos en los ecosistemas hacen necesaria la búsqueda de compuestos que brinden la protección adecuada para la piel, con menores efectos secundarios. Con esto en mente, se realizó la revisión sobre los métodos de evaluación de fotoprotección existentes y el potencial de las algas de origen marino como fuente de compuestos con actividad fotoprotectora. Esto mostró que los compuestos aislados de diferentes especies de algas, plantas y microorganismos, se consideran metabolitos con actividad fotoprotectora promisora, mostrando buena estabilidad y biocompatibilidad. En el caso de las algas, la diversidad de compuestos aislados a partir de las pocas especies que se han explorado, son el reflejo del gran potencial que este grupo de organismos puede ofrecer. Para Colombia, país considerado como uno de los más biodiversos en el mundo, avanzar en el estudio de su diversidad ficológica es una tarea pendiente por realizar, en el que se debe fortalecer tanto la investigación que se haga en el área, como el vínculo con la industria cosmética que pueda aprovechar e innovar con este tipo de recursos. A pesar de ello, el estudio de algas marinas para aplicaciones cosméticas y particularmente para fotoprotección es escaso alrededor del mundo por lo cual, todos los resultados derivados de este trabajo representan una de las primeras aproximaciones que se han hecho en el país dirigida a la exploración de compuestos con actividad fotoprotectora en especies de algas de Colombia. Para ello, se desarrolló una metodología para la selección de extractos con actividad fotoprotectora promisoria a partir de 28 muestras de algas pardas y rojas recolectadas en el Caribe Colombiano, usando procedimientos para la evaluación in vitro de los principales factores de protección solar (FPS, UVAr y λc) y la actividad antioxidante (ensayos por bioautografía en placas de TLC y de HPLC con derivatización postcolumna con DPPH), así como su correlación con el perfilado metabólico. Esto se realizó partiendo de la obtención de 336 extractos de diferente polaridad (84 diclorometano-metanol (orgánicos), butanólicos, metanólicos y acuosos), en los cuales se observó un potencial interesante para los extractos orgánicos en comparación con los extractos butanólicos, metanólicos o acuosos de todas las muestras estudiadas, así como una mejor actividad en aquellos extractos provenientes de algas pardas sobre los evaluados para las algas rojas. A partir de esta metodología se preseleccionaron 22 extractos orgánicos y un extracto butanólico de las especies de algas pardas y rojas, cuyo perfilado metabólico por HPLC-DAD, la metodología MCR-ALS y su análisis con herramientas de análisis estadístico multivariado mostraron la actividad más promisoria y los perfiles más diferenciados para cinco extractos orgánicos de las especies de algas pardas de los géneros Dictyota (Dictyota sp. (DP12301)), Stypopodium (S. zonale (EP10501-10901-11101)) y Turbinaria (T. tricostata (UP10201)). El estudio químico de estos extractos seleccionados se realizó por medio de fraccionamiento por cromatografía en columna y la interpretación de espectros de RMN de fracciones semipurificadas, guiando el estudio por medio del seguimiento de la actividad fotoprotectora con la metodología in vitro. Para el extracto orgánico de Dictyota sp. (DP12301), las fracciones más activas fueron D07 y D09, identificando en la primera de ellas, a la feofitina a como pigmento mayoritario y responsable de la actividad observada. Por otro lado, la separación cromatográfica de la fracción D09, seleccionada por su actividad y disponibilidad de biomasa, llevaron a la identificación la fucoxantina como el compuesto responsable de la actividad seguida. Adicionalmente, esta misma separación cromatográfica permitió la identificación del diterpeno isolinearol, el cual, al ser marcador químico para la especie, permite contribuir con la identificación del ejemplar estudiado como Canistrocarpus cervicornis. En el caso de los extractos de Turbinaria tricostata se identificaron 7 fracciones con los mejores parámetros de protección solar, mostrando en sus perfiles de RMN una composición mayoritaria de pigmentos y ácidos grasos, identificando a la feofitina a, la feoforbida a y la fucoxantina como compuestos responsables de la actividad. Para el ejemplar de Stypopodium zonale (EP10901) se identificaron 7 fracciones con los parámetros de protección solar más interesantes, en las cuales se identificó nuevamente a la fucoxantina y a la feofitina a como compuestos responsables de la actividad fotoprotectora seguida en estos extractos. Adicionalmente, el estudio químico de las fracciones permitió identificar al meroditerpeno stypoldiona y al fucosterol como componentes dentro de los extractos con actividad. Por otra parte, para el seguimiento de la actividad antioxidante, segundo mecanismo de fotoprotección evaluado en esta tesis, se implementó y estandarizó una metodología por HPLC con derivatización postcolumna con DPPH, cuyos parámetros de precisión y exactitud confirman que esta técnica permite seguir la actividad de interés a lo largo de una separación cromatográfica. A partir de esta, se identificaron 8 picos con la actividad de interés en los extractos orgánicos de Stypopodium zonale, indicando que la actividad observada en el extracto se relaciona con la presencia de ácidos grasos (como el fucosterol), diterpenos (como la stypoldiona) y pigmentos (como la fucoxantina). De esta manera, en este trabajo se logra una de las primeras metodologías reportadas para la exploración de compuestos con actividad fotoprotectora en especies de algas del caribe, integrando tanto información de la actividad fotoprotectora (in vitro), como información sobre la diversidad química de extractos de diferente polaridad. En este caso, los resultados mostraron que los pigmentos identificados en las especies de algas, dentro de los cuales la fucoxantina muestra una mejor actividad, son compuestos interesantes para futuras aplicaciones en fotoprotección, comprobando así el potencial del recurso ficológico de Colombia como fuente de compuestos con actividad. (Texto tomado de la fuente)The higher rates of skin cancer and diseases associated with sun radiation exposure reflect the urgent need to develop new methods for skin photoprotection. These could include UV-absorbing compounds or substances that can intervene in ROS or NOS-induced reactions. Although nowadays there are cosmetic formulations that provide skin photoprotection, the increase in the radiation levels on the earth's surface, the adverse reactions in some users, and the accumulation of these products in aquatic ecosystems make it necessary to explore new compounds that can provide adequate protection for the skin, with fewer side effects. Considering this information, we reviewed the existing methods for photoprotection evaluation and the potential of marine algae as a source of photoprotective compounds. Results showed that previously isolated compounds from natural sources such as algae, plants, and microorganisms are considered an important source of metabolites with promising photoprotective activity, stability, and biocompatibility. In algae, the high diversity of previously isolated compounds reflects an enormous potential from these organisms even though nowadays, only a few species have been explored. For Colombia, one of the most biodiverse countries in the world, exploring its phycological diversity is a pending task to be carried out; in which not only the research in the area should be strengthened, but also there is a need to reinforce the interaction with the cosmetic industry that can take advantage of these resources. Despite this, the study of marine algae for cosmetic applications, particularly photoprotection, is scarce worldwide. Therefore, all the results derived from this work represent one of the first approaches in Colombia aiming to search for compounds with photoprotective activity from Colombian algae species. A methodology to select extracts with promising photoprotective activity was developed, starting from 28 brown and red macroalgae samples collected in the Colombian Caribbean Sea. This was achieved by implementing methodologies for the in vitro evaluation of sun protection factors (SPF, UVAr, and λc) and antioxidant activity (bioautography and HPLC post-column derivatization antioxidant assays) and their correlation with their metabolic profile. This led to the obtention of 336 extracts of different polarity (84 dichloromethane-methanol (organic), butanolic, methanolic, and aqueous), in which an interesting potential was observed for the organic extracts in comparison with the butanolic, methanolic, or aqueous extracts from all the studied samples, as well as a higher activity from brown algae extracts over those obtained from red algae. Based on this methodology, 22 organic and one butanolic extract were selected for their metabolic profiling by HPLC-DAD, the MCR-ALS methodology, and its analysis with multivariate statistical analysis tools. From this, five out of the 22 organic extracts, namely Dictyota sp. (DP12301), Stypopodium zonale (EP10501, EP10901, and EP11101), and Turbinaria tricostata (UP10201), were selected. The chemical study of these selected extracts was carried out by column chromatography and NMR spectra, guiding the study by monitoring the photoprotective activity with the in vitro methodology. For the organic extract of Dictyota sp. (DP12301), the most active fractions were D07 and D09, identifying in the first one, pheophytin a as the primary pigment and responsible for the observed activity. On the other hand, the chromatographic separation of the D09 fraction, selected for its activity and biomass availability, led to identifying fucoxanthin as the compound responsible for the observed activity. Additionally, the same chromatographic separation allowed the identification of the diterpene isolinearol, a chemical marker for the species, with which we contributed to identifying the studied sample as Canistrocarpus cervicornis. For Turbinaria tricostata extracts, seven fractions were identified with the highest sun protection factors. Their NMR profiles showed an important composition of pigments and fatty acids, identifying pheophytin a, pheophorbide a, and fucoxanthin as the compounds responsible for the observed activity. For the Stypopodium zonale (EP10901) extract, seven fractions with the most interesting sun protection factors were identified, in which fucoxanthin and pheophytin were again identified as compounds responsible for the photoprotective activity. Additionally, stypoldione, a previously reported meroterpenoid, and fucosterol were identified in active extracts. On the other hand, an HPLC-DPPH post-column derivatization method was implemented and standardized in the study of antioxidant activity. Precision and accuracy parameters confirmed that the antioxidant activity could be followed between an HPLC assay. From this, eight active peaks were identified in Stypopodium zonale organic extracts, showing that the activity could be related to fatty acids (as fucosterol), terpenoids (as stypoldione), and pigments (as fucoxanthin and pheophorbide a). In this way, this work represents one of the first reported methodologies for the exploration of photoprotective compounds in Caribbean algae species, integrating information from photoprotective activity (in vitro) and chemical diversity of extracts. In this case, results showed that the identified pigments from the selected algae species, within which fucoxanthin shows the highest activity, are interesting compounds for future applications in photoprotection, proving the potential of the Colombian phycological biodiversity as a source for the cosmetic industry.Ministerio de Ambiente y Desarrollo Sostenible que otorgó los permisos de colecta y para realizar esta investigación, avalados por medio del Contrato de Acceso a Recursos Genéticos No.121, otrosí No 7.Ministerio de Ciencias que financió el desarrollo del proyecto BalcarQ: Bioprospección y química de algas del Caribe (80740-739-2020) y que a través de su programa beca Jóvenes Investigadores brindaron los recursos necesarios para la ejecución de este proyecto.MaestríaMagíster en Ciencias - QuímicaProductos Naturalesxxvii, 208 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analítica540 - Química y ciencias afines::547 - Química orgánicaFactor de Protección SolarSun Protection FactorALGASAlgaeFotoprotecciónPerfilado metabólicoAlgas marinasFactores de protección solarActividad antioxidantePhotoprotectionMetabolic profilingAlgaeSun protection factorsAntioxidant activityCompuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombianoPromissory photoprotective extracts from Colombian Caribbean algaeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGrupo de estudios Económicos (Superintendencia de Industria y Comercio). Estudios Económicos Sectoriales: Protectores Solares en Colombia (2015-2019). 2020. p. 0–37.Saewan N, Jimtaisong A. Natural products as photoprotection. J Cosmet Dermatol. 2015;14(1):47–63.HelioScreen. In vitro Sun Protection Evaluation [Internet]. France; 2020. Disponible en: www.helioscreen.frBarnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain [Internet]. el 24 de junio de 2019;2(7):569–79. Disponible en: https://www.nature.com/articles/s41893-019-0314-2Shaath Nadim. Sunscreen Evolution. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 3–16.Lim HW, Arellano-Mendoza MI, Stengel F. Current challenges in photoprotection. J Am Acad Dermatol [Internet]. 2017;76(3):S91–9. Disponible en: http://dx.doi.org/10.1016/j.jaad.2016.09.040Schwen R. Safety considerations for sunscreens in the USA. En: Sunscreens: Regulations and commercial development. Third Edit. Massachusetts: Taylor& Francis Group; 2005. p. 55–68.Derikvand P, Llewellyn CA, Purton S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur J Phycol [Internet]. 2017;52(1):43–56. Disponible en: http://dx.doi.org/10.1080/09670262.2016.1214882Raffa RB, Pergolizzi J v., Taylor R, Kitzen JM. Sunscreen bans: Coral reefs and skin cancer. J Clin Pharm Ther. 2019;44(1):134–9.Kim SK, Chojnacka K. Introduction of Marine Algae Extracts. En: Kim SK, Chojnacka K, editores. Marine algae extracts: processes, products, and applications [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1–11. Disponible en: http://doi.wiley.com/10.1002/9783527679577Pangestuti R, Siahaan E, Kim SK. Photoprotective Substances Derived from Marine Algae. Mar Drugs [Internet]. el 23 de octubre de 2018;16(11):399. Disponible en: http://www.mdpi.com/1660-3397/16/11/399He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine and Pharmacotherapy. 2021;134(December 2020).Reis Mansur MCPP, Leitão SG, Cerqueira-Coutinho C, Vermelho AB, Silva RS, Presgrave OAF, et al. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Revista Brasileira de Farmacognosia [Internet]. 2016;26(2):251–8. Disponible en: http://dx.doi.org/10.1016/j.bjp.2015.11.006Fabrowska J, Łeska B, Schroeder G, Messyasz B, Pikosz M. Biomass and extracts of algae as material for cosmetics. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 681–701.Procolombia (Gobierno de Colombia). El crecimiento del sector de aseo y cosméticos en Colombia continúa [Internet]. 2020 [citado el 10 de marzo de 2021]. Disponible en: https://procolombia.co/noticias/covid-19/el-crecimiento-del-sector-de-aseo-y-cosmeticos-en-colombia-continuaRincón Díaz MN, Gavio B. Diversidad de Macroalgas Marinas del Caribe colombiano. v2.8. Instituto de Investigaciones Marinas y Costeras - Invemar. [Internet]. 2020. Disponible en: https://ipt.biodiversidad.co/sibm/resource.do?r=macroalgas_caribe_colombiaWang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Vol. 184, Bioresource Technology. Elsevier Ltd; 2015. p. 355–62.Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar Drugs. 2020;18(6).Berthon JY, Nachat-Kappes R, Bey M, Cadoret JP, Renimel I, Filaire E. Marine algae as attractive source to skin care. Free Radic Res [Internet]. el 3 de junio de 2017;51(6):555–67. Disponible en: https://www.tandfonline.com/doi/full/10.1080/10715762.2017.1355550Universidad Nacional de Colombia. Herbario Nacional Colombiano. Instituto de Ciencias Naturales;Sistema de Información sobre Biodiversidad de Colombia. Biodiversidad en Cifras [Internet]. [citado el 10 de marzo de 2021]. Disponible en: https://cifras.biodiversidad.co/Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Biodiversidad colombiana: números para tener en cuenta [Internet]. 2017 [citado el 10 de marzo de 2021]. Disponible en: http://www.humboldt.org.co/es/boletines-y-comunicados/item/1087-biodiversidad-colombiana-numero-tener-en-cuentaNelson C. Photoprotection. En: Sunscreens: Regulations and commercial development. Third Edit. Taylor& Francis Group; 2005. p. 19–39.Rai R, Shanmuga S, Srinivas CR. Update on photoprotection. Indian J Dermatol. 2012;57(5):335–42.Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochemical and Photobiological Sciences. 2013;12(1):54–64.Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, et al. Visible Light Part I. Properties and Cutaneous Effects of Visible Light. J Am Acad Dermatol [Internet]. 2021 [citado el 22 de marzo de 2021]; Disponible en: https://doi.org/10.1016/j.jaad.2021.02.048Randhawa M, Seo IS, Liebel F, Southall MD, Kollias N, Ruvolo E. Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One. 2015;10(6):1–14.Lyons AB, Trullas C, Kohli I, Hamzavi IH, Lim HW. Photoprotection beyond ultraviolet radiation: A review of tinted sunscreens. J Am Acad Dermatol [Internet]. mayo de 2021 [citado el 22 de marzo de 2021];84(5):1393–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0190962220306940Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible Light Part II. Photoprotection against visible and ultraviolet light. J Am Acad Dermatol [Internet]. febrero de 2021;144034. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.144034Shaath, Nadim (Alpha research and development L. The Chemistry of Ultraviolet Filters. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 218–38.Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, Cooper KD, et al. Non-sunscreen photoprotection: Antioxidants add value to a sunscreen. Vol. 14, Journal of Investigative Dermatology Symposium Proceedings. 2009. p. 56–9.Torres A, Enk CD, Hochberg M, Srebnik M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochemical and Photobiological Sciences. 2006;5(4):432–5.Cockell CS, Knowland J. Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc. 1999;74(3):311–45.Velasco MVR, Sarruf FD, Salgado-Santos IMN, Haroutiounian-Filho CA, Kaneko TM, Baby AR. Broad spectrum bioactive sunscreens. Int J Pharm. 2008;363(1–2):50–7.European Commission. Search Results: UV Filter- CosIng [Internet]. [citado el 18 de diciembre de 2022]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.results&function=62&searchEuropean Commission. List of Functions-CosIng - Cosmetics - [Internet]. [citado el 18 de diciembre de 2022]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=ref_data.functionsFivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol [Internet]. 2021;7(1):45–69. Disponible en: https://doi.org/10.1016/j.ijwd.2020.08.008Parlamento Europeo y del Consejo de la Unión Europea. Reglamento (CE) No. 1223/2009 del Parlamento Europeo y del Consejo de la Unión Europea. [citado el 9 de julio de 2021]; Disponible en: https://eur-lex.europa.eu/eli/reg/2009/1223/ojDarvin ME, Fluhr JW, Meinke MC, Zastrow L, Sterry W, Lademann J. Topical beta-carotene protects against infra-red-light-induced free radicals. Exp Dermatol. 2011;20(2):125–9.Schroeder P, Lademann J, Darvin ME, Stege H, Marks C, Bruhnke S, et al. Infrared radiation-induced matrix metalloproteinase in human skin: Implications for protection. Journal of Investigative Dermatology [Internet]. 2008;128(10):2491–7. Disponible en: http://dx.doi.org/10.1038/jid.2008.116Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Deliv Sci Technol [Internet]. diciembre de 2020;60:102000. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1773224720312892Darr D, Dunston S, Faust H, Pinnell S. Effectiveness of antioxidants (vitamin C and E) with and without sunscreens as topical photoprotectants. Acta Derm Venereol [Internet]. el 1 de julio de 1996;76(4):264–8. Disponible en: https://medicaljournalssweden.se/actadv/article/view/15103Johnson & Johnson Consumer Inc. Ultra Sheer® Face Serum with Vitamin E SPF 60+ | NEUTROGENA® [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://es.neutrogena.com/products/sun/ultra-sheer-oil-free-face-serum-with-vitamin-e-spf-60/6810355.html?cgid=sunscreen-for-face&tilePosition=3SkinCeuticals. The benefits of using Vitamin C and SPF for your skin | Understanding Skin | SkinCeuticals [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://www.skinceuticals.co.uk/en_GB/the-benefits-of-using-vitamin-c-and-spf-for-your-skin.htmlCeraVe. Skin Renewing Retinol Day Cream with SPF | Moisturizer | CeraVe [Internet]. [citado el 18 de enero de 2023]. Disponible en: https://www.cerave.com/skincare/moisturizers/skin-renewing-day-creamShaath, Nadim (Alpha research and development L, Flores F (International F and fragrances). Modern Analytical Techniques in the Sunscreen Industry. En: Sunscreens: Regulations and commercial development. Third Edit. New York, NY: Taylor& Francis Group; 2005. p. 752–65.Diffey BL. A perspective on the need for topical sunscreens. En: Sunscreens: Regulations and commercial development. Third Edit. New Castle: Taylor& Francis Group; 2005. p. 45–52.Dutra EA, Da Costa E Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences. 2004;40(3):381–5.José L. Rojas, Mauricio Díaz-Santos, Norma A. Valencia-Islas. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. el 1 de julio de 2015;18–26.Diffey BL. A method for broad spectrum classification of sunscreens. Int J Cosmet Sci. 1994;16(2):47–52.Stanfield J (Suncare RL. In vitro Techniques in Sunscreen Development. En: Sunscreens: Regulations and commercial development. North Carolina: Taylor& Francis Group; 2005. p. 854–77.Mansur J, Breder M, Mansur M, Azulay R. Determination of Sun protection factor by spectrophotometry. An Bras Dermatol. 1986;61:121–4.Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol [Internet]. marzo de 1979;29(3):559–66. Disponible en: http://doi.wiley.com/10.1111/j.1751-1097.1979.tb07090.xDiffey BL, Robson J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J Soc Cosmet Chem. 1989;40(3):127–33.Zarkogianni M, Nikolaidis N. Determination of Sun Protection Factor (SPF) and Stability of Oil-in-Water Emulsions Containing Greek Red Saffron (Crocus Sativus L.) as a Main Antisolar Agent. International Journal of Advanced Research in Chemical Science [Internet]. 2016;3(7):1–7. Disponible en: https://www.arcjournals.org/pdfs/ijarcs/v3-i7/1.pdfDiffey BL, Tanner PR, Matts PJ, Nash JF. In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products. J Am Acad Dermatol. 2000;43(6):1024–35.Florida Suncare Testing Inc. VITRO-SKIN® - IMS [Internet]. [citado el 17 de marzo de 2021]. Disponible en: https://ims-usa.com/vitro-skin-substrates/vitro-skin/IMS Inc. In vitro SPF/UVA Protocol for use with with VITRO-SKIN® Substrate. :1–3. Disponible en: https://www.ims-usa.com/pdf/HydrationProtocol_UpdatedbyPTSJanuary2012rev1308.pdfCrovara Pescia A, Astolfi P, Puglia C, Bonina F, Perrotta R, Herzog B, et al. On the assessment of photostability of sunscreens exposed to UVA irradiation: From glass plates to pig/human skin, which is best? Int J Pharm [Internet]. 2012;427(2):217–23. Disponible en: http://dx.doi.org/10.1016/j.ijpharm.2012.02.001Lott DL, Stanfield J, Sayre RM, Dowdy JC. Uniformity of sunscreen product application: a problem in testing, a problem for consumers. Photodermatol Photoimmunol Photomed [Internet]. febrero de 2003;19(1):17–20. Disponible en: http://doi.wiley.com/10.1034/j.1600-0781.2003.00007.xHerzog B (Ciba SCI. Prediction of Sun Protection Factors and UV-A Parameters by Calculation of UV Transmissions Through Sunscreen Films of Inhomogenous Surface Structure. En: Sunscreens: Regulations and commercial development. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 882–9.Pearse AD, Edwards C. Human stratum corneum as a substrate for in vitro sunscreen testing. Int J Cosmet Sci. 1993;15(6):234–44.Taylor, Jeffrey L. (PerkinElmer Inc). Integrating Sphere Functionality : The Scatter Transmission Measurement. PerkinElmer Inc; 2013. p. 1–6.Dlugos JF (PerkinElmer I. Materials Characterization : UV / Vis / NIR Spectroscopy in vitro Method for the Calculation of Sunscreen SPF Values. Shelton, USA;Shimadzu Corporation. Integrating Spheres [Internet]. [citado el 25 de marzo de 2021]. Disponible en: https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamentals-uv/integratingspheres.htmlOptometrics Corporation. SPF-290S Analyzer System [Internet]. p. 1–10. Disponible en: https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/optometr/spf-catalog.pdf&no_cache=1Labsphere. UV-2000S - Labsphere | Internationally Recognized Photonics Company [Internet]. [citado el 17 de marzo de 2021]. Disponible en: https://www.labsphere.com/labsphere-products-solutions/components-accessories/spf-upf-testers/uv-2000s/U.S. Food and Drug administration. “Cosmeceutical” | FDA [Internet]. [citado el 18 de enero de 2022]. Disponible en: https://www.fda.gov/cosmetics/cosmetics-labeling-claims/cosmeceuticalMilito A, Castellano I, Damiani E. From sea to skin: Is there a future for natural photoprotectants? Vol. 19, Marine Drugs. MDPI; 2021.Schroeder G, Łeska B, Fabrowska J, Messyasz B, Pikosz M. Analysis of Green Algae Extracts. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 81–93.Radoslaw W, Chojnacka K. Downstream Processing in the Technology of Algal Extracts – From the Component to the Final Formulations. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 161–77.Saeid A, Chojnacka K. Algae Biomass as a Raw Material for Production of Algal Extracts. En: Marine algae extracts: processes, products, and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 179–89.Serban RM, Cracium N, Munteanu C, Munteanu D, Stoian G. Ceramium Red Algae Extract Enriched in Biological Active Compounds Has a radioprotective effect. HFSP J. 2016;(October).Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. Science of The Total Environment [Internet]. 2021;772:144905. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.144905Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics. 2021;8(1):8.Geraldes V, Pinto E. Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals. 2021;14(1):1–17.de la Coba F, Aguilera J, de Gálvez M v., Álvarez M, Gallego E, Figueroa FL, et al. Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci. 2009;55(3):161–9.Navarro N, Figueroa FL, Korbee N, Bonomi J, Gómez FA, de la Coba F. Mycosporine-like amino acids from red algae to develop natural UV sunscreens. En: Sunscreens: Source, Formulations, Efficacy and Recommendations. Nova Science Publishers, Inc.; 2018. p. 99–129.Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting effects of brown algae-derived phytochemicals: A review on molecular mechanisms. Mar Drugs. 2017;15(10).Mekinić IG, Skroza D, Šimat V, Hamed I, Čagalj M, Perković ZP. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules. 2019;9(6).Wang T, Jónsdóttir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem [Internet]. 2009;116(1):240–8. Disponible en: http://dx.doi.org/10.1016/j.foodchem.2009.02.041Heo SJ, Ko SC, Cha SH, Kang DH, Park HS, Choi YU, et al. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicology in Vitro [Internet]. 2009;23(6):1123–30. Disponible en: http://dx.doi.org/10.1016/j.tiv.2009.05.013Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym [Internet]. 2011;84(1):14–21. Disponible en: http://dx.doi.org/10.1016/j.carbpol.2010.10.062Choi DS, Athukorala Y, Jeon YJ, Senevirathne M, Cho KR, Kim SH. Antioxidant Activity of Sulfated Polysaccharides Isolated from Sargassum fulvellum. Prev Nutr Food Sci [Internet]. el 30 de junio de 2007;12(2):65–73. Disponible en: http://www.dbpia.co.kr/Journal/ArticleDetail/NODE00848829Mibelle group. HelioguardTM 365 | Mibelle Biochemistry [Internet]. [citado el 22 de marzo de 2021]. Disponible en: https://mibellebiochemistry.com/helioguardtm-365GELYMA. HELIONORI® - GELYMA [Internet]. [citado el 22 de marzo de 2021]. Disponible en: http://www.gelyma.com/helionori.htmlAethic. Products - Aethic [Internet]. [citado el 22 de marzo de 2021]. Disponible en: https://aethic.com/products/Aethic. Exclusive worldwide licence - Aethic [Internet]. 2017 [citado el 22 de marzo de 2021]. Disponible en: https://aethic.com/aethic-granted-exclusive-worldwide-license-use-seaweed-compound/Deutscher Wetterdienst. Deutscher Wetterdienst - Tägliche Vorhersagen des UV Index [Internet]. [citado el 11 de abril de 2021]. Disponible en: https://kunden.dwd.de/uvi_de/index.jspTanaka Y, Ashaari A, Mohamad FS, Lamit N. Bioremediation potential of tropical seaweeds in aquaculture: low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture [Internet]. marzo de 2020;518:734853. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0044848619316023Karsten U, Sawall T, Wiencke C. A survey of the distribution of UV‐absorbing substances in tropical macroalgae. Phycological Res [Internet]. el 22 de diciembre de 1998;46(4):271–9. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1440-1835.1998.00144.xSami FJ, Soekamto NH, Firdaus, Latip J. Bioactivity profile of three types of seaweed as an antioxidant, UV-protection as sunscreen and their correlation activity. Food Res [Internet]. el 13 de febrero de 2021;5(1):441–7. Disponible en: https://www.myfoodresearch.com/uploads/8/4/8/5/84855864/_56__fr-2020-389_sami.pdfErsalina EB, Abdillah AA, Sulmartiwi L. Potential of Caulerpa racemosa extracts as sunscreen creams. IOP Conf Ser Earth Environ Sci [Internet]. el 25 de febrero de 2020;441:012007. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/441/1/012007Tuya F, Betancor S, Fabbri F, Espino F, Haroun R. Photo-physiological performance and short-term acclimation of two coexisting macrophytes (Cymodocea nodosa and Caulerpa prolifera) with depth. Sci Mar [Internet]. el 30 de junio de 2016;80(2):247–59. Disponible en: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1636/2080García-Sánchez M, Korbee N, Pérez-Ruzafa IM, Marcos C, Domínguez B, Figueroa FL, et al. Physiological response and photoacclimation capacity of Caulerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). Mar Environ Res [Internet]. agosto de 2012;79:37–47. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113612000888Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Jeon YJ. Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. J Food Biochem [Internet]. octubre de 2018;42(5):e12628. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/jfbc.12628Wiraguna AAGP, Pangkahila W, Astawa INM. Antioxidant properties of topical Caulerpa sp. extract on UVB-induced photoaging in mice. Dermatol Reports [Internet]. el 1 de octubre de 2018;10(2). Disponible en: https://www.pagepress.org/journals/index.php/dr/article/view/7597Othman R, Amin NA, Sani MSA, Fadzillah NA, Jamaludin MA. Carotenoid and Chlorophyll Profiles in Five Species of Malaysian Seaweed as Potential Halal Active Pharmaceutical Ingredient (API). Int J Adv Sci Eng Inf Technol [Internet]. el 30 de septiembre de 2018;8(4–2):1610. Disponible en: http://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=7041Wiraguna AAGP, Indira I, Vibriyanti N. Topical Applications of Caulerpa spp. Extract Preventing Skin Aging through Improving Skin Moisture, Pigmentationand Decrease Laxity. Journal of global pharma technology. 2020;12(1):397–402.Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, et al. An Inventory of UV-Absorbing Mycosporine-Like Amino Acids in Macroalgae from Polar to Warm-Temperate Regions. Botanica Marina [Internet]. 1998;41(1–6). Disponible en: https://www.degruyter.com/document/doi/10.1515/botm.1998.41.1-6.443/htmlBischof K, Rautenberger R, Brey L, Pérez-Lloréns J. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser [Internet]. el 11 de enero de 2006;306:165–75. Disponible en: http://www.int-res.com/abstracts/meps/v306/p165-175/O’Neal SW, Hoover AM. Comparison of UVB effects on growth and induction of UVB screening compounds in isolates of metaphytic algae from temperate zone streams and ponds. Graham L, editor. J Phycol [Internet]. diciembre de 2018;54(6):818–28. Disponible en: http://doi.wiley.com/10.1111/jpy.12786Pescheck F. UV-A screening in Cladophora sp. lowers internal UV-A availability and photoreactivation as compared to non-UV screening in Ulva intestinalis. Photochemical & Photobiological Sciences [Internet]. 2019;18(2):413–23. Disponible en: http://xlink.rsc.org/?DOI=C8PP00432CBautista-Saraiva AIN, Bonomi-Barufi J, Figueroa FL, Necchi O. UV-radiation effects on photosynthesis, photosynthetic pigments and UV-absorbing substances in three species of tropical lotic macroalgae. Theor Exp Plant Physiol [Internet]. el 7 de septiembre de 2018;30(3):181–92. Disponible en: http://link.springer.com/10.1007/s40626-018-0113-6Abdel-Kare MSM. UV-Absorbing Pigments from Some Saudi-Arabian Algal Species. International Journal of Botany [Internet]. el 15 de septiembre de 2008;4(4):361–8. Disponible en: https://www.scialert.net/abstract/?doi=ijb.2008.361.368Schneider G, Figueroa FL, Vega J, Chaves P, Álvarez-Gómez F, Korbee N, et al. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res [Internet]. agosto de 2020;49:101956. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926419306903Vasquez RD, Lirio S. Content Analysis, Cytotoxic, and Anti-metastasis Potential of Bioactive Polysaccharides from Green Alga Codium intricatum Okamura. Curr Bioact Compd [Internet]. el 10 de junio de 2020;16(3):320–8. Disponible en: https://www.eurekaselect.com/166464/articleHeo SJ, Ko SC, Kang SM, Cha SH, Lee SH, Kang DH, et al. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food and Chemical Toxicology [Internet]. mayo de 2010;48(5):1355–61. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S027869151000150XValentão P, Trindade P, Gomes D, Guedes de Pinho P, Mouga T, Andrade PB. Codium tomentosum and Plocamium cartilagineum : Chemistry and antioxidant potential. Food Chem [Internet]. abril de 2010;119(4):1359–68. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814609010590Sánchez-Lamar Á, González-Pumariega M, Fuentes-León F, Vernhes Tamayo M, Schuch A, Menck C. Evaluation of Genotoxic and DNA Photo-Protective Activity of Bryothamnion triquetrum and Halimeda incrassata Seaweeds Extracts. Cosmetics [Internet]. el 13 de julio de 2017 [citado el 29 de marzo de 2021];4(3):23. Disponible en: http://www.mdpi.com/2079-9284/4/3/23Mantiri DMH, Kepel RC, Rumengan AP, Kase AO. Analysis of antioxidant and chlorophyll in green algae from Totok bay and Tongkaina waters, North Sulawesi. Ecology, Environment and Conservation. 2019;25(August Supplement):S135–40.Carefoot TH, Karentz D, Pennings SC, Young CL. Distribution of mycosporine-like amino acids in the sea hare Aplysia dactylomela : effect of diet on amounts and types sequestered over time in tissues and spawn. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol [Internet]. mayo de 2000;126(1):91–104. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0742841300000980Eismann AI, Perpetuo Reis R, Ferreira da Silva A, Negrão Cavalcanti D. Ulva spp. carotenoids: Responses to environmental conditions. Algal Res [Internet]. junio de 2020;48:101916. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926419305181Ma J, Wang W, Qu L, Liu X, Wang Z, Qiao S, et al. Differential Photosynthetic Response of a Green Tide Alga Ulva linza to Ultraviolet Radiation, Under Short- and Long-term Ocean Acidification Regimes. Photochem Photobiol [Internet]. julio de 2019;95(4):990–8. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/php.13083Han YS, Han T. UV-B induction of UV-B protection in Ulva Pertusa (Chlorophyta). J Phycol [Internet]. el 18 de mayo de 2005;41(3):523–30. Disponible en: http://doi.wiley.com/10.1111/j.1529-8817.2005.00072.xShiu CT, Lee TM. Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot [Internet]. el 1 de noviembre de 2005;56(421):2851–65. Disponible en: http://academic.oup.com/jxb/article/56/421/2851/593450/UltravioletBinduced-oxidative-stress-and-responsesWang Y, Qu T, Zhao X, Tang X, Xiao H, Tang X. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence. Springerplus [Internet]. el 17 de diciembre de 2016;5(1):775. Disponible en: http://springerplus.springeropen.com/articles/10.1186/s40064-016-2488-7Altamirano M, Flores-Moya A, Figueroa FL. Long-Term Effects of Natural Sunlight under Various Ultraviolet Radiation Conditions on Growth and Photosynthesis of Intertidal Ulva rigida (Chlorophyceae) Cultivated In Situ. Botanica Marina [Internet]. el 8 de enero de 2000;43(2). Disponible en: https://www.degruyter.com/document/doi/10.1515/BOT.2000.012/htmlCabello-Pasini A, Macías-Carranza V, Abdala R, Korbee N, Figueroa FL. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J Appl Phycol [Internet]. el 6 de junio de 2011;23(3):363–9. Disponible en: http://link.springer.com/10.1007/s10811-010-9548-0Bhatia S, Sardana S, Sharma A, Vargas De La Cruz CB, Chaugule B, Khodaie L. Development of broad spectrum mycosporine loaded sunscreen formulation from Ulva fasciata delile. Biomedicine (Taipei) [Internet]. el 27 de septiembre de 2019;9(3):17. Disponible en: https://biomedicine.edp-open.org/10.1051/bmdcn/2019090317Bernardi Vasconcelos J. Preliminary data of antioxidant activity of green seaweeds (Ulvophyceae) from the Southwestern Atlantic and Antarctic Maritime islands. Hidrobiológica [Internet]. el 15 de agosto de 2016;26(2):233–9. Disponible en: http://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/499Park JJ, Han T, Choi EM. Differences in the oxidative stress and antioxidant responses of three marine macroalgal species upon UV exposure. Toxicol Environ Health Sci [Internet]. el 19 de junio de 2016;8(2):101–7. Disponible en: http://link.springer.com/10.1007/s13530-016-0267-zAslan E, Aksu A, Korkmaz NE, Taskin OS, Caglar NB. Monitoring the antioxidant activities by extracting the polyphenolic contents of algae collected from the Bosphorus. Mar Pollut Bull [Internet]. abril de 2019;141:313–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0025326X19301596Álvarez-Gomez F, Korbee N, Figueroa FL. Analysis of antioxidant capacity and bioactive compounds in marine macroalgal and lichenic extracts using different solvents and evaluation methods. Cienc Mar [Internet]. el 20 de diciembre de 2016;42(4):271–88. Disponible en: http://cienciasmarinas.com.mx/index.php/cmarinas/article/view/2677Cruces E, Huovinen P, Gomez I. Stress proteins and auxiliary anti stress compounds in intertidal macroalgae. Lat Am J Aquat Res [Internet]. el 10 de noviembre de 2012;40(4):822–34. Disponible en: http://www.lajar.cl/pdf/imar/v40n4/Articulo_40_4_01.pdfLamare MD, Lesser MP, Barker MF, Barry TM, Schimanski KB. Variation in sunscreen compounds (mycosporine‐like amino acids) for marine species along a gradient of ultraviolet radiation transmission within doubtful sound, New Zealand. N Z J Mar Freshwater Res [Internet]. diciembre de 2004;38(5):775–93. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00288330.2004.9517277Farvin KHS, Surendraraj A, Al-Ghunaim A, Al-Yamani F. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. J Appl Phycol [Internet]. el 30 de agosto de 2019;31(4):2653–68. Disponible en: http://link.springer.com/10.1007/s10811-019-1739-8Shanura Fernando IP, Asanka Sanjeewa KK, Samarakoon KW, Kim HS, Gunasekara UKDSS, Park YJ, et al. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. J Appl Phycol [Internet]. el 3 de diciembre de 2018;30(6):3223–32. Disponible en: http://link.springer.com/10.1007/s10811-018-1415-4Guinea M, Franco V, Araujo-Bazán L, Rodríguez-Martín I, González S. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae. Food and Chemical Toxicology [Internet]. marzo de 2012;50(3–4):1109–17. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0278691512000130Beach KS, Borgeas HB, Smith CM. Ecophysiological implications of the measurement of transmittance and reflectance of tropical macroalgae. Phycologia [Internet]. el 28 de julio de 2006;45(4):450–7. Disponible en: https://www.tandfonline.com/doi/full/10.2216/05-30.1Mikami K, Hosokawa M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int J Mol Sci [Internet]. el 2 de julio de 2013;14(7):13763–81. Disponible en: http://www.mdpi.com/1422-0067/14/7/13763Nurjanah, Suwandi R, Anwar E, Maharany F, Hidayat T. Characterization and formulation of sunscreen from seaweed Padina australis and Euchema cottonii slurry. IOP Conf Ser Earth Environ Sci [Internet]. el 19 de diciembre de 2019;404:012051. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012051García-Sánchez M, Korbee N, Pérez-Ruzafa IM, Marcos C, Figueroa FL, Pérez-Ruzafa Á. Living in a coastal lagoon environment: Photosynthetic and biochemical mechanisms of key marine macroalgae. Mar Environ Res [Internet]. octubre de 2014;101:8–21. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113614001421Oliveira NM, Meira CLC, Aguiar RM, De Oliveira DM, Moura CWN, Augusto Vieira Filho S c. Biological activities of extracts from Padina boergesenii and Sargassum stenophyllum , Seaweeds naturally found in baia de todos os santos, Brazil. Int J Pharm Pharm Sci. 2015;7(1):350–3.Nurjanah, Luthfiyana N, Hidayat T, Nurilmala M, Anwar E. Utilization of seaweed porridge Sargassum sp. and Eucheuma cottonii as cosmetic in protecting skin. IOP Conf Ser Earth Environ Sci [Internet]. el 23 de mayo de 2019;278:012055. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/278/1/012055Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon YJ, et al. Fucoidan refined by Sargassum confusum indicate protective effects suppressing photo-oxidative stress and skin barrier perturbation in UVB-induced human keratinocytes. Int J Biol Macromol [Internet]. diciembre de 2020;164:149–61. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813020338903Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-Photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms. Mar Drugs [Internet]. el 15 de agosto de 2020;18(8):427. Disponible en: https://www.mdpi.com/1660-3397/18/8/427Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon YJ, et al. Step gradient alcohol precipitation for the purification of low molecular weight fucoidan from Sargassum siliquastrum and its UVB protective effects. Int J Biol Macromol [Internet]. noviembre de 2020;163:26–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813020336813Prasedya, Syafitri, Geraldine, Hamdin, Frediansyah, Miyake, et al. UVA Photoprotective Activity of Brown Macroalgae Sargassum cristafolium. Biomedicines [Internet]. el 27 de septiembre de 2019;7(4):77. Disponible en: https://www.mdpi.com/2227-9059/7/4/77Xiao X, de Bettignies T, Olsen YS, Agusti S, Duarte CM, Wernberg T. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming. Munderloh UG, editor. PLoS One [Internet]. el 2 de diciembre de 2015;10(12):e0143031. Disponible en: https://dx.plos.org/10.1371/journal.pone.0143031Harnita ANI, Santosa IgnE, Martono S, Sudarsono S, Widyarini S, Harren FJM. Inhibition of Lipid Peroxidation Induced by Ultraviolet Radiation by Crude Phlorotannis Isolated from Brown Algae Sargassum hystrix v. buxifolium C. Agardh. Indonesian Journal of Chemistry [Internet]. el 6 de mayo de 2013;13(1):14–20. Disponible en: http://10.13.241.244/index.php/ijc/article/view/21320Jiang H, Yang S, Chakka VP, Qian W, Wei X, Zhu Q, et al. Purification and Biological Activities of Enzymatically Degraded Sargassum fusiforme Polysaccharides. Chem Biodivers [Internet]. el 10 de marzo de 2021;18(3). Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/cbdv.202000930Kim JA, Ahn BN, Kong CS, Kim SK. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. British Journal of Dermatology [Internet]. mayo de 2013;168(5):968–76. Disponible en: http://doi.wiley.com/10.1111/bjd.12187Fernando PMDJ, Piao MJ, Hewage SRKM, Kang HK, Yoo ES, Koh YS, et al. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes. Environ Toxicol Pharmacol [Internet]. abril de 2016;43:112–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1382668916300345Shank GC, Lee R, Vähätalo A, Zepp RG, Bartels E. Production of chromophoric dissolved organic matter from mangrove leaf litter and floating Sargassum colonies. Mar Chem [Internet]. abril de 2010;119(1–4):172–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304420310000204Wang L, Lee W, Oh J, Cui Y, Ryu B, Jeon YJ. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways in vitro in Human Dermal Fibroblasts. Mar Drugs [Internet]. el 17 de julio de 2018;16(7):239. Disponible en: http://www.mdpi.com/1660-3397/16/7/239Hwang PA, Yan MD, Kuo KL, Phan NN, Lin YC. A mechanism of low molecular weight fucoidans degraded by enzymatic and acidic hydrolysis for the prevention of UVB damage. J Appl Phycol [Internet]. el 24 de febrero de 2017;29(1):521–9. Disponible en: http://link.springer.com/10.1007/s10811-016-0929-xLee C, Park GH, Ahn EM, Park CI, Jang JH. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses. Evidence-Based Complementary and Alternative Medicine [Internet]. 2013;2013:1–10. Disponible en: http://www.hindawi.com/journals/ecam/2013/747846/Budhiyanti SA, Raharjo S, Marseno DW, Lelana IYB. Antioxidant activity of brown algae Sargassum species extracts from the coastline of Java island. Am J Agric Biol Sci [Internet]. el 1 de marzo de 2012;7(3):337–46. Disponible en: http://thescipub.com/abstract/10.3844/ajabssp.2012.337.346Polo LK, de L. Felix MR, Kreusch M, Pereira DT, Costa GB, Simioni C, et al. Photoacclimation Responses of the Brown Macroalga Sargassum Cymosum to the Combined Influence of UV Radiation and Salinity: Cytochemical and Ultrastructural Organization and Photosynthetic Performance. Photochem Photobiol [Internet]. mayo de 2014;90(3):560–73. Disponible en: http://doi.wiley.com/10.1111/php.12224Yu Y, Wang L, Fu X, Wang L, Fu X, Yang M, et al. Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum . J Oceanol Limnol [Internet]. el 28 de mayo de 2019;37(3):836–47. Disponible en: http://link.springer.com/10.1007/s00343-019-8138-5Polo LK, Chow F. Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory. Sci Mar [Internet]. el 3 de marzo de 2020;84(1):59. Disponible en: http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844Lim SN, Cheung PCK, Ooi VEC, Ang PO. Evaluation of Antioxidative Activity of Extracts from a Brown Seaweed, Sargassum siliquastrum. J Agric Food Chem [Internet]. junio de 2002;50(13):3862–6. Disponible en: https://pubs.acs.org/doi/10.1021/jf020096bHeo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B [Internet]. 2009;95(2):101–7. Disponible en: http://dx.doi.org/10.1016/j.jphotobiol.2008.11.011Jesumani V, Du H, Pei P, Aslam M, Huang N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum . Achal V, editor. PLoS One [Internet]. el 7 de enero de 2020;15(1):e0227308. Disponible en: https://dx.plos.org/10.1371/journal.pone.0227308Ayyad SE, Basaif S, Badria A, Ezmirly S, Alarif W, Badria F. Antioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum sp. Pharmacognosy Res [Internet]. 2011;3(3):160. Disponible en: http://www.phcogres.com/text.asp?2011/3/3/160/85000Sari D, Saputra E, Alamsjah M. Potential of Fucoxanthin Content in Sargassum sp. on Sunscreen Cream Preparation. International Journal of recent technology and engineering. abril de 2019;7(6S2).Guan W, Chen H, Wang T, Chen S, Xu J. Effect of the solar ultraviolet radiation on the growth and fluorescence parameters of Sargassum horneri. Journal of Fisheries of China. el 1 de enero de 2016;40(1):83–91.Nurilmala M, Anwar E, Luthfiyana N, Hidayat T. Identification of Bioactive Compounds of Seaweed Sargassum sp. and Eucheuma cottonii Doty as a Raw Sunscreen Cream. Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences B Life and Environmental Sciences. 2017;54(4):311–8.Vasconcelos JB, de Vasconcelos ERTPP, Urrea-Victoria V, Bezerra PS, Reis TNV, Cocentino ALM, et al. Antioxidant activity of three seaweeds from tropical reefs of Brazil: potential sources for bioprospecting. J Appl Phycol [Internet]. el 15 de abril de 2019 [citado el 29 de marzo de 2021];31(2):835–46. Disponible en: https://link.springer.com/article/10.1007/s10811-018-1556-5Prasedya ES, Ariyana M, Hamdin CD, Nikmatullah A, Yoshie S, Miyake M, et al. Evaluation of Indonesian selected macroalgae for their antitumor and cytoprotective activity. J Appl Pharm Sci [Internet]. noviembre de 2018;8(11):123–30. Disponible en: http://www.japsonline.com/abstract.php?article_id=2772Movahhedin N, Nazemiyeh H, Barar J, Esnaashari S, Movahhedin AH. Chemical Constituent and Biological Activities of Spatoglossum asperum J. Agardh from Oman Sea. Lett Drug Des Discov [Internet]. el 31 de enero de 2018;15(3). Disponible en: http://www.eurekaselect.com/151409/articleVenkatesan M, Arumugam V, Pugalendi R, Ramachandran K, Sengodan K, Vijayan SR, et al. Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Process Biochemistry [Internet]. septiembre de 2019;84:196–204. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1359511319300558European Commission. CosIng - Cosmetics - GROWTH - European Commission [Internet]. Disponible en: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simpleCarefoot TH, Harris M, Taylor BE, Donovan D, Karentz D. Mycosporine-like amino acids: possible UV protection in eggs of the sea hare Aplysia dactylomela. Mar Biol [Internet]. el 9 de febrero de 1998;130(3):389–96. Disponible en: http://link.springer.com/10.1007/s002270050259Pereira DT, Pereira B, Fonseca A, Ramlov F, Maraschin M, Álvarez‐Gómez F, et al. Effects of Ultraviolet Radiation UV‐A+UV‐B) on the Antioxidant Metabolism of the Red Macroalga Species Acanthophora spicifera (Rhodophyta, Ceramiales) From Different Salinity and Nutrient Conditions. Photochem Photobiol [Internet]. el 15 de marzo de 2019;php.13094. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/php.13094Ouriques LC, Pereira DT, Simioni C, Ramlov F, Maraschin M, Bouzon ZL, et al. Physiological, morphological and ultrastructural responses to exposure to ultraviolet radiation in the red alga Aglaothamnion uruguayense (W.R. Taylor). Brazilian Journal of Botany [Internet]. el 31 de septiembre de 2017;40(3):783–91. Disponible en: http://link.springer.com/10.1007/s40415-017-0372-5Figueroa FL, Bueno A, Korbee N, Santos R, Mata L, Schuenhoff A. Accumulation of Mycosporine-like amino acids in Asparagopsis armata Grown in Tanks with Fishpond Effluents of Gilthead Sea Bream, Sparus aurata . J World Aquac Soc [Internet]. octubre de 2008;39(5):692–9. Disponible en: http://doi.wiley.com/10.1111/j.1749-7345.2008.00199.xGambichler V, Zuccarello GC, Karsten U. Seasonal changes in stress metabolites of native and introduced red algae in New Zealand. J Appl Phycol [Internet]. el 23 de abril de 2021;33(2):1157–70. Disponible en: http://link.springer.com/10.1007/s10811-020-02365-0Orfanoudaki M, Hartmann A, Miladinovic H, Nguyen Ngoc H, Karsten U, Ganzera M. Bostrychines A–F, Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from the Red Alga Bostrychia scorpioides . Mar Drugs [Internet]. el 14 de junio de 2019;17(6):356. Disponible en: https://www.mdpi.com/1660-3397/17/6/356Lalegerie F, Lajili S, Bedoux G, Taupin L, Stiger-Pouvreau V, Connan S. Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs). Mar Environ Res [Internet]. mayo de 2019;147:37–48. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113618308766Karsten U, Sawall T, West J, Wiencke C. Ultraviolet sunscreen compounds in epiphytic red algae from mangroves. Hydrobiologia [Internet]. 2000 [citado el 29 de marzo de 2021];432(1–3):159–71. Disponible en: https://link.springer.com/article/10.1023/A:1004046909810Kannaujiya VK, Richa, Sinha RP. Peroxide scavenging potential of ultraviolet-B-absorbing mycosporine-like amino acids isolated from a marine red alga Bryocladia sp. Front Environ Sci [Internet]. el 25 de junio de 2014;2. Disponible en: http://journal.frontiersin.org/article/10.3389/fenvs.2014.00026/fullvan de Poll WH, Bischof K, Buma AGJ, Breeman AM. Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiol Plant [Internet]. el 1 de mayo de 2003 [citado el 29 de marzo de 2021];118(1):74–83. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12702016/Hartmann A, Becker K, Karsten U, Remias D, Ganzera M. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens . Mar Drugs [Internet]. el 9 de octubre de 2015;13(10):6291–305. Disponible en: http://www.mdpi.com/1660-3397/13/10/6291Helbling EW, Barbieri ES, Sinha RP, Villafañe VE, Häder DP. Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation. J Photochem Photobiol B [Internet]. julio de 2004;75(1–2):63–71. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134404000673Häder DP, Lebert M, Walter Helbling E. Variable fluorescence parameters in the filamentous Patagonian rhodophytes, Callithamnion gaudichaudii and Ceramium sp. under solar radiation. J Photochem Photobiol B [Internet]. enero de 2004;73(1–2):87–99. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134403001672Orfanoudaki M, Hartmann A, Karsten U, Ganzera M. Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. Müller K, editor. J Phycol [Internet]. el 31 de abril de 2019;55(2):393–403. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12827Véliz K, Chandía N, Bischof K, Thiel M. Geographic Variation of UV Stress Tolerance in Red Seaweeds Does Not Scale with Latitude Along the SE Pacific Coast. Amsler C, editor. J Phycol [Internet]. agosto de 2020;56(4):1090–102. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.13009Véliz K, Chandía N, Karsten U, Lara C, Thiel M. Geographic variation in biochemical and physiological traits of the red seaweeds Chondracanthus chamissoi and Gelidium lingulatum from the south east Pacific coast. J Appl Phycol [Internet]. el 4 de febrero de 2019;31(1):665–82. Disponible en: http://link.springer.com/10.1007/s10811-018-1532-0Pandey A, Pandey S, Rajneesh -, Pathak J, Ahmed H, Singh V, et al. Mycosporine-Like Amino Acids (MAAs) Profile of Two Marine Red Macroalgae, Gelidium sp. and Ceramium sp. Int J Appl Sci Biotechnol. 2017;5(1):12–21.Jofre J, Celis-Plá PSM, Figueroa FL, Navarro NP. Seasonal Variation of Mycosporine-Like Amino Acids in Three Subantarctic Red Seaweeds. Mar Drugs [Internet]. el 24 de enero de 2020;18(2):75. Disponible en: https://www.mdpi.com/1660-3397/18/2/75Yang Y, Liu D, Wu J, Chen Y, Wang S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int J Biol Macromol [Internet]. diciembre de 2011;49(5):1031–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813011003412Ryu B, Qian Z ji, Kim M moo, Wan K, Kim S kwon. Anti-photoaging activity and inhibition of matrix metalloproteinase ( MMP ) by marine red alga Corallina pilulifera methanol extract. 2009;78:98–105.Häder DP, Lebert M, Walter Helbling E. Effects of Solar Radiation on the Patagonian Rhodophyte Corallina officinatis (L.). Photosynth Res [Internet]. 2003;78(2):119–32. Disponible en: http://link.springer.com/10.1023/B:PRES.0000004300.20503.18Pallela R, Na-Young Y, Kim SK. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms. Mar Drugs [Internet]. el 8 de abril de 2010;8(4):1189–202. Disponible en: http://www.mdpi.com/1660-3397/8/4/1189Raikou V, Protopapa E, Kefala V. Photo-protection from Marine organisms. Review of Clinical Pharmacology and Pharmacokinetics. 2011;25(3):131–6.Betancor S, Domínguez B, Tuya F, Figueroa FL, Haroun R. Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquat Bot [Internet]. febrero de 2015;121:16–25. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304377014001612Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C. Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Botanica Marina [Internet]. el 26 de enero de 2004;47(1). Disponible en: https://www.degruyter.com/document/doi/10.1515/BOT.2004.003/htmlKhatulistiani TS, Noviendri D, Munifah I, Melanie S. Bioactivities of red seaweed extracts from Banten, Indonesia. IOP Conf Ser Earth Environ Sci [Internet]. el 19 de diciembre de 2019;404:012065. Disponible en: https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012065de la Coba F, Aguilera J, Korbee N, de Gálvez M, Herrera-Ceballos E, Álvarez-Gómez F, et al. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). Mar Drugs [Internet]. el 14 de enero de 2019;17(1):55. Disponible en: http://www.mdpi.com/1660-3397/17/1/55Vega J, Bonomi-barufi J, G JL, Figueroa FL. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs. 2020;18(659).Parailloux M, Godin S, Fernandes SCM, Lobinski R. Untargeted Analysis for Mycosporines and Mycosporine-Like Amino Acids by Hydrophilic Interaction Liquid Chromatography (HILIC)—Electrospray Orbitrap MS2/MS3. Antioxidants [Internet]. el 26 de noviembre de 2020;9(12):1185. Disponible en: https://www.mdpi.com/2076-3921/9/12/1185Lee TM, Shiu CT. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii. Mar Environ Res [Internet]. febrero de 2009;67(1):8–16. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141113608002158de la Coba F, Aguilera J, Figueroa FL, de Gálvez M v., Herrera E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J Appl Phycol [Internet]. el 21 de abril de 2009;21(2):161–9. Disponible en: http://link.springer.com/10.1007/s10811-008-9345-1Zheng Y. Combined effects of light and nitrate supplies on the growth, photosynthesis and ultraviolet-absorbing compounds in marine macroalga Gracilaria lemaneiformis (Rhodophyta), with special reference to the effects of solar ultraviolet radiation. Phycological Res [Internet]. abril de 2013;61(2):89–97. Disponible en: http://doi.wiley.com/10.1111/pre.12002Andriani Y, Syamsumir DF, Yee TC, Harisson FS, Herng GM, Abdullah SA, et al. Biological Activities of Isolated Compounds from Three Edible Malaysian Red Seaweeds, Gracilaria changii , G. manilaensis and Gracilaria sp. Nat Prod Commun [Internet]. el 1 de agosto de 2016;11(8):1934578X1601100. Disponible en: http://journals.sagepub.com/doi/10.1177/1934578X1601100822Beach KS, Borgeas HB, Nishimura NJ, Smith CM. In vivo absorbance spectra and the ecophysiology of reef macroalgae. Coral Reefs [Internet]. el 20 de febrero de 1997;16(1):21–8. Disponible en: http://link.springer.com/10.1007/s003380050055Roleda MY, Nyberg CD, Wulff A. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta). Physiol Plant [Internet]. octubre de 2012;146(2):205–16. Disponible en: http://doi.wiley.com/10.1111/j.1399-3054.2012.01615.xBarufi JB, Korbee N, Oliveira MC, Figueroa FL. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J Appl Phycol [Internet]. el 20 de junio de 2011;23(3):457–66. Disponible en: http://link.springer.com/10.1007/s10811-010-9603-xCardozo KHM, Marques LG, Carvalho VM, Carignan MO, Pinto E, Marinho-Soriano E, et al. Analyses of photoprotective compounds in red algae from the Brazilian coast. Revista Brasileira de Farmacognosia [Internet]. abril de 2011;21(2):202–8. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2011000200002&lng=en&nrm=iso&tlng=enXu J, Gao K. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J Photochem Photobiol B [Internet]. septiembre de 2010;100(3):117–22. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134410001284Gao K, Xu J. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur J Phycol [Internet]. agosto de 2008;43(3):297–307. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/09670260801986837Xu J, Gao K. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. J Appl Phycol [Internet]. el 7 de octubre de 2008;20(5):681–6. Disponible en: http://link.springer.com/10.1007/s10811-007-9247-7Iyapparaj P, Immanuel G, Ramasubburayan R, Esakkiraj P, Sankaralingam S, Navin Chandran M, et al. Effect of ultra violet radiation on pigments profile of seaweeds Gracillaria edulis and Hypnea musciformis. Biosci Biotechnol Res Asia. 2010;7(1):199–207.Malida Ver M, Putu Wiraw IG, Made Jawi I, Sritamin M, Ayu Dewi NN, Ayu Mirah AA. Anti-inflammatory Effect of Red Macroalgae Bulung Sangu (Gracilaria sp.) Extract in UVB-Irradiated Mice. Pakistan Journal of Biological Sciences [Internet]. el 15 de diciembre de 2021;24(1):80–9. Disponible en: https://www.scialert.net/abstract/?doi=pjbs.2021.80.89Bonomi-Barufi J, Figueroa FL, Korbee N, Momoli MM, Martins AP, Colepicolo P, et al. How macroalgae can deal with radiation variability and photoacclimation capacity: The example of Gracilaria tenuistipitata (Rhodophyta) in laboratory. Algal Res [Internet]. septiembre de 2020;50:102007. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926420301260Cruces E, Flores-Molina MR, Díaz MJ, Huovinen P, Gómez I. Phenolics as photoprotective mechanism against combined action of UV radiation and temperature in the red alga Gracilaria chilensis? J Appl Phycol [Internet]. el 15 de abril de 2018;30(2):1247–57. Disponible en: http://link.springer.com/10.1007/s10811-017-1304-2Wu S, Lu M, Wang S. Amylase-assisted extraction and antioxidant activity of polysaccharides from Gracilaria lemaneiformis . 3 Biotech [Internet]. el 24 de mayo de 2017;7(1):38. Disponible en: http://link.springer.com/10.1007/s13205-017-0697-6Chaves-Peña P, de la Coba F, Figueroa FL, Korbee N. Quantitative and Qualitative HPLC Analysis of Mycosporine-Like Amino Acids Extracted in Distilled Water for Cosmetical Uses in Four Rhodophyta. Mar Drugs [Internet]. el 28 de diciembre de 2019;18(1):27. Disponible en: https://www.mdpi.com/1660-3397/18/1/27Álvarez‐Gómez F, Korbee N, Figueroa FL. Effects of UV Radiation on Photosynthesis, Antioxidant Capacity and the Accumulation of Bioactive Compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta). Henley W, editor. J Phycol [Internet]. el 19 de diciembre de 2019;55(6):1258–73. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12899Álvarez-Gómez F, Korbee N, Casas-Arrojo V, Abdala-Díaz R, Figueroa F. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules [Internet]. el 18 de enero de 2019;24(2):341. Disponible en: http://www.mdpi.com/1420-3049/24/2/341Álvarez-Gómez F, Bouzon ZL, Korbee N, Celis-Plá P, Schmidt ÉC, Figueroa FL. Combined effects of UVR and nutrients on cell ultrastructure, photosynthesis and biochemistry in Gracilariopsis longissima (Gracilariales, Rhodophyta). Algal Res [Internet]. septiembre de 2017;26:190–202. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926417304125Torres PB, Chow F, Ferreira MJP, dos Santos DYAC. Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) and its variation under high light. J Appl Phycol [Internet]. el 10 de junio de 2016;28(3):2035–40. Disponible en: http://link.springer.com/10.1007/s10811-015-0708-0Torres PB, Chow F, Santos DYAC. Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture. J Appl Phycol [Internet]. el 25 de junio de 2015;27(3):1243–51. Disponible en: http://link.springer.com/10.1007/s10811-014-0418-zFélix C, Félix R, Carmona AM, Januário AP, Dias PDM, Vicente TFL, et al. Cosmeceutical Potential of Grateloupia turuturu : Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Applied Sciences [Internet]. el 12 de febrero de 2021;11(4):1650. Disponible en: https://www.mdpi.com/2076-3417/11/4/1650Félix R, Carmona AM, Félix C, Novais SC, Lemos MFL. Industry-Friendly Hydroethanolic Extraction Protocols for Grateloupia turuturu UV-Shielding and Antioxidant Compounds. Applied Sciences [Internet]. el 31 de julio de 2020;10(15):5304. Disponible en: https://www.mdpi.com/2076-3417/10/15/5304Hoyer K, Karsten U, Wiencke C. Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar Biol [Internet]. el 1 de octubre de 2002;141(4):619–27. Disponible en: http://link.springer.com/10.1007/s00227-002-0871-0Figueroa FL, Korbee N, Abdala R, Jerez CG, López-de la Torre M, Güenaga L, et al. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta). Mar Pollut Bull [Internet]. febrero de 2012;64(2):310–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0025326X11006047Schmidt ÉC, Pereira B, dos Santos RW, Gouveia C, Costa GB, Faria GSM, et al. Responses of the macroalgae Hypnea musciformis after in vitro exposure to UV-B. Aquat Bot [Internet]. julio de 2012;100:8–17. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0304377012000393Beach KS, Smith CM. Ecophysiology of tropical rodophytes. I. Microscale acclimation in pigmentation. J Phycol [Internet]. octubre de 1996;32(5):701–10. Disponible en: http://doi.wiley.com/10.1111/j.0022-3646.1996.00701.xKarentz D, McEuen FS, Land MC, Dunlap WC. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar Biol [Internet]. febrero de 1991;108(1):157–66. Disponible en: http://link.springer.com/10.1007/BF01313484Walter Helbling E, Fernando Menchi C, Villafañe VE. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem Photobiol Sci [Internet]. 2002;1(10):820–5. Disponible en: http://xlink.rsc.org/?DOI=B206584CHartmann A, Murauer A, Ganzera M. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. J Pharm Biomed Anal [Internet]. mayo de 2017;138:153–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0731708516312250Mercurio DG, Wagemaker TAL, Alves VM, Benevenuto CG, Gaspar LR, Maia Campos PMBG. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J Photochem Photobiol B [Internet]. diciembre de 2015;153:121–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134415003073Bhatia S, Sharma K, Namdeo A, Chaugule B, Kavale M, Nanda S. Broad-spectrum sun-protective action of Porphyra-334 derived from Porphyra vietnamensis . Pharmacognosy Res [Internet]. 2010;2(1):45. Disponible en: http://www.phcogres.com/text.asp?2010/2/1/45/60578Karsten U, Escoubeyrou K, Charles F. The effect of re-dissolution solvents and HPLC columns on the analysis of mycosporine-like amino acids in the eulittoral macroalgae Prasiola crispa and Porphyra umbilicalis. Helgol Mar Res [Internet]. el 14 de septiembre de 2009;63(3):231–8. Disponible en: http://link.springer.com/10.1007/s10152-009-0152-0Fu S, Xue S, Chen J, Shang S, Xiao H, Zang Y, et al. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int J Mol Sci [Internet]. el 22 de febrero de 2021;22(4):2180. Disponible en: https://www.mdpi.com/1422-0067/22/4/2180Ishihara K, Oyamada C, Sato Y, Danno H, Kimiya T, Kaneniwa M, et al. Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori Porphyra yezoensis. Fisheries Science [Internet]. febrero de 2008;74(1):167–73. Disponible en: http://link.springer.com/10.1111/j.1444-2906.2007.01506.xConde FR, Churio MS, Previtali CM. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol B [Internet]. julio de 2000;56(2–3):139–44. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S101113440000066XGuinobert I, Blondeau C, Burnet H, Antonowicz K, Guilbot A. Effet d’une association de Porphyra umbilicalis, de Polypodium leucotomos et de vitamines C et E sur la dose érythémateuse minimale chez des volontaires sains. Phytothérapie [Internet]. el 31 de agosto de 2016;14(4):246–50. Disponible en: http://link.springer.com/10.1007/s10298-016-1067-yKulkarni A, Lee JH, Seo HH, Kim HS, Cho MJ, Shin DS, et al. Photoinduced conductivity in mycosporine-like amino acids. Mater Chem Phys [Internet]. febrero de 2015;151:1–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0254058414007706Becker K, Hartmann A, Ganzera M, Fuchs D, Gostner J. Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Mar Drugs [Internet]. el 21 de junio de 2016;14(6):119. Disponible en: http://www.mdpi.com/1660-3397/14/6/119Ying R, Zhang Z, Zhu H, Li B, Hou H. The Protective Effect of Mycosporine-Like Amino Acids (MAAs) from Porphyra yezoensis in a Mouse Model of UV Irradiation-Induced Photoaging. Mar Drugs [Internet]. el 14 de agosto de 2019;17(8):470. Disponible en: https://www.mdpi.com/1660-3397/17/8/470Guihéneuf F, Gietl A, Stengel DB. Temporal and spatial variability of mycosporine-like amino acids and pigments in three edible red seaweeds from western Ireland. J Appl Phycol [Internet]. el 21 de agosto de 2018;30(4):2573–86. Disponible en: http://link.springer.com/10.1007/s10811-018-1436-zHartmann A, Gostner J, Fuchs J, Chaita E, Aligiannis N, Skaltsounis L, et al. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. Planta Med [Internet]. el 3 de junio de 2015;81(10):813–20. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0035-1546105Jiang H, Gao K, Walter Helbling E. The conchocelis of Porphyra Haitanensis (Rhodophyta) is protected from harmful UV radiation by the covering calcareous matrix. J Phycol [Internet]. diciembre de 2009;45(6):1270–7. Disponible en: http://doi.wiley.com/10.1111/j.1529-8817.2009.00755.xRyu J, Park SJ, Kim IH, Choi YH, Nam TJ. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med [Internet]. septiembre de 2014;34(3):796–803. Disponible en: https://www.spandidos-publications.com/10.3892/ijmm.2014.1815Korbee N, Figueroa FL, Aguilera J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B [Internet]. agosto de 2005;80(2):71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134405000606Jiang H, Gao K, Helbling EW. UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of desiccation. J Appl Phycol [Internet]. el 30 de agosto de 2008;20(4):387–95. Disponible en: http://link.springer.com/10.1007/s10811-007-9268-2Rui Y, Zhaohui Z, Wenshan S, Bafang L, Hu H. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J Photochem Photobiol B [Internet]. marzo de 2019;192:26–33. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1011134418309096Arróniz-Crespo M, Sinha RP, Martínez-Abaigar J, Núñez-Olivera E, Häder DP. Ultraviolet Radiation-Induced Changes in Mycosporine-Like Amino Acids and Physiological Variables in the Red Alga Lemanea fluviatilis. J Freshw Ecol [Internet]. diciembre de 2005;20(4):677–87. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/02705060.2005.9664791Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol [Internet]. el 11 de marzo de 2005;146(4):645–54. Disponible en: http://link.springer.com/10.1007/s00227-004-1484-6Tartarotti B, Sommaruga R. The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and Zooplankton. Fundamental and Applied Limnology [Internet]. el 7 de agosto de 2002;154(4):691–703. Disponible en: http://www.schweizerbart.de/papers/fal/detail/154/85788/The_effect_of_different_methanol_concentrations_an?af=crossrefPeinado NK, Abdala Díaz RT, Figueroa FL, Helbling EW. Ammonium and UV radiation stimulate the accumulation of Mycosporine-like amino acids in Porphyra Columbina (Rhodophyta) from Patagonia, Argentina. J Phycol [Internet]. abril de 2004;40(2):248–59. Disponible en: http://doi.wiley.com/10.1046/j.1529-8817.2004.03013.xSivalingam PM, Ikawa T, Nisizawa K. Isolation and Physico-chemical Properties of a Substance 334 from the Red Alga, Porphyra yezoensis Ueda. Botanica Marina [Internet]. 1976;19(1):1–8. Disponible en: https://www.degruyter.com/document/doi/10.1515/botm.1976.19.1.1/htmlGröniger A, Hallier C, Häder DP. Influence of UV radiation and visible light on Porphyra umbilicalis: Photoinhibition and MAA concentration. J Appl Phycol [Internet]. 1999 [citado el 29 de marzo de 2021];11(5):437–45. Disponible en: https://link.springer.com/article/10.1023/A:1008179322198Ying R, Zhang Z, Duan X, Zhao T, Liu A, Li B. Effects of mycosporine-like amino acids from Porphyra haitanensis on skin photoaging. Journal of Fisheries of China. el 1 de junio de 2017;41(6):937–43.Pliego-Cortés H, Bedoux G, Boulho R, Taupin L, Freile-Pelegrín Y, Bourgougnon N, et al. Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Res [Internet]. agosto de 2019;41:101542. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211926418310828Yuan Y V., Westcott ND, Hu C, Kitts DD. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem [Internet]. enero de 2009;112(2):321–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814608006286Yuan Y V., Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food and Chemical Toxicology [Internet]. julio de 2005;43(7):1073–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0278691505000761van de Poll WH, Eggert A, Buma AGJ, Breeman AM. Effects of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: Habitat-related differences in UV-B tolerance. J Phycol [Internet]. el 6 de febrero de 2001;37(1):30–8. Disponible en: http://doi.wiley.com/10.1046/j.1529-8817.2001.037001030.xBoulho R, Le Roux J, Le Quémener C, Audo G, Bourgougnon N, Bedoux G. Fractionation of UV-B absorbing molecules and of free radical scavenging compounds from Solieria chordalis by using centrifugal partition chromatography. Phytochem Lett [Internet]. junio de 2017;20:410–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1874390017301738Bedoux G, Hardouin K, Marty C, Taupin L, Vandanjon L, Bourgougnon N. Chemical characterization and photoprotective activity measurement of extracts from the red macroalga Solieria chordalis . Botanica Marina [Internet]. el 1 de enero de 2014;57(4). Disponible en: https://www.degruyter.com/document/doi/10.1515/bot-2013-0118/htmlAlgae Biomass Organization. Why Algae? - Algae Biomass Organization [Internet]. [citado el 19 de diciembre de 2022]. Disponible en: https://algaebiomass.org/resource-center/why-algae-2/McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Scientific Reports 2017 7:1 [Internet]. el 5 de diciembre de 2017 [citado el 19 de diciembre de 2022];7(1):1–12. Disponible en: https://www.nature.com/articles/s41598-017-17197-1US Department of Commerce NO and AA. How does climate change affect coral reefs?Wang H, Wang G, Gu W. Macroalgal blooms caused by marine nutrient changes resulting from human activities. Journal of Applied Ecology [Internet]. el 1 de abril de 2020 [citado el 19 de diciembre de 2022];57(4):766–76. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13587Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep. el 1 de enero de 2021;38(11):2100–29.Kurita KL, Glassey E, Linington RG. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci U S A [Internet]. el 29 de septiembre de 2015 [citado el 19 de diciembre de 2022];112(39):11999–2004. Disponible en: https://www.pnas.org/doi/abs/10.1073/pnas.1507743112Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, Rollinger JM, et al. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery 2021 20:3 [Internet]. el 28 de enero de 2021 [citado el 19 de diciembre de 2022];20(3):200–16. Disponible en: https://www.nature.com/articles/s41573-020-00114-zDu X, Zeisel SH. Spectral Deconvolution for Gas Chromatography Mass Spectrometry-Based Metabolomics: Current Status and Future Perspectives. Comput Struct Biotechnol J [Internet]. 2013 [citado el 19 de diciembre de 2022];4(5):e201301013. Disponible en: /pmc/articles/PMC3962095/Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017 13:9 [Internet]. el 9 de agosto de 2017 [citado el 19 de diciembre de 2022];13(9):1–16. Disponible en: https://link.springer.com/article/10.1007/s11306-017-1242-7Peng TQ, Yin XL, Gu HW, Sun W, Ding B, Hu XC, et al. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem. el 15 de junio de 2021;347.Jaumot J, Gargallo R, de Juan A, Tauler R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems. el 28 de marzo de 2005;76(1):101–10.de Juan A, Tauler R. Multivariate Curve Resolution-Alternating Least Squares for Spectroscopic Data. En: Data Handling in Science and Technology. Elsevier Ltd; 2016. p. 5–51.Azzouz T, Tauler R. Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples. Talanta. el 15 de febrero de 2008;74(5):1201–10.Sepúlveda, Lady. Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano. [Tesis de Maestría ]. [Bogotá]: Universidad Nacional de Colombia; 2022.Plazas EA, Avila MC, Delgado WA, Patino OJ, Cuca LE. In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants. el 1 de enero de 2018;12(1):9–18.Origin Lab Corporation. Origin(Pro). Northampton, MA; 2019.RStudio Team. RStudio: Integrated Development environment for R [Internet]. Boston,MA; 2022. Disponible en: http://www.rstudio.com/Microsoft Corporation. Microsoft Excel [Internet]. Disponible en: https://office.microsoft.com/excelThe MathWorks Inc. MATLAB R2022a. Natick, MA; 2022.Umetrics. SIMCA 14.Gager L, Connan S, Molla M, Couteau C, Arbona JF, Coiffard L, et al. Active phlorotannins from seven brown seaweeds commercially harvested in Brittany (France) detected by 1H NMR and in vitro assays: temporal variation and potential valorization in cosmetic applications. J Appl Phycol. el 6 de agosto de 2020;32(4):2375–86.Zárate R, Portillo E, Teixidó S, de Carvalho MAAP, Nunes N, Ferraz S, et al. Pharmacological and cosmeceutical potential of Seaweed Beach-casts of macaronesia. Applied Sciences (Switzerland). el 1 de septiembre de 2020;10(17).Springsteen A, Yurek R, Frazier M, Carr KF. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Anal Chim Acta. febrero de 1999;380(2–3):155–64.Valencia-Islas NA, Argüello JJ, Rojas JL. Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum , A lichen from the Andean Páramo. Pharmaceutical Sciences. el 1 de junio de 2021;27(2):281–90.Nash JF, Tanner PR, Matts PJ. Ultraviolet a radiation: Testing and labeling for sunscreen products. Vol. 24, Dermatologic Clinics. 2006. p. 63–74.Fernando IPS, Fernando PWP, Kim T, Ahn G. Structural diversity, biosynthesis, and health-promoting properties of brown algal meroditerpenoids. Critical Reviews in Biotechnology. Taylor and Francis Ltd.; 2021.Gerwick WH, Fenical W, Fritsch N, Clardy J. Stypotriol and stypoldione; ichthyotoxins of mixed biogenesis from the marine alga. Tetrahedron Lett. 1979;20(2):145–8.Soares AR, Duarte HM, Tinnoco LW, Pereira RC, Teixeira VL. Intraspecific variation of meroditerpenoids in the brown alga Stypopodium zonale guiding the isolation of new compounds. Revista Brasileira de Farmacognosia. el 1 de noviembre de 2015;25(6):627–33.Fattorusso E, Gerwick WH, Taglialatela-Scafati O. Handbook of Marine Natural Products [Internet]. Fattorusso E, Gerwick WH, Taglialatela-Scafati O, editores. Dordrecht: Springer Netherlands; 2012. Disponible en: https://link.springer.com/10.1007/978-90-481-3834-0Instituto de Investigaciones Marinas. Biodiversidad del Margen Continental del Caribe Colombiano. Invemar; 2010.Guiry MD, Guiry GM. AlgaeBase [Internet]. World-wide electronic publication. 2023 [citado el 2 de enero de 2023]. Disponible en: https://www.algaebase.orgChen J, Li H, Zhao Z, Xia X, Li B, Zhang J, et al. Diterpenes from the marine algae of the genus dictyota. Vol. 16, Marine Drugs. MDPI AG; 2018.Buitrago P. Estudio de diterpenos marinos de algas del género Dictyota del Caribe Colombiano. Universidad Nacional de Colombua; 2017.Rushdi MI, Abdel-Rahman IAM, Attia EZ, Saber H, Saber AA, Bringmann G, et al. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Vol. 27, Molecules. MDPI; 2022.Rao CB, Trimurtulu G, Sreedhara CH, Rao DV, Boaztnt SC, Faulkner DJ. Diterpenes from the brown alga Dictyota Bartayresiana . 1994;37(2):509–13.Kelecom A, Teixeira VL. Dolastane diterpenes from the marine brown alga Dictyota Cervicornis. Vol. 27, Phytochemistry. 1988.Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, et al. The genus Turbinaria: chemical and pharmacological diversity. Vol. 35, Natural Product Research. Taylor and Francis Ltd.; 2021. p. 4560–78.Caamal-Fuentes E, Moo-Puc R, Freile-Pelegrín Y, Robledo D. Cytotoxic and antiproliferative constituents from Dictyota ciliolata , Padina sanctae-crucis and Turbinaria tricostata . Pharm Biol. el 27 de octubre de 2014;52(10):1244–8.Stranska-Zachariasova M, Kurniatanty I, Gbelcova H, Jiru M, Rubert J, Nindhia TGT, et al. Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chem Biodivers. el 1 de febrero de 2017;14(2).Arguelles EDLR, Sapin AB. Bioprospecting of Turbinaria ornata (Fucales, phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities. Journal of the International Society for Southeast Asian Agricultural Sciences. 2020;26(2):30–41.Nurrochmad A, Wirasti, Dirman A, Lukitaningsih E, Rahmawati A, Fakhrudin N. Effects of antioxidant, anti-collagenase, anti-elastase, anti-tyrosinase of the extract and fraction from Turbinaria decurrens Bory. Indonesian Journal of Pharmacy. 2018;29(4):188–99.Wang L, Jayawardena TU, Hyun J, Wang K, Fu X, Xu J, et al. Antioxidant and anti-photoaging effects of a fucoidan isolated from Turbinaria ornata . Int J Biol Macromol. enero de 2023;225:1021–7.Iglesias MJ, Soengas R, Probert I, Guilloud E, Gourvil P, Mehiri M, et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry. el 1 de agosto de 2019;164:192–205.Smith KM, Goff DA, Abraham RJ. The NMR spectra of porphyrins. 27—proton NMR spectra of chlorophyll-a and pheophytin-a. Organic Magnetic Resonance [Internet]. diciembre de 1984;22(12):779–83. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/mrc.1270221210Valverde J, This H. 1H NMR quantitative determination of photosynthetic pigments from green beans ( Phaseolus vulgaris L.). J Agric Food Chem. el 23 de enero de 2008;56(2):314–20.Chakdar H, Pabbi S. Algal Pigments for Human Health and Cosmeceuticals. En: Algal Green Chemistry. Elsevier; 2017. p. 171–88.Mohammed HA, Al-Omar MS, El-Readi MZ, Alhowail AH, Aldubayan MA, Abdellatif AAH. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities. Molecules. el 17 de abril de 2019;24(8):1501.Okai Y, Higashi-Okai K. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int J Immunopharmacol [Internet]. junio de 1997 [citado el 24 de enero de 2023];19(6):355–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9467755/Higashi-Okai K, Otani S, Okai Y. Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin. Cancer Lett [Internet]. el 19 de junio de 1998 [citado el 24 de enero de 2023];129(2):223–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9719465/Friday C, Igwe OU, Akwada UC. NMR characterization and free radical scavenging activity of pheophytin “a” from the leaves of Dissotis rotundifolia. Bull Chem Soc Ethiop. el 1 de mayo de 2021;35(1):207–15.Lötjönen S, Hynninen PH. Carbon-13 NMR spectra of chlorophyll a, chlorophyll a′, pyrochlorophyll a and the corresponding pheophytins. Organic Magnetic Resonance. diciembre de 1983;21(12):757–65.Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamura M, et al. Fucoxanthin and Its Metabolites in Edible Brown Algae Cultivated in Deep Seawater. Mar Drugs [Internet]. 2004;2:63–72. Disponible en: www.mdpi.net/marinedrugs/Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae – Recent advances in cultivation strategies and downstream processing. Bioresour Technol. enero de 2022;344:126170.Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira AG, Garcia-Oliveira P, et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol [Internet]. el 1 de noviembre de 2021;117:163–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0924224421002041Tavares RSN, Kawakami CM, Pereira K de C, do Amaral GT, Benevenuto CG, Maria-Engler SS, et al. Fucoxanthin for Topical Administration, a Phototoxic vs. Photoprotective Potential in a Tiered Strategy Assessed by In Vitro Methods. Antioxidants. el 17 de abril de 2020;9(4):328.Matsui M, Tanaka K, Higashiguchi N, Okawa H, Yamada Y, Tanaka K, et al. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. J Pharmacol Sci. septiembre de 2016;132(1):55–64.Shimoda H, Tanaka J, Shan SJ, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. Journal of Pharmacy and Pharmacology. el 2 de agosto de 2010;62(9):1137–45.Teixeira VL, Tomassini T, Fleury BG, Kelecom A. Dolastane and Secodolastane Diterpenes from the Marine Brown Alga, Dictyota cericornis. J Nat Prod [Internet]. el 1 de julio de 1986;49(4):570–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/np50046a002De Oliveira AS, Cavalcanti DN, Bianco ÉM, De Paula JC, Pereira RC, Yoneshigue-Valentin Y, et al. Chemical Composition of Diterpenes from the Brown Alga Canistrocarpus cervicornis (Dictyotaceae, Phaeophyceae). https://doi.org/101177/1934578X0800300913 [Internet]. el 1 de septiembre de 2008 [citado el 23 de enero de 2023];3(9):1469–72. Disponible en: https://journals.sagepub.com/doi/abs/10.1177/1934578X0800300913Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, et al. Diterpenes from the marine algae of the genus dictyota. Vol. 16, Marine Drugs. MDPI AG; 2018.Kobayashi T, Tomita Y, Kawamoto Y, Ito H. Highly stereocontrolled total synthesis of secodolastane diterpenoid isolinearol. Org Biomol Chem. el 7 de octubre de 2020;18(37):7316–20.De-Paula JC, De Gusmão Pedrini A, Pinheiro MD, Pereira RC, Teixeira VL. Chemical similarity between the brown algae Dictyota cervicornis and D. Pardalis (Dictyotales, Phaeophyta). Biochem Syst Ecol [Internet]. 2001 [citado el 23 de enero de 2023];29(4):425–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11182491/Domingos TFS, Vallim MA, Cavalcanti DN, Sanchez EF, Teixeira VL, Fuly AL. Effect of diterpenes isolated of the marine alga Canistrocarpus cervicornis against some toxic effects of the venom of the Bothrops jararaca snake. Molecules. el 1 de marzo de 2015;20(3):3515–26.Vallim MA, De Paula JC, Pereira RC, Teixeira VL. The diterpenes from Dictyotacean marine brown algae in the Tropical Atlantic American region. Biochem Syst Ecol. 2005;33(1):1–16.De Clerck O, Leliaert F, Verbruggen H, Lane CE, De Paula JC, Payo DA, et al. A revised classification of the Dictyoteae (Dictyotales, phaeophyceae) based on rbc L and 26S ribosomal DNA sequence analyses 1. J Phycol. el 16 de diciembre de 2006;42(6):1271–88.de Paula JC, Vallim MA, Teixeira VL. What are and where are the bioactive terpenoids metabolites from Dictyotaceae (Phaeophyceae). Revista Brasileira de Farmacognosia [Internet]. 2011 [citado el 24 de enero de 2023];21(2):216–28. Disponible en: http://www.scielo.br/j/rbfar/a/j7xM3XSqgLwVdKGGPj4NnHd/?lang=enBano S, Parveen S, Ahmad VU. Marine Natural Products, XIV. Secodolastane Diterpenoids of Dictyota indica from the Arabian Sea. J Nat Prod [Internet]. el 1 de marzo de 1990 [citado el 23 de enero de 2023];53(2):492–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/np50068a035Chee CF, Lee HB, Ong HC, Ho ASH. Photocytotoxic pheophorbide-related compounds from Aglaonema simplex. Chem Biodivers. 2005;2(12):1648–55.Saide A, Lauritano C, Ianora A. Pheophorbide a: State of the Art. Mar Drugs. el 14 de mayo de 2020;18(5):257.Lee H, Park HY, Jeong TS. Pheophorbide a Derivatives Exert Antiwrinkle Effects on UVB-Induced Skin Aging in Human Fibroblasts. Life. el 15 de febrero de 2021;11(2):147.Hwang SH, Jang JM, Lim SS. Isolation of fucosterol from Pelvetia siliquosa by high-speed countercurrent chromatography. Fish Aquatic Sci. 2012;15(3):191–5.Meinita MDN, Harwanto D, Tirtawijaya G, Negara BFSP, Sohn JH, Kim JS, et al. Fucosterol of Marine Macroalgae: Bioactivity, Safety and Toxicity on Organism. Mar Drugs [Internet]. el 27 de septiembre de 2021;19(10):545. Disponible en: https://www.mdpi.com/1660-3397/19/10/545Hwang E, Park SY, Sun Z wang, Shin HS, Lee DG, Yi TH. The Protective Effects of Fucosterol Against Skin Damage in UVB-Irradiated Human Dermal Fibroblasts. Marine Biotechnology. el 20 de junio de 2014;16(3):361–70.Mori K, Koga Y. Synthesis and absolute configuration of (−)-stypoldione. Bioorg Med Chem Lett. enero de 1992;2(5):391–4.Gerwick WH, Fenical W. Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem. el 1 de enero de 1981;46(1):22–7.Mestrelab research. Mnova NMR to visualize, process, analyze & report 1D and 2D NMR data [Internet]. [citado el 10 de abril de 2023]. Disponible en: https://mestrelab.com/software/mnova/nmr/Arslan Burnaz N, Küçük M, Akar Z. An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J Chromatogr B Analyt Technol Biomed Life Sci. el 1 de mayo de 2017;1052:66–72.Koleva II, Niederländer HAG, Van Beek TA. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures. Anal Chem. 2000;72(10):2323–8.Koleva II, Niederländer HAG, Van Beek TA. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates. Anal Chem. el 15 de julio de 2001;73(14):3373–81.Çelik SE, Asfoor A, Şenol O, Apak R. Screening method for argan oil adulteration with vegetable oils: An online hplc assay with postcolumn detection utilizing chemometric multidata analysis. J Agric Food Chem. el 1 de julio de 2019;67(29):8279–89.Bandoniene D, Murkovic M, Pfannhauser W, Venskutonis PR, Gruzdiene D. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods. European Food Research and Technology. 2002;214(2):143–7.Bandoniene D, Murkovic M. On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J Agric Food Chem. el 24 de abril de 2002;50(9):2482–7.International Conference on harmonisation of technical requirements for registration of pharmaceutical for human use (ICH). Validation of analytical procedures: text and methodology Q2(R1).Garcia-Perez P, Lourenço-Lopes C, Silva A, Pereira AG, Fraga-Corral M, Zhao C, et al. Pigment Composition of Nine Brown Algae from the Iberian Northwestern Coastline: Influence of the Extraction Solvent. Mar Drugs [Internet]. el 31 de enero de 2022;20(2):113. Disponible en: https://www.mdpi.com/1660-3397/20/2/113Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C. Production, Characterization, and Antioxidant Activity of Fucoxanthin from the Marine Diatom Odontella aurita. Mar Drugs. el 23 de julio de 2013;11(7):2667–81.Wang LJ, Fan Y, Parsons R, Hu GR, Zhang PY, Li FL. A rapid method for the determination of fucoxanthin in Diatom. Mar Drugs. el 22 de enero de 2018;16(1):33.Rückmann I, Zeug A, von Feilitzsch T, Röder B. Orientational relaxation of pheophorbide-a molecules in the ground and in the first excited state measured by transient dichroism spectroscopy. Opt Commun. noviembre de 1999;170(4–6):361–72.Technology – SEDERE. El detector Evaporativo a Difusión de la Luz con evaporación a baja temperatura (LT-ELSD) [Internet]. [citado el 10 de abril de 2022]. Disponible en: https://sedere.com/technology/?lang=esWang T, Wei J, Wang L, Lu Y, Zhang Q, Wang Y. Effect of Dibutyl phthalate on antioxidant parameters and related gene expression in Daphnia magna . IOP Conf Ser Earth Environ Sci. el 2 de marzo de 2019;227:052052.Sicińska P, Kik K, Bukowska B. Human Erythrocytes Exposed to Phthalates and Their Metabolites Alter Antioxidant Enzyme Activity and Hemoglobin Oxidation. Int J Mol Sci. el 24 de junio de 2020;21(12):4480.Nahas R, Abatis D, Anagnostopoulou MA, Kefalas P, Vagias C, Roussis V. Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 2007;102(3):577–81.Li H, Li L, Zheng Q, Kuroda C, Wang Q. Phaeophytin analogues from Ligularia knorringiana. Molecules. mayo de 2012;17(5):5219–24.Lee S, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa . Arch Pharm Res. septiembre de 2003;26(9):719–22.Ko W, Lee H, Kim N, Jo HG, Woo ER, Lee K, et al. The Anti-Oxidative and Anti-Neuroinflammatory Effects of Sargassum horneri by Heme Oxygenase-1 Induction in BV2 and HT22 Cells. Antioxidants. el 27 de mayo de 2021;10(6):859.BalcarQ: Bioprospección y química de algas del Caribe (80740-739-2020)Ministerio de Ciencia Tecnología e InnovaciónEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84241/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015447265_2023.pdf1015447265_2023.pdfTesis de Maestría en Ciencias Químicaapplication/pdf9853522https://repositorio.unal.edu.co/bitstream/unal/84241/2/1015447265_2023.pdfcbe492dd15982e3e3c8ab3b9b6a63d57MD52THUMBNAIL1015447265_2023.pdf.jpg1015447265_2023.pdf.jpgGenerated Thumbnailimage/jpeg5102https://repositorio.unal.edu.co/bitstream/unal/84241/3/1015447265_2023.pdf.jpg3e33a7097f49e372464819558e7bc078MD53unal/84241oai:repositorio.unal.edu.co:unal/842412023-08-10 23:03:50.768Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |