Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq
Ilustraciones, fotografías, tablas
- Autores:
-
Tarazona Pulido, Lina Maria
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86616
- Palabra clave:
- 570 - Biología::576 - Genética y evolución
Procesamiento de señales genómicas
Genomic signal processing
Marcador genético
Genetic markers
Variación genética
Genetic variation
Diversidad genética
Estructura poblacional
SNPs
PST1
Ómicas
Genetic diversity
Population structure
Omics
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_72ce198d7405fc6aaca7f0402b1a3cb0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86616 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
dc.title.translated.eng.fl_str_mv |
Genomic characterization of populations of Petiveria alliacea L. and Lippia alba (Mill.) from different departments of Colombia using RADseq |
title |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
spellingShingle |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq 570 - Biología::576 - Genética y evolución Procesamiento de señales genómicas Genomic signal processing Marcador genético Genetic markers Variación genética Genetic variation Diversidad genética Estructura poblacional SNPs PST1 Ómicas Genetic diversity Population structure Omics |
title_short |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
title_full |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
title_fullStr |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
title_full_unstemmed |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
title_sort |
Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq |
dc.creator.fl_str_mv |
Tarazona Pulido, Lina Maria |
dc.contributor.advisor.none.fl_str_mv |
Rugeles Silva, Paula Andrea López Álvarez, Diana Carolina |
dc.contributor.author.none.fl_str_mv |
Tarazona Pulido, Lina Maria |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Diversidad Biológica |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0009-0003-3606-1446 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Lina-Tarazona-Pulido |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?hl=es&user=J-X7K-AAAAAJ |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::576 - Genética y evolución |
topic |
570 - Biología::576 - Genética y evolución Procesamiento de señales genómicas Genomic signal processing Marcador genético Genetic markers Variación genética Genetic variation Diversidad genética Estructura poblacional SNPs PST1 Ómicas Genetic diversity Population structure Omics |
dc.subject.agrovoc.none.fl_str_mv |
Procesamiento de señales genómicas Genomic signal processing Marcador genético Genetic markers Variación genética Genetic variation |
dc.subject.proposal.spa.fl_str_mv |
Diversidad genética Estructura poblacional SNPs PST1 Ómicas |
dc.subject.proposal.eng.fl_str_mv |
Genetic diversity Population structure Omics |
description |
Ilustraciones, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-25T16:04:41Z |
dc.date.available.none.fl_str_mv |
2024-07-25T16:04:41Z |
dc.date.issued.none.fl_str_mv |
2024-03-15 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86616 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86616 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abasi, F., Abdel-Massih, R. M., Aubert, E., Aubouy, A., Cabrera-Barraza, J., Camara, A., Cerra-Dominguez, J., Chan, K. W. K., Chassagne, F., Chen, X., David, B., De Canha, M. N., Deharo, E., Dembetembe, T. T., Dénou, A., Díaz-Castillo, F., El Beyrouthy, M., Fechter, P., Gibango, L., ... Wolfender, J.-L. (2022). Medicinal Plants as Anti-Infectives Current Knowledge and New Perspectives. En Medicinal Plants as Anti-Infectives. Academic Press. https://doi.org/10.1016/B978-0-323-90999-0.00021-5 Agüero-Hernández, A. L., Rosales-López, C., Herrera, C., Vargas-Picado, A., Muñoz, R., & Abdelnour-Esquivel, A. (2020). Hypoglycemic effect of Kalanchoe pinnata (Lam) Pers. Leaf extract. Pharmacognosy Journal, 12(3), 557-561. https://doi.org/10.5530/PJ.2020.12.84 Article, R. (2016). Techniques and Progress to Explore Biofuels in the Postgenomics World. 20(7), 387-399. https://doi.org/10.1089/omi.2016.0065 Araya, S., Martins, A. M., Junqueira, N. T. V, Costa, A. M., & Faleiro, F. G. (2017). Microsatellite marker development by partial sequencing of the sour passion fruit genome ( Passiflora edulis Sims ). https://doi.org/10.1186/s12864-017-3881-5 Ballesteros-Ramírez, R., Durán, M. I., & Fiorentino, S. (2021). Genotoxicity and mutagenicity assessment of a standardized extract (P2Et) obtained from Caesalpinia spinosa. Toxicology Reports, 8, 258. https://doi.org/10.1016/J.TOXREP.2020.12.024 Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020a). F oodomics evaluation of the anti- proliferativepotential of Passiflora mollissima seeds. Food Research International, 130. https://doi.org/10.1016/J.FOODRES.2019.108938 Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020b). Foodomics evaluation of the anti- proliferative potential of Passiflora mollissima seeds. Food Research International, 130(July 2019), 108938. https://doi.org/10.1016/j.foodres.2019.108938 Bartolome, A. P., Villaseñor, I. M., & Yang, W. C. (2013). Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. Evidence- based Complementary and Alternative Medicine : eCAM, 2013, 51. https://doi.org/10.1155/2013/340215 Bernal, H. (2011). Pautas para el conocimiento, conservación y uso sostenible de plantas medicinales nativas en Colombia. Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., & Gutiérrez, M. (2017). Nombres Comunes Plantas de Colombia. http://www.biovirtual.unal.edu.co/nombrescomunes/ Bernal, R., Gradstein, S. R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. http://catalogoplantasdecolombia.unal.edu.co Boutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2014). Investigation of terpene diversification across multiple sequenced plant genomes. PNAS plus, 10, 81-88. https://doi.org/10.1073/pnas.1419547112 Boutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2015). Investigation of terpene diversification across multiple sequenced plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 112(1), E81-E88. https://doi.org/10.1073/PNAS.1419547112/SUPPL_FILE/PNAS.1419547112.SD04.TXT Bryant, L., Patole, C., & Cramer, R. (2016). Data in Brief Proteomic analysis of the medicinal plant Artemisia annua: Data from leaf and trichome extracts. Data in Brief, 7, 325-331. https://doi.org/10.1016/j.dib.2016.02.038 Bustillos, A., & Cortez, J. C. (2021). Anti-metastic and anti-proliferative activity of ilex guayusa, uncaria tomentosa and croton lechleri, in the mcf7 cell line. Investigacion Clinica (Venezuela), 62, 86-94. Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457 Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457 Camargo, J. E. R., Alfonso, A. N. T., Rojas-Rozo, R. A., de Castro, C., & de Murcia, T. R. (2010). In vitro cytotoxicity of extracts and fractions of Bursera tomentosa (Jacq.) Triana & Planch., Burseraceae, against human tumor cell. Revista Brasileira de Farmacognosia, 20(4), 588-593. https://doi.org/10.1590/S0102-695X2010000400019 Cañigueral, S., Delacassa, E., & L Bandoni, A. (2003). Plantas Medicinales y Fitoterapia:¿Indicadores de Dependencia o Factores de Desarrollo? Acta Farm. Bonaerense, 22, 78-265. Cardona, C. C. C., Puerta, R. P., & Coronado, Y. M. (2021). Caracterización molecular con marcadores ISSR de la colección de cítricos de la Universidad de los Llanos. https://doi.org/10.3/JQUERY-UI.JS Carmona-Hernandez, J. C., Taborda-Ocampo, G., & González-Correa, C. H. (2021). Folin- Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. International Journal of Food Science, 2021, 1-10. https://doi.org/10.1155/2021/8871301 Carolina Arboleda Echavarría, D. C., Jaramillo Yepes, F., & Herman Palacio Torres, Q. (2012). Determinación del potencial antioxidante en extractos de vinagre Guadua angustifolia Kunth para aplicaciones alimenticias. Revista Cubana de Plantas Medicinales, 17(4), 330-342. Carqueijeiro, I., Koudounas, K., de Bernonville, T. D., Sepúlveda, L. J., Mosquera, A., Bomzan, D. P., Oudin, A., Lanoue, A., Besseau, S., Cruz, P. L., Kulagina, N., Stander, E. A., Eymieux, S., Burlaud-Gaillard, J., Blanchard, E., Clastre, M., Atehortùa, L., St-Pierre, B., Giglioli-Guivarc’h, N., ... Courdavault, V. (2021). Alternative splicing creates a pseudo- strictosidine b-D-glucosidase modulating alkaloid synthesis in Catharanthus roseus. Plant Physiology, 185(3), 836-856. https://doi.org/10.1093/PLPHYS/KIAA075 Carraz, M., Lavergne, C., Jullian, V., Wright, M., Gairin, J. E., Gonzales de la Cruz, M., & Bourdy, G. (2015). Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. Journal of Ethnopharmacology, 166, 185-199. https://doi.org/10.1016/j.jep.2015.02.028 Castañeda, R., Cáceres, A., Cruz, S. M., Aceituno, J. A., Marroquín, E. S., Barrios Sosa, A. C., Strangman, W. K., & Williamson, R. T. (2023). Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. Journal of Ethnopharmacology, 301, 115755. https://doi.org/10.1016/j.jep.2022.115755 Castellanos, C., Valderrama, N., Bernal, Y., & García, N. (2019). Plantas alimenticias y medicinales de Colombia. http://i2d.humboldt.org.co/ceiba/resource.do?r=ls_colombia_magnoliophyta_2014#anchor -project Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia (R. Negrão, A. Monro, C. Castellanos-Castro, & M. Diazgranados, Eds.). Kew Publishing Royal Botanic Gardens, Kew. Chakraborty, S., Hosen, I., Shekhar, H. U., & Ahmed, M. (2018). Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. Chunhong, H., Qian, L., Jinhua, L., & Yongqing, Z. (2013). Advances in the Researcha of chemical constituents in Thalictrum Plants (pp. 54-58). Clarke, R. C., & Merlin, M. D. (2017). Critical Reviews in Plant Sciences Cannabis Domestication , Breeding History , Present-day Genetic Diversity , and Future Prospects. Critical Reviews in Plant Sciences, 35(5-6), 293-327. https://doi.org/10.1080/07352689.2016.1267498 Clevenger, J., Chavarro, C., Pearl, S. A., Ozias-Akins, P., & Jackson, S. A. (2015). Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular plant, 8(6), 831-846. https://doi.org/10.1016/J.MOLP .2015.02.002 ColPlantA. (2023, febrero 20). Useful Plants of Colombia. Facilitated by the Royal Botanic Gardens, Kew. https://colplanta.org/cite-us Cordoba-tovar, L., Ríos-geovo, V., Largacha-viveros, M. F., Salas-moreno, M., Marrugo- negrete, L., Andr, P., Mosquera, L., & Jonathan, M. P. (2022). Acta Ecologica Sinica Cultural belief and medicinal plants in treating COVID 19 patients of Western Colombia. 42(October 2021), 476-484. https://doi.org/10.1016/j.chnaes.2021.10.011 Crettol, S., Petrovic, N., & Murray, M. (2010). Pharmacogenetics of Phase I and Phase II Drug Metabolism. current pharmaceutical design, 16, 204-219. https://doi.org/10.1007/978- 1-4419-0840-7_1 DeCarlo, A., Dosoky, N. S., Satyal, P., Sorensen, A., & Setzer, W. N. (2019). The Essential Oils of the Burseraceae. Essential Oil Research, 61-145. https://doi.org/10.1007/978-3- 030-16546-8_4 Eaton, D. A. R., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic biology, 62(5), 689-706. https://doi.org/10.1093/SYSBIO/SYT032 Ef, M. T., Chest, T., & Plants, R. M. (2022). Biodiversity and Chemodiversity: Pharmacophylogeny of. 28(12), 1111-1126. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one, 6(5). https://doi.org/10.1371/JOURNAL.PONE.0019379 Elufioye, T. O., Habtemariam, S., & Adejare, A. (2020). Chemistry and Pharmacology of Alkylamides from Natural Origin. Revista Brasileira de Farmacognosia, 30, 622-640. https://doi.org/10.1007/s43450-020-00095-5 Estrella-Parra, E., Flores-Cruz, M., Blancas-Flores, G., Koch, S. D., & Alarcón-Aguilar, F. J. (2019). The Tillandsia genus: History, uses, chemistry, and biological activity. Boletín latinoamericano y del caribe de plantas medicinales y aromáticas, 18, 239-264. Fonseca-Benitez, A., Morantes Medina, S. J., Ballesteros-Vivas, D., Parada-Alfonso, F., & Sandra J Perdomo. (2022). Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Advances in Pharmacological and Pharmaceutical Sciences, 2022. https://doi.org/10.1155/2022/4602413 Gámez-Espinosa, E., Deyá, C., Cabello, M., & Bellotti, N. (2021). Nanoparticles synthesised from Caesalpinia spinosa: Assessment of the antifungal effects in protective systems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(1), 015001. https://doi.org/10.1088/2043-6254/ABDFC1 Gandra, J., Kumar, H., Kumar, S. A., Doma, M., & Deepthi, Y. (2022). Industrial Crops & Products Metabolomic and proteomic signature of Gloriosa superba leaves treated with mercuric chloride and phenylalanine , a precursor of colchicine alkaloid. Industrial Crops & Products, 178(July 2021), 114557. https://doi.org/10.1016/j.indcrop.2022.114557 García, L. T., Leal, A. F., Moreno, É. M., Stashenko, E. E., & Arteaga, H. J. (2017). Differential anti-proliferative effect on K562 leukemia cells of Lippia alba (Verbenaceae) essential oils produced under diverse growing, collection and extraction conditions. Industrial Crops and Products, 96, 140-148. https://doi.org/10.1016/J.INDCROP.2016.11.057 Gilmore, S., & Peakall, R. (2003). Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Molecular Ecology Notes, 3(1), 105-107. https://doi.org/10.1046/J.1471- 8286.2003.00367.X Glécio, P., Lima, C., Coelho-Ferreira, M., Da, R., & Santos, S. (2016). Perspectives on Medicinal Plants in Public Markets across the Amazon: A Review. Economic Botany. https://doi.org/10.1007/s12231-016-9338-y Gnocchi, D., Del Coco, L., Girelli, C. R., Castellaneta, F., Cesari, G., Sabbà, C., Fanizzi, F. P., & Mazzocca, A. (2021). 1H-NMR metabolomics reveals a multitarget action of Crithmum maritimum ethyl acetate extract in inhibiting hepatocellular carcinoma cell growth. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-020-78867-1 Gomide, M. da S., Lemos, F. de O., Lopes, M. T. P., Alves, T. M. de A., Viccini, L. F., & Coelho, C. M. (2013). The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Revista Brasileira de Farmacognosia, 23(6), 895-902. https://doi.org/10.1590/S0102-695X2013000600006 Gong, X., Yang, M., He, C. nian, Bi, Y. qiong, Zhang, C. hong, Li, M. hui, & Xiao, P. gen. (2022). Plant Pharmacophylogeny: Review and Future Directions. Chinese Journal of Integrative Medicine, 28(6), 567-574. https://doi.org/10.1007/s11655-020-3270-9 Gonulalan, E. M., Nemutlu, E., Bayazeid, O., Koçak, E., & Yalçın, F. N. (2020). Phytomedicine Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine, 74(January 2019), 152920. https://doi.org/10.1016/j.phymed.2019.152920 Guo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T. A., Graham, I. A., & Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343-347. https://doi.org/10.1126/science.aat4096 Guzman, E., & Molina, J. (2018). The predictive utility of the plant phylogeny in identifying sources of cardiovascular drugs. Pharmaceutical Biology, 56(1), 154-164. https://doi.org/10.1080/13880209.2018.1444642 Hao, D. C., Chen, S. L., Xiao, P. G., & Liu, M. (2012). Application of High-Throughput Sequencing in Medicinal Plant Transcriptome Studies. Drug Development Research, 73(8), 487-498. https://doi.org/10.1002/DDR.21041 Hao, D. C., Ge, G. B., & Xiao, P. G. (2018). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current drug targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020 Hao, D. C., Gu, X. J., Xiao, P. G., & Peng, Y. (2013). Phytochemical and biological research of fritillaria medicine resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3 Hao, D. C., Gu, X.-J., & Xiao, P. G. (2015). High-throughput sequencing in medicinal plant transcriptome studies. En Medicinal Plants. Elsevier Ltd. https://doi.org/10.1016/b978-0- 08-100085-4.00002-5 Hao, D. C., & Xiao, P. G. (2015a). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326 Hao, D. C., & Xiao, P. G. (2015b). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326 Hao, D. C., & Yang, L. (2016). Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. En Expert Opinion on Drug Metabolism and Toxicology (Vol. 12, Número 9). https://doi.org/10.1080/17425255.2016.1201068 Hao, D., Ge, G., & Xiao, P. (2017). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current Drug Targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020 Hao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Recent Advance in Chemical and Biological Studies on Cimicifugeae Pharmaceutical Resources. Chinese Herbal Medicines, 5(2), 81-95. https://doi.org/10.3969/j.issn.1674-6348.2013.02.001 Hao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Research progress in the phytochemistry and biology of Ilex pharmaceutical resources. Acta Pharmaceutica Sinica B, 3(1), 8-19. https://doi.org/10.1016/j.apsb.2012.12.008 Hao, D., & Xiao, P. (2020). Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. Chinese Herbal Medicines, 12(2), 104-117. https://doi.org/10.1016/j.chmed.2020.03.002 Hao, D.-C. C., Gu, X. J., & Xiao, P . G. (2017). Anemone medicinal plants: Ethnopharmacology, phytochemistry and biology. Acta Pharmaceutica Sinica B, 7(2), 146- 158. https://doi.org/10.1016/j.apsb.2016.12.001 HAO, D.-C. C., Gu, X.-J. J., XIAO, P.-G. G., & Peng, Y. (2013). Phytochemical and biological research of Fritillaria Medicine Resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3 Hao, D.-C., & Xiao, P.-G. (2018). Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. Chinese Herbal Medicines, 10(3), 239-248. https://doi.org/10.1016/j.chmed.2018.02.003 He, D., Li, Y., Tang, H., Ma, R., Li, X., & Wang, L. (2015). Six new cassane diterpenes from the twigs and leaves of Tara (Caesalpinia spinosa Kuntze). Fitoterapia, 105, 273-277. https://doi.org/10.1016/J.FITOTE.2015.07.018 Hite, D. A. M. W., Uang, J. E. N. A. N. H., Dolfo, O. R. A., Uñoz, J. A. R. A., & Adriñán, S. A. M. (2021). The Origins of Coca: Museum Genomics Reveals Multiple Independent Domestications from Progenitor Erythroxylum gracilipes. 70(1), 1-13. https://doi.org/10.1093/sysbio/syaa074 IPNI. (2023, febrero). International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium. https://www.ipni.org/citeus IUCN. (2023). The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ Jiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021a). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758 Jiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021b). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758 Kasper, J., Melzig, M., & Jenett-Siems, K. (2010). New Phenolic Compounds of Acmella ciliata. Planta Medica, 76(06), 633-635. https://doi.org/10.1055/s-0029-1240621 Kiselev, K. V., Tyunin, A. P., & Karetin, Y. A. (2015). Salicylic acid induces alterations in the methylation pattern of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. Cell cultures. Plant Cell Reports, 34(2), 311-320. https://doi.org/10.1007/s00299-014- 1708-2 Koehler-Santos, P., Lorenz-Lemke, A. P., Muschner, V. C., Bonatto, S. L., Salzano, F. M., & Freitas, L. B. (2006). Molecular genetic variation in Passiflora alata (Passifloraceae), an invasive species in southern Brazil. Biological Journal of the Linnean Society, 88(4), 611- 630. https://doi.org/10.1111/J.1095-8312.2006.00647.X Lan, H., Wang, H., Gao, M., Luo, G., Zhang, J., Yi, E., Liang, C., Xiong, X., Chen, X., Wu, Q., Chen, R., Lin, B., Qian, D., & Hong, W. (2021). Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BioMed Research International, 2021. https://doi.org/10.1155/2021/9984112 Lasso, P., Rojas, L., Arévalo, C., Urueña, C., Murillo, N., Barreto, A., Costa, G. M., & Fiorentino, S. (2022). Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers, 14(21). https://doi.org/10.3390/CANCERS14215383/S1 Leal Garzón, D. A., & Modesti Costa, G. (2021). Caracterización fitoquímica de especies vegetales en Colombia y evaluación de su actividad antifúngica contra Candida albicans. Pontificia Universidad Javeriana. Leonti, M., Casu, L., de Oliveira Martins, D. T., Rodrigues, E., & Benítez, G. (2020). Ecological Theories and Major Hypotheses in Ethnobotany: Their Relevance for Ethnopharmacology and Pharmacognosy in the Context of Historical Data. Revista Brasileira de Farmacognosia, 30(4), 451-466. https://doi.org/10.1007/s43450-020-00074- w Li, P., Chen, J., Zhang, W., Fu, B., & Wang, W. (2017). Transcriptome inference and systems approaches to polypharmacology and drug discovery in herbal medicine. Journal of Ethnopharmacology, 195(June), 127-136. https://doi.org/10.1016/j.jep.2016.10.020 Li, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022a). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822 Li, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022b). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822 Lin, L. L., Hsia, C. R., Hsu, C. L., Huang, H. C., & Juan, H. F. (2015). Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics, 16(1), 1-17. https://doi.org/10.1186/s12864-015-1230-0 Lin, X., Feng, C., Lin, T., Harris, A., Li, Y., & Kang, M. (2022). Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in. Horticulture Research, 9(173), 1-13. Liu, X., Wu, W.-Y., Jiang, B.-H., Yang, M., & Guo, D.-A. (2013). Pharmacological tools for the development of traditional Chinese medicine. Trends in Pharmacological Sciences, 34(11), 620-628. https://doi.org/10.1016/j.tips.2013.09.004 Liu, Z., Ma, L., & Zhou, G. (2011). The Main Anticancer Bullets of the Chinese Medicinal Herb, Thunder God Vine. 5283-5297. https://doi.org/10.3390/molecules16065283 Lowe, H. I. C., Toyang, N. J., Watson, C. T., Ayeah, K. N., & Bryant, J. (2017). HLBT-100: A highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L. Cancer Cell International, 17(1). https://doi.org/10.1186/S12935-017-0404-Z Lucena de Vasconcelos, A., Lucena de Vasconcelos, A., Azevedo Ximenes, E., & Perrelli Randau, K. (2013). Tillandsia recurvata L. (Bromeliaceae): Aspectos farmacognósticos.: EBSCOhost. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 151-159. Ma, J., Huang, J., Hua, S., Zhang, Y., Zhang, Y., Li, T., Dong, L., Gao, Q., & Fu, X. (2019). The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata – A review. Journal of Ethnopharmacology, 231, 152-169. https://doi.org/10.1016/j.jep.2018.10.040 Ma, R., Yang, P., Jing, C., Fu, B., Teng, X., & Zhao, D. (2023). Plant Physiology and Biochemistry Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. Plant Physiology and Biochemistry, 195(December 2022), 288-299. https://doi.org/10.1016/j.plaphy.2023.01.020 Manica-Cattani, M. F., Zacaria, J., Pauletti, G., Atti-Serafini, L., & Echeverrigaray, S. (2009). Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Brazilian Journal of Biology, 69(2), 375-380. https://doi.org/10.1590/S1519-69842009000200020 Marulanda, M. L., López, A. M., & Claroz, J. L. (2007). Analyzing the genetic diversity of Guadua spp. In Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology, 7(1), 43-51. https://doi.org/10.12702/1984-7033.V07N01A07 Mazzari, A. L. D. A., & Prieto, J. M. (2014). Herbal medicines in Brazil: Pharmacokinetic profile and potential herb-drug interactions. Frontiers in Pharmacology, 5 JUL(July), 1-12. https://doi.org/10.3389/fphar.2014.00162 Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome research, 17(2), 240-248. https://doi.org/10.1101/GR.5681207 Ministerio de la protección social. (2008). Vademécum Colombiano de plantas medicinales (1.a ed.). Miranda-Nuñez, J. E., Zamilpa-Alvarez, A., Fortis-Barrera, A., Alarcon-Aguilar, F. J., Loza- Rodriguez, H., Gomez-Quiroz, L. E., Salas-Silva, S., Flores-Cruz, M., Zavala-Sanchez, M. A., & Blancas-Flores, G. (2021). GLUT4 translocation in C2C12 myoblasts and primary mouse hepatocytes by an antihyperglycemic flavone from Tillandsia usneoides. Phytomedicine, 89, 153622. https://doi.org/10.1016/J.PHYMED.2021.153622 Mishra, A., Medhi, K., Malaviya, P., & Thakur, I. S. (2019). Bioresource Technology Omics approaches for microalgal applications: Prospects and challenges. Bioresource Technology, 291(June), 121890. https://doi.org/10.1016/j.biortech.2019.121890 Monzote, L., Scull, R., Cos, P., & Setzer, W. N. (2017). Essential Oil from Piper aduncum: Chemical Analysis, Antimicrobial Assessment, and Literature Review. Medicines, 4(3), 49. https://doi.org/10.3390/MEDICINES4030049 Moreno, J., Aparicio, R., Velasco, J., Rojas, L. B., Usubillaga, A., & Lue-Merú, M. (2010). Chemical Composition and Antibacterial Activity of the Essential Oil from Fruits of Bursera tomentosa. Natural Product Communications , 5, 311-313. Muhammad, S., Gilani, U., Ahmed, S., Hasan, M. M., & Ghousia Baig, S. (2019). Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. ~ 2222 ~ Journal of Pharmacognosy and Phytochemistry, 8(4). Muñoz Florez, J. E., Londoño, X., Rugeles, P., Andrés, Posso, M., Franco, ;, Vallejo, A., : F., & Arango, J. E. (2010). Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana. Muthuramalingam, P., Akassh, S., Rithiga, S. B., Prithika, S., Gunasekaran, R., Shin, H., Kumar, R., Baskar, V., & Kim, J. (2023). Integrated omics profiling and network pharmacology uncovers the prognostic genes and multi-targeted therapeutic bioactives to combat lung cancer. European Journal of Pharmacology, 940, 175479. https://doi.org/10.1016/j.ejphar.2022.175479 Negi, A., Singh, K., Jaiswal, S., Kokkat, J. G., Angadi, U. B., Iquebal, M. A., Umadevi, P., Rai, A., & Kumar, D. (2022). Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. Frontiers in Plant Science, 13, 1445. https://doi.org/10.3389/FPLS.2022.846937/BIBTEX Negrão, R., Monro, A. K., Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia. Noorolahi, S. M., Sadeghi, S., Mohammadi, M., Azadi, M., Rahimi, N. A., Vahabi, F., Arjmand, M., Hosseini, H., Mosallatpur, S., & Zamani, Z. (2016). Metabolomic profiling of cancer cells to Aloe vera extract by 1HNMR spectroscopy. Journal of Metabolomics, 2(1), 1-7. https://doi.org/10.7243/2059-0008-2-1 Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The Need for Multi-Omics Biomarker Signatures in Precision Medicine. International Journal of Molecular Sciences, 20(4781), 1-13. Otto, L. G., Mondal, P., Brassac, J., Preiss, S., Degenhardt, J., He, S., Reif, J. C., & Sharbel, T. F. (2017). Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics, 18(1), 1-18. https://doi.org/10.1186/s12864-017-3991-0 Pájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022a). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-Infectives, 3-57. https://doi.org/10.1016/B978-0-323-90999- 0.00005-7 Pájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022b). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-infectives: Current Knowledge and New Perspectives, 3-57. https://doi.org/10.1016/B978-0-323-90999-0.00005-7 Palazzotto, E., & Weber, T. (2018). ScienceDirect Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 45, 109-116. https://doi.org/10.1016/j.mib.2018.03.004 Pandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021a). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296 Pandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021b). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296 Panossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015a). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004 Panossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015b). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004 Pedrete, T. A., Hauser-davis, R. A., & Moreira, J. C. (2019). International Journal of Biological Macromolecules Proteomic characterization of medicinal plants used in the treatment of diabetes. international journal of biological macromolecules, 140, 294-302. https://doi.org/10.1016/j.ijbiomac.2019.08.035 Pérez, D., Matiz-Guerra, L. C., Pérez, D., & Matiz-Guerra, L. C. (2017). Uso de las plantas por comunidades campesinas en la ruralidad de Bogotá D.C., Colombia. Caldasia, 39(1), 68. https://doi.org/10.15446/caldasia.v39n1.59932 Prieto-Rodríguez, J. A., Lévuok-Mena, K. P., Cardozo-Muñoz, J. C., Parra-Amin, J. E., Lopez-Vallejo, F., Cuca-Suárez, L. E., & Patiño-Ladino, O. J. (2022). In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Plants, 11(17), 2188. https://doi.org/10.3390/PLANTS11172188/S1 Quintero, W. L., Moreno, E. M., Pinto, S. M. L., Sanabria, S. M., Stashenko, E., & García, L. T. (2021). Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/S12906-021-03347-6 Ran, D., Hong, W., Yan, W., & Mengdie, W. (2021). Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. Journal of Ethnopharmacology, 273, 113958. https://doi.org/10.1016/j.jep.2021.113958 Rao, T., Tan, Z., Peng, J., Guo, Y., Chen, Y., Zhou, H., & Ouyang, D. (2019). The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacological Research, 146, 104283. https://doi.org/10.1016/j.phrs.2019.104283 Rivas Mena, K. E., Muñoz, D. L., Pino Benítez, C. N., & Balcázar Morales, N. (2015). Antioxidant activity, total phenolic content and cytotoxicity of polar extracts from colombian antidiabetic plants. Revista Cubana de Plantas Medicinales, 20(3), 277-289. Rocha, D., Santos, C., Bajay, M., Campos, J., Blank, A., Pinheiro, J., & Zucchi, M. (2015). Development of a novel set of microsatellite markers for Lippia alba (Verbenaceae). Genetics and Molecular Research, 14(1), 971-974. https://doi.org/10.4238/2015.February.3.4 Rowe, H. C., Renaut, S., & Guggisberg, A. (2011). RAD in the realm of next-generation sequencing technologies. Molecular ecology, 20(17), 3499-3502. https://doi.org/10.1111/J.1365-294X.2011.05197.X Rubin, B. E. R., Ree, R. H., & Moreau, C. S. (2012). Inferring Phylogenies from RAD Sequence Data. PLOS ONE, 7(4), e33394. https://doi.org/10.1371/JOURNAL.PONE.0033394 Rugeles-Silva, P. A., Posso-Terranova, A. M., Londoño, X., Marín, N. B.-, & Muñoz-Flórez, J. E. (2012). Caracterización molecular de Guadua angustifolia Kunth mediante marcadores moleculares RAMs. Acta Agronómica, 61(4), 325-330. https://doi.org/10.15446/ACAG Ruiz-Vásquez, L., Ruiz Mesia, L., Caballero Ceferino, H. D., Ruiz Mesia, W., Andrés, M. F., Díaz, C. E., & Gonzalez-Coloma, A. (2022). Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants, 11(14), 1793. https://doi.org/10.3390/plants11141793 Sahoo, S., & S., B. (2019). Pharmacogenomic assessment of herbal drugs in affective disorders. Biomedicine & Pharmacotherapy, 109, 1148-1162. https://doi.org/10.1016/j.biopha.2018.10.135 Santos, F. R. C., Lima, P. F., Priolli, R. H. G., Siqueira, W. J., & Colombo, C. A. (2012). Isolation and characteristics of eight novel polymorphic microsatellite loci in Lippia alba (Verbenaceae). American Journal of Botany, 99(8), e301-e303. https://doi.org/10.3732/AJB.1100578 Santos, N., Pascon, R., Vallim, M., Figueiredo, C., Soares, M., Lago, J., & Sartorelli, P. (2016). Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae). Medicines, 3(3), 22. https://doi.org/10.3390/medicines3030022 Seebaluck, R., Gurib-Fakim, A., & Mahomoodally, F. (2015). Medicinal plants from the genus Acalypha (Euphorbiaceae)–A review of their ethnopharmacology and phytochemistry. Journal of Ethnopharmacology, 159, 137-157. https://doi.org/10.1016/J.JEP .2014.10.040 Sequeda-Castañeda, L. G., Modesti Costa, G. 1, Celis, C., Gamboa, F., Gutiérrez, S., & Luengas, P. (2016, diciembre 30). (PDF) Ilex guayusa (Aquifoliaceae): Amazon and Andean Native Plant. Pharmacology online. https://www.researchgate.net/publication/311981728_Ilex_guayusa_Aquifoliaceae_Amaz on_and_Andean_Native_Plant Shan, Y., Wang, F., Wei, Z., & Lu, Y. (2021). Synthetic lethality theory approaches to effective substance discovery and functional mechanisms elucidation of anti-cancer phytomedicine. Phytomedicine, 91, 153718. https://doi.org/10.1016/j.phymed.2021.153718 Shen, Y., Sun, Z., Shi, P., Wang, G., Wu, Y., Li, S., Zheng, Y., Huang, L., Lin, L., Lin, X., & Yao, H. (2018). Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent’s analysis by GC-MS. Journal of Ethnopharmacology, 217, 126-133. https://doi.org/10.1016/J.JEP .2018.02.019 Shipa, S. J., Khandokar, L., Bari, M. S., Qais, N., Rashid, M. A., Haque, M. A., & Mohamed, I. N. (2022). An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. Journal of Ethnopharmacology, 293, 115245. https://doi.org/10.1016/J.JEP.2022.115245 Shyamli, P. S., Pradhan, S., Panda, M., & Parida, A. (2021). De novo Whole-Genome Assembly of Moringa oleifera Helps Identify Genes Regulating Drought Stress Tolerance. 12(December), 1-14. https://doi.org/10.3389/fpls.2021.766999 SiB Colombia. (2023, febrero 28). Sistema de Información sobre Biodiversidad de Colombia. https://cifras.biodiversidad.co/ Silveira, N., Saar, J., Santos, A. D. C., Barison, A., Sandjo, L. P., Kaiser, M., Schmidt, T. J., & Biavatti, M. W. (2016). A New Alkamide with an Endoperoxide Structure from Acmella ciliata (Asteraceae) and Its in Vitro Antiplasmodial Activity. Molecules, 21(6). https://doi.org/10.3390/MOLECULES21060765 Singh, G., Passsari, A. K., Singh, P., Leo, V. V., Subbarayan, S., Kumar, B., Singh, B. P., lalhlenmawia, H., & Kumar, N. S. (2017). Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complementary and Alternative Medicine, 17(1). https://doi.org/10.1186/S12906-017- 2000-0 Singh, P. K., Sharma, H., Srivastava, N., Bhagyawant, S. S., Singh, P. K., Sharma, H., Srivastava, N., & Bhagyawant, S. S. (2014). Analysis of Genetic Diversity among Wild and Cultivated Chickpea Genotypes Employing ISSR and RAPD Markers. American Journal of Plant Sciences, 5(5), 676-682. https://doi.org/10.4236/AJPS.2014.55082 Smit, R., Du Toit, E. S., & Vorster, B. J. (2013). RAPD and SSR genetic diversity analysis of Moringa oleifera. South African Journal of Botany, 86, 182. https://doi.org/10.1016/J.SAJB.2013.02.162 Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015a). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072b Sun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., Zhao, H., Chen, L., Ming, T., Meng, X., & Xu, H. (2022). Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine, 94, 153805. https://doi.org/10.1016/j.phymed.2021.153805 Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015b). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072b Suzuki, M., Nakabayashi, R., Ogata, Y., Sakurai, N., Tokimatsu, T., Goto, S., Suzuki, M., Jasinski, M., Martinoia, E., Otagaki, S., Matsumoto, S., Saito, K., & Shiratake, K. (2015). Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. En Plant Physiology (Vol. 168, Número 1). https://doi.org/10.1104/pp.114.254375 Tan, J., Tian, Y., Cai, R., Yi, T., Jin, D., & Guo, J. (2019). Antiproliferative and Proapoptotic Effects of a Protein Component Purified from Aspongopus chinensis Dallas on Cancer Cells In Vitro and In Vivo. 2019. https://doi.org/10.1155/2019/8934794 Tang, X., Guo, J., Chen, L., & Ho, P. C. (2020). Journal of Pharmaceutical and Biomedical Analysis Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. Journal of Pharmaceutical and Biomedical Analysis, 191, 113609. https://doi.org/10.1016/j.jpba.2020.113609 Tanuja, & Parani, M. (2023). Whole transcriptome analysis identifies full-length genes for neoandrographolide biosynthesis from Andrographis alata, an alternate source for antiviral compounds. Gene, 851(October 2022), 146981. https://doi.org/10.1016/j.gene.2022.146981 Valdiani, A., Abdul, M., Soon, K., & Tan, G. (2012). Nain-e Havandi Andrographis paniculata present yesterday , absent today: A plenary review on underutilized herb of Iran ’ s pharmaceutical plants. Mol Biol Rep, 39, 5409-5424. https://doi.org/10.1007/s11033- 011-1341-x Valdivia, C., Marquez, N., Eriksson, J., Vilaseca, A., Muñoz, E., & Sterner, O. (2008). Bioactive alkenylphenols from Piper obliquum. Bioorganic & Medicinal Chemistry, 16(7), 4120-4126. https://doi.org/10.1016/j.bmc.2008.01.018 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. https://doi.org/10.1093/genetics/123.3.585 Vega-Vela, N. E., & Sánchez, M. I. C. (2012). Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America. Ecology and Evolution, 2(11), 2669-2681. https://doi.org/10.1002/ece3.360 Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3 Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/f1000research.15931.2 Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high- performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. https://doi.org/10.1093/bioinformatics/bts606 Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLOS ONE, 3(10), e3376. https://doi.org/10.1371/journal.pone.0003376 Bohonak, A. J. (2002). IBD (Isolation by Distance): A Program for Analyses of Isolation by Distance. Journal of Heredity, 93(2), 153-154. https://doi.org/10.1093/jhered/93.2.153 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124- 3140. https://doi.org/10.1111/mec.12354 Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes|Genomes|Genetics, 1(3), 171-182. https://doi.org/10.1534/g3.111.000240 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109 Davey, J. W., & Blaxter, M. L. (2010). RADSeq: Next-generation population genetics. Briefings in Functional Genomics, 9(5-6), 416-423. https://doi.org/10.1093/bfgp/elq031 Díaz-Arce, N., & Rodríguez-Ezpeleta, N. (2019). Selecting RAD-Seq Data Analysis Parameters for Population Genetics: The More the Better? Frontiers in Genetics, 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00533 Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x García Barriga, H. (1974). Flora medicinal de Colombia: Botánica médica. Instituto de Ciencias Naturales. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293- W296. https://doi.org/10.1093/nar/gkab301 Maruki, T., & Lynch, M. (2017). Genotype Calling from Population-Genomic Sequencing Data. G3: Genes|Genomes|Genetics, 7(5), 1393-1404. https://doi.org/10.1534/g3.117.039008 McDermott, J. M., & McDonald, B. A. (1993). Gene Flow in Plant Pathosystems. Annual Review of Phytopathology, 31(1), 353-373. https://doi.org/10.1146/annurev.py.31.090193.002033 Medicinal Plants as anti-infectives. Current Knowledge and New Perspectives. (2022). Academic Press is an imprint of Elsevier. https://www.sciencedirect.com/science/article/pii/B9780323909990000215?via%3 Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: A road map for stacks. Methods in Ecology and Evolution, 8(10), 1360-1373. https://doi.org/10.1111/2041-210X.12775 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559-575. Ravinet, M., Westram, A., Johannesson, K., Butlin, R., André, C., & Panova, M. (2016). Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Molecular Ecology, 25(1), 287-305. https://doi.org/10.1111/mec.13332 Valoyes, D. C., & Palacios Palacios, L. (2020). Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia). Ciencia en Desarrollo, 11(2), 85-96. https://doi.org/10.19053/01217488.V11.N2.2020.10583 Xiao, M., Zhang, Y., Chen, X., Lee, E. J., Barber, C. J. S., Chakrabarty, R., Desgagné- Penix, I., Haslam, T. M., Kim, Y. B., Liu, E., MacNevin, G., Masada-Atsumi, S., Reed, D. W., Stout, J. M., Zerbe, P., Zhang, Y., Bohlmann, J., Covello, P. S., De Luca, V., ... Sensen, C. W. (2013). Transcriptome analysis based on next- generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166(3), 122-134. https://doi.org/10.1016/J.JBIOTEC.2013.04.004 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xi, 112 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agropecuarias |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86616/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86616/2/1070970724.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86616/3/1070970724.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 6bc3619e872960dd6399da255f7e157f df766cf1af7b6ac1bca5e1a474261983 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089367701946368 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rugeles Silva, Paula Andrea2c2e97576e44a4f4259bc1916adc4552López Álvarez, Diana Carolina1ab298e9492bfd0c4b69bb243416b257Tarazona Pulido, Lina Maria69dfcf47e5b5075bd6f962d7ad7240a7Grupo de Investigación en Diversidad Biológicahttps://orcid.org/0009-0003-3606-1446https://www.researchgate.net/profile/Lina-Tarazona-Pulidohttps://scholar.google.com/citations?hl=es&user=J-X7K-AAAAAJ2024-07-25T16:04:41Z2024-07-25T16:04:41Z2024-03-15https://repositorio.unal.edu.co/handle/unal/86616Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, tablasLas investigaciones sobre la genética de plantas medicinales que pueden ser de interés por su potencial farmacológico son escazas, se realizó una revisión bibliográfica donde se destaca el uso de tecnologías Ómicas en la investigación de plantas medicinales en Colombia, y sobre la información existente de la etnobotánica, genómica, fitocompuestos y medicina tradicional que se les conoce. Las especies Lippia alba y Petiveria alliacea, son de interés para el programa GAT por el potencial anticancerígeno que pueden tener, por lo que es importante conocer su diversidad genética y estructura poblacional. Se colectaron muestras foliares de 31 individuos de P. alliacea y 17 de L. alba en diferentes regiones de Colombia. Se extrajo el ADN y se construyeron librerías RADseq utilizando la enzima de restricción PstI para su secuenciación, posteriormente se siguió un flujo bioinformático para la canalización de los archivos fasta obtenidos, que permitió identificar miles de polimorfismos de un solo nucleótido (SNPs) para cada una. Con los cuales se identificó que en las poblaciones de L. alba existe una variación genética entre poblaciones de 3.4%, con un FST de 0.062, mientras que P. alliacea tuvo un 75% de variación entre poblaciones y un FST de 0.747. Adicionalmente los valores de diversidad genética obtenidos incluyendo valores de Ho y He y el valor r de la prueba de mantel podrían permitir pensar que los diferentes modos reproductivos que tienen estas especies, así como el aprovechamiento antropogénico de estas influyeron en la variación genética y la estructura de la población obtenida. (Texto tomado de la fuente)Research on the genetics of medicinal plants, which may be of interest due to their pharmacological potential, is scarce. A literature review was conducted highlighting the use of Omics technologies in medicinal plant research in Colombia, along with existing information on ethnobotany, genomics, phytochemicals, and traditional medicine associated with these plants. The species Lippia alba and Petiveria alliacea are of interest to the GAT program due to their potential anticancer properties, making it important to understand their genetic diversity and population structure. Leaf samples were collected from 31 individuals of P. alliacea and 17 of L. alba in different regions of Colombia. DNA was extracted, and RADseq libraries were constructed using the restriction enzyme PstI for sequencing. Subsequently, a bioinformatics workflow was followed to process the obtained fasta files, allowing for the identification of thousands of single nucleotide polymorphisms (SNPs) for each species. It was identified that in L. alba populations, there is a genetic variation of 3.4% between populations, with an FST of 0.062, while P. alliacea exhibited a 75% variation between populations and an FST of 0.747. Additionally, the values of genetic diversity obtained, including Ho and He values, and the r value of the Mantel test, could suggest that the different reproductive modes of these species, as well as their anthropogenic exploitation, influenced the genetic variation and population structure observed.MaestríaMagíster en Ciencias BiológicasSe colectaron muestras foliares de 31 individuos de P. alliacea y 17 de L. alba en diferentes regiones de Colombia. Se extrajo el ADN y se construyeron librerías RADseq utilizando la enzima de restricción PstI para su secuenciación, posteriormente se siguió un flujo bioinformático para la canalización de los archivos fasta obtenidos, que permitió identificar miles de polimorfismos de un solo nucleótido (SNPs) para cada una.Ciencias Agropecuarias.Sede Palmiraxi, 112 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias BiológicasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira570 - Biología::576 - Genética y evoluciónProcesamiento de señales genómicasGenomic signal processingMarcador genéticoGenetic markersVariación genéticaGenetic variationDiversidad genéticaEstructura poblacionalSNPsPST1ÓmicasGenetic diversityPopulation structureOmicsCaracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando RadseqGenomic characterization of populations of Petiveria alliacea L. and Lippia alba (Mill.) from different departments of Colombia using RADseqTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbasi, F., Abdel-Massih, R. M., Aubert, E., Aubouy, A., Cabrera-Barraza, J., Camara, A., Cerra-Dominguez, J., Chan, K. W. K., Chassagne, F., Chen, X., David, B., De Canha, M. N., Deharo, E., Dembetembe, T. T., Dénou, A., Díaz-Castillo, F., El Beyrouthy, M., Fechter, P., Gibango, L., ... Wolfender, J.-L. (2022). Medicinal Plants as Anti-Infectives Current Knowledge and New Perspectives. En Medicinal Plants as Anti-Infectives. Academic Press. https://doi.org/10.1016/B978-0-323-90999-0.00021-5Agüero-Hernández, A. L., Rosales-López, C., Herrera, C., Vargas-Picado, A., Muñoz, R., & Abdelnour-Esquivel, A. (2020). Hypoglycemic effect of Kalanchoe pinnata (Lam) Pers. Leaf extract. Pharmacognosy Journal, 12(3), 557-561. https://doi.org/10.5530/PJ.2020.12.84Article, R. (2016). Techniques and Progress to Explore Biofuels in the Postgenomics World. 20(7), 387-399. https://doi.org/10.1089/omi.2016.0065Araya, S., Martins, A. M., Junqueira, N. T. V, Costa, A. M., & Faleiro, F. G. (2017). Microsatellite marker development by partial sequencing of the sour passion fruit genome ( Passiflora edulis Sims ). https://doi.org/10.1186/s12864-017-3881-5Ballesteros-Ramírez, R., Durán, M. I., & Fiorentino, S. (2021). Genotoxicity and mutagenicity assessment of a standardized extract (P2Et) obtained from Caesalpinia spinosa. Toxicology Reports, 8, 258. https://doi.org/10.1016/J.TOXREP.2020.12.024Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020a). F oodomics evaluation of the anti- proliferativepotential of Passiflora mollissima seeds. Food Research International, 130. https://doi.org/10.1016/J.FOODRES.2019.108938Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020b). Foodomics evaluation of the anti- proliferative potential of Passiflora mollissima seeds. Food Research International, 130(July 2019), 108938. https://doi.org/10.1016/j.foodres.2019.108938Bartolome, A. P., Villaseñor, I. M., & Yang, W. C. (2013). Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. Evidence- based Complementary and Alternative Medicine : eCAM, 2013, 51. https://doi.org/10.1155/2013/340215Bernal, H. (2011). Pautas para el conocimiento, conservación y uso sostenible de plantas medicinales nativas en Colombia.Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., & Gutiérrez, M. (2017). Nombres Comunes Plantas de Colombia. http://www.biovirtual.unal.edu.co/nombrescomunes/Bernal, R., Gradstein, S. R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. http://catalogoplantasdecolombia.unal.edu.coBoutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2014). Investigation of terpene diversification across multiple sequenced plant genomes. PNAS plus, 10, 81-88. https://doi.org/10.1073/pnas.1419547112Boutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2015). Investigation of terpene diversification across multiple sequenced plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 112(1), E81-E88. https://doi.org/10.1073/PNAS.1419547112/SUPPL_FILE/PNAS.1419547112.SD04.TXTBryant, L., Patole, C., & Cramer, R. (2016). Data in Brief Proteomic analysis of the medicinal plant Artemisia annua: Data from leaf and trichome extracts. Data in Brief, 7, 325-331. https://doi.org/10.1016/j.dib.2016.02.038Bustillos, A., & Cortez, J. C. (2021). Anti-metastic and anti-proliferative activity of ilex guayusa, uncaria tomentosa and croton lechleri, in the mcf7 cell line. Investigacion Clinica (Venezuela), 62, 86-94.Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457Camargo, J. E. R., Alfonso, A. N. T., Rojas-Rozo, R. A., de Castro, C., & de Murcia, T. R. (2010). In vitro cytotoxicity of extracts and fractions of Bursera tomentosa (Jacq.) Triana & Planch., Burseraceae, against human tumor cell. Revista Brasileira de Farmacognosia, 20(4), 588-593. https://doi.org/10.1590/S0102-695X2010000400019Cañigueral, S., Delacassa, E., & L Bandoni, A. (2003). Plantas Medicinales y Fitoterapia:¿Indicadores de Dependencia o Factores de Desarrollo? Acta Farm. Bonaerense, 22, 78-265.Cardona, C. C. C., Puerta, R. P., & Coronado, Y. M. (2021). Caracterización molecular con marcadores ISSR de la colección de cítricos de la Universidad de los Llanos. https://doi.org/10.3/JQUERY-UI.JSCarmona-Hernandez, J. C., Taborda-Ocampo, G., & González-Correa, C. H. (2021). Folin- Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. International Journal of Food Science, 2021, 1-10. https://doi.org/10.1155/2021/8871301Carolina Arboleda Echavarría, D. C., Jaramillo Yepes, F., & Herman Palacio Torres, Q. (2012). Determinación del potencial antioxidante en extractos de vinagre Guadua angustifolia Kunth para aplicaciones alimenticias. Revista Cubana de Plantas Medicinales, 17(4), 330-342.Carqueijeiro, I., Koudounas, K., de Bernonville, T. D., Sepúlveda, L. J., Mosquera, A., Bomzan, D. P., Oudin, A., Lanoue, A., Besseau, S., Cruz, P. L., Kulagina, N., Stander, E. A., Eymieux, S., Burlaud-Gaillard, J., Blanchard, E., Clastre, M., Atehortùa, L., St-Pierre, B., Giglioli-Guivarc’h, N., ... Courdavault, V. (2021). Alternative splicing creates a pseudo- strictosidine b-D-glucosidase modulating alkaloid synthesis in Catharanthus roseus. Plant Physiology, 185(3), 836-856. https://doi.org/10.1093/PLPHYS/KIAA075Carraz, M., Lavergne, C., Jullian, V., Wright, M., Gairin, J. E., Gonzales de la Cruz, M., & Bourdy, G. (2015). Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. Journal of Ethnopharmacology, 166, 185-199. https://doi.org/10.1016/j.jep.2015.02.028Castañeda, R., Cáceres, A., Cruz, S. M., Aceituno, J. A., Marroquín, E. S., Barrios Sosa, A. C., Strangman, W. K., & Williamson, R. T. (2023). Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. Journal of Ethnopharmacology, 301, 115755. https://doi.org/10.1016/j.jep.2022.115755Castellanos, C., Valderrama, N., Bernal, Y., & García, N. (2019). Plantas alimenticias y medicinales de Colombia. http://i2d.humboldt.org.co/ceiba/resource.do?r=ls_colombia_magnoliophyta_2014#anchor -projectCastellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia (R. Negrão, A. Monro, C. Castellanos-Castro, & M. Diazgranados, Eds.). Kew Publishing Royal Botanic Gardens, Kew.Chakraborty, S., Hosen, I., Shekhar, H. U., & Ahmed, M. (2018). Onco-Multi-OMICS Approach: A New Frontier in Cancer Research.Chunhong, H., Qian, L., Jinhua, L., & Yongqing, Z. (2013). Advances in the Researcha of chemical constituents in Thalictrum Plants (pp. 54-58).Clarke, R. C., & Merlin, M. D. (2017). Critical Reviews in Plant Sciences Cannabis Domestication , Breeding History , Present-day Genetic Diversity , and Future Prospects. Critical Reviews in Plant Sciences, 35(5-6), 293-327. https://doi.org/10.1080/07352689.2016.1267498Clevenger, J., Chavarro, C., Pearl, S. A., Ozias-Akins, P., & Jackson, S. A. (2015). Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular plant, 8(6), 831-846. https://doi.org/10.1016/J.MOLP .2015.02.002ColPlantA. (2023, febrero 20). Useful Plants of Colombia. Facilitated by the Royal Botanic Gardens, Kew. https://colplanta.org/cite-usCordoba-tovar, L., Ríos-geovo, V., Largacha-viveros, M. F., Salas-moreno, M., Marrugo- negrete, L., Andr, P., Mosquera, L., & Jonathan, M. P. (2022). Acta Ecologica Sinica Cultural belief and medicinal plants in treating COVID 19 patients of Western Colombia. 42(October 2021), 476-484. https://doi.org/10.1016/j.chnaes.2021.10.011Crettol, S., Petrovic, N., & Murray, M. (2010). Pharmacogenetics of Phase I and Phase II Drug Metabolism. current pharmaceutical design, 16, 204-219. https://doi.org/10.1007/978- 1-4419-0840-7_1DeCarlo, A., Dosoky, N. S., Satyal, P., Sorensen, A., & Setzer, W. N. (2019). The Essential Oils of the Burseraceae. Essential Oil Research, 61-145. https://doi.org/10.1007/978-3- 030-16546-8_4Eaton, D. A. R., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic biology, 62(5), 689-706. https://doi.org/10.1093/SYSBIO/SYT032Ef, M. T., Chest, T., & Plants, R. M. (2022). Biodiversity and Chemodiversity: Pharmacophylogeny of. 28(12), 1111-1126.Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one, 6(5). https://doi.org/10.1371/JOURNAL.PONE.0019379Elufioye, T. O., Habtemariam, S., & Adejare, A. (2020). Chemistry and Pharmacology of Alkylamides from Natural Origin. Revista Brasileira de Farmacognosia, 30, 622-640. https://doi.org/10.1007/s43450-020-00095-5Estrella-Parra, E., Flores-Cruz, M., Blancas-Flores, G., Koch, S. D., & Alarcón-Aguilar, F. J. (2019). The Tillandsia genus: History, uses, chemistry, and biological activity. Boletín latinoamericano y del caribe de plantas medicinales y aromáticas, 18, 239-264.Fonseca-Benitez, A., Morantes Medina, S. J., Ballesteros-Vivas, D., Parada-Alfonso, F., & Sandra J Perdomo. (2022). Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Advances in Pharmacological and Pharmaceutical Sciences, 2022. https://doi.org/10.1155/2022/4602413Gámez-Espinosa, E., Deyá, C., Cabello, M., & Bellotti, N. (2021). Nanoparticles synthesised from Caesalpinia spinosa: Assessment of the antifungal effects in protective systems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(1), 015001. https://doi.org/10.1088/2043-6254/ABDFC1Gandra, J., Kumar, H., Kumar, S. A., Doma, M., & Deepthi, Y. (2022). Industrial Crops & Products Metabolomic and proteomic signature of Gloriosa superba leaves treated with mercuric chloride and phenylalanine , a precursor of colchicine alkaloid. Industrial Crops & Products, 178(July 2021), 114557. https://doi.org/10.1016/j.indcrop.2022.114557García, L. T., Leal, A. F., Moreno, É. M., Stashenko, E. E., & Arteaga, H. J. (2017). Differential anti-proliferative effect on K562 leukemia cells of Lippia alba (Verbenaceae) essential oils produced under diverse growing, collection and extraction conditions. Industrial Crops and Products, 96, 140-148. https://doi.org/10.1016/J.INDCROP.2016.11.057Gilmore, S., & Peakall, R. (2003). Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Molecular Ecology Notes, 3(1), 105-107. https://doi.org/10.1046/J.1471- 8286.2003.00367.XGlécio, P., Lima, C., Coelho-Ferreira, M., Da, R., & Santos, S. (2016). Perspectives on Medicinal Plants in Public Markets across the Amazon: A Review. Economic Botany. https://doi.org/10.1007/s12231-016-9338-yGnocchi, D., Del Coco, L., Girelli, C. R., Castellaneta, F., Cesari, G., Sabbà, C., Fanizzi, F. P., & Mazzocca, A. (2021). 1H-NMR metabolomics reveals a multitarget action of Crithmum maritimum ethyl acetate extract in inhibiting hepatocellular carcinoma cell growth. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-020-78867-1Gomide, M. da S., Lemos, F. de O., Lopes, M. T. P., Alves, T. M. de A., Viccini, L. F., & Coelho, C. M. (2013). The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Revista Brasileira de Farmacognosia, 23(6), 895-902. https://doi.org/10.1590/S0102-695X2013000600006Gong, X., Yang, M., He, C. nian, Bi, Y. qiong, Zhang, C. hong, Li, M. hui, & Xiao, P. gen. (2022). Plant Pharmacophylogeny: Review and Future Directions. Chinese Journal of Integrative Medicine, 28(6), 567-574. https://doi.org/10.1007/s11655-020-3270-9Gonulalan, E. M., Nemutlu, E., Bayazeid, O., Koçak, E., & Yalçın, F. N. (2020). Phytomedicine Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine, 74(January 2019), 152920. https://doi.org/10.1016/j.phymed.2019.152920Guo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T. A., Graham, I. A., & Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343-347. https://doi.org/10.1126/science.aat4096Guzman, E., & Molina, J. (2018). The predictive utility of the plant phylogeny in identifying sources of cardiovascular drugs. Pharmaceutical Biology, 56(1), 154-164. https://doi.org/10.1080/13880209.2018.1444642Hao, D. C., Chen, S. L., Xiao, P. G., & Liu, M. (2012). Application of High-Throughput Sequencing in Medicinal Plant Transcriptome Studies. Drug Development Research, 73(8), 487-498. https://doi.org/10.1002/DDR.21041Hao, D. C., Ge, G. B., & Xiao, P. G. (2018). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current drug targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020Hao, D. C., Gu, X. J., Xiao, P. G., & Peng, Y. (2013). Phytochemical and biological research of fritillaria medicine resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3Hao, D. C., Gu, X.-J., & Xiao, P. G. (2015). High-throughput sequencing in medicinal plant transcriptome studies. En Medicinal Plants. Elsevier Ltd. https://doi.org/10.1016/b978-0- 08-100085-4.00002-5Hao, D. C., & Xiao, P. G. (2015a). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326Hao, D. C., & Xiao, P. G. (2015b). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326Hao, D. C., & Yang, L. (2016). Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. En Expert Opinion on Drug Metabolism and Toxicology (Vol. 12, Número 9). https://doi.org/10.1080/17425255.2016.1201068Hao, D., Ge, G., & Xiao, P. (2017). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current Drug Targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020Hao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Recent Advance in Chemical and Biological Studies on Cimicifugeae Pharmaceutical Resources. Chinese Herbal Medicines, 5(2), 81-95. https://doi.org/10.3969/j.issn.1674-6348.2013.02.001Hao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Research progress in the phytochemistry and biology of Ilex pharmaceutical resources. Acta Pharmaceutica Sinica B, 3(1), 8-19. https://doi.org/10.1016/j.apsb.2012.12.008Hao, D., & Xiao, P. (2020). Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. Chinese Herbal Medicines, 12(2), 104-117. https://doi.org/10.1016/j.chmed.2020.03.002Hao, D.-C. C., Gu, X. J., & Xiao, P . G. (2017). Anemone medicinal plants: Ethnopharmacology, phytochemistry and biology. Acta Pharmaceutica Sinica B, 7(2), 146- 158. https://doi.org/10.1016/j.apsb.2016.12.001HAO, D.-C. C., Gu, X.-J. J., XIAO, P.-G. G., & Peng, Y. (2013). Phytochemical and biological research of Fritillaria Medicine Resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3Hao, D.-C., & Xiao, P.-G. (2018). Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. Chinese Herbal Medicines, 10(3), 239-248. https://doi.org/10.1016/j.chmed.2018.02.003He, D., Li, Y., Tang, H., Ma, R., Li, X., & Wang, L. (2015). Six new cassane diterpenes from the twigs and leaves of Tara (Caesalpinia spinosa Kuntze). Fitoterapia, 105, 273-277. https://doi.org/10.1016/J.FITOTE.2015.07.018Hite, D. A. M. W., Uang, J. E. N. A. N. H., Dolfo, O. R. A., Uñoz, J. A. R. A., & Adriñán, S. A. M. (2021). The Origins of Coca: Museum Genomics Reveals Multiple Independent Domestications from Progenitor Erythroxylum gracilipes. 70(1), 1-13. https://doi.org/10.1093/sysbio/syaa074IPNI. (2023, febrero). International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium. https://www.ipni.org/citeusIUCN. (2023). The IUCN Red List of Threatened Species. https://www.iucnredlist.org/Jiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021a). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758Jiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021b). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758Kasper, J., Melzig, M., & Jenett-Siems, K. (2010). New Phenolic Compounds of Acmella ciliata. Planta Medica, 76(06), 633-635. https://doi.org/10.1055/s-0029-1240621Kiselev, K. V., Tyunin, A. P., & Karetin, Y. A. (2015). Salicylic acid induces alterations in the methylation pattern of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. Cell cultures. Plant Cell Reports, 34(2), 311-320. https://doi.org/10.1007/s00299-014- 1708-2Koehler-Santos, P., Lorenz-Lemke, A. P., Muschner, V. C., Bonatto, S. L., Salzano, F. M., & Freitas, L. B. (2006). Molecular genetic variation in Passiflora alata (Passifloraceae), an invasive species in southern Brazil. Biological Journal of the Linnean Society, 88(4), 611- 630. https://doi.org/10.1111/J.1095-8312.2006.00647.XLan, H., Wang, H., Gao, M., Luo, G., Zhang, J., Yi, E., Liang, C., Xiong, X., Chen, X., Wu, Q., Chen, R., Lin, B., Qian, D., & Hong, W. (2021). Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BioMed Research International, 2021. https://doi.org/10.1155/2021/9984112Lasso, P., Rojas, L., Arévalo, C., Urueña, C., Murillo, N., Barreto, A., Costa, G. M., & Fiorentino, S. (2022). Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers, 14(21). https://doi.org/10.3390/CANCERS14215383/S1Leal Garzón, D. A., & Modesti Costa, G. (2021). Caracterización fitoquímica de especies vegetales en Colombia y evaluación de su actividad antifúngica contra Candida albicans. Pontificia Universidad Javeriana.Leonti, M., Casu, L., de Oliveira Martins, D. T., Rodrigues, E., & Benítez, G. (2020). Ecological Theories and Major Hypotheses in Ethnobotany: Their Relevance for Ethnopharmacology and Pharmacognosy in the Context of Historical Data. Revista Brasileira de Farmacognosia, 30(4), 451-466. https://doi.org/10.1007/s43450-020-00074- wLi, P., Chen, J., Zhang, W., Fu, B., & Wang, W. (2017). Transcriptome inference and systems approaches to polypharmacology and drug discovery in herbal medicine. Journal of Ethnopharmacology, 195(June), 127-136. https://doi.org/10.1016/j.jep.2016.10.020Li, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022a). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822Li, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022b). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822Lin, L. L., Hsia, C. R., Hsu, C. L., Huang, H. C., & Juan, H. F. (2015). Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics, 16(1), 1-17. https://doi.org/10.1186/s12864-015-1230-0Lin, X., Feng, C., Lin, T., Harris, A., Li, Y., & Kang, M. (2022). Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in. Horticulture Research, 9(173), 1-13.Liu, X., Wu, W.-Y., Jiang, B.-H., Yang, M., & Guo, D.-A. (2013). Pharmacological tools for the development of traditional Chinese medicine. Trends in Pharmacological Sciences, 34(11), 620-628. https://doi.org/10.1016/j.tips.2013.09.004Liu, Z., Ma, L., & Zhou, G. (2011). The Main Anticancer Bullets of the Chinese Medicinal Herb, Thunder God Vine. 5283-5297. https://doi.org/10.3390/molecules16065283Lowe, H. I. C., Toyang, N. J., Watson, C. T., Ayeah, K. N., & Bryant, J. (2017). HLBT-100: A highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L. Cancer Cell International, 17(1). https://doi.org/10.1186/S12935-017-0404-ZLucena de Vasconcelos, A., Lucena de Vasconcelos, A., Azevedo Ximenes, E., & Perrelli Randau, K. (2013). Tillandsia recurvata L. (Bromeliaceae): Aspectos farmacognósticos.: EBSCOhost. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 151-159.Ma, J., Huang, J., Hua, S., Zhang, Y., Zhang, Y., Li, T., Dong, L., Gao, Q., & Fu, X. (2019). The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata – A review. Journal of Ethnopharmacology, 231, 152-169. https://doi.org/10.1016/j.jep.2018.10.040Ma, R., Yang, P., Jing, C., Fu, B., Teng, X., & Zhao, D. (2023). Plant Physiology and Biochemistry Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. Plant Physiology and Biochemistry, 195(December 2022), 288-299. https://doi.org/10.1016/j.plaphy.2023.01.020Manica-Cattani, M. F., Zacaria, J., Pauletti, G., Atti-Serafini, L., & Echeverrigaray, S. (2009). Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Brazilian Journal of Biology, 69(2), 375-380. https://doi.org/10.1590/S1519-69842009000200020Marulanda, M. L., López, A. M., & Claroz, J. L. (2007). Analyzing the genetic diversity of Guadua spp. In Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology, 7(1), 43-51. https://doi.org/10.12702/1984-7033.V07N01A07Mazzari, A. L. D. A., & Prieto, J. M. (2014). Herbal medicines in Brazil: Pharmacokinetic profile and potential herb-drug interactions. Frontiers in Pharmacology, 5 JUL(July), 1-12. https://doi.org/10.3389/fphar.2014.00162Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome research, 17(2), 240-248. https://doi.org/10.1101/GR.5681207Ministerio de la protección social. (2008). Vademécum Colombiano de plantas medicinales (1.a ed.).Miranda-Nuñez, J. E., Zamilpa-Alvarez, A., Fortis-Barrera, A., Alarcon-Aguilar, F. J., Loza- Rodriguez, H., Gomez-Quiroz, L. E., Salas-Silva, S., Flores-Cruz, M., Zavala-Sanchez, M. A., & Blancas-Flores, G. (2021). GLUT4 translocation in C2C12 myoblasts and primary mouse hepatocytes by an antihyperglycemic flavone from Tillandsia usneoides. Phytomedicine, 89, 153622. https://doi.org/10.1016/J.PHYMED.2021.153622Mishra, A., Medhi, K., Malaviya, P., & Thakur, I. S. (2019). Bioresource Technology Omics approaches for microalgal applications: Prospects and challenges. Bioresource Technology, 291(June), 121890. https://doi.org/10.1016/j.biortech.2019.121890Monzote, L., Scull, R., Cos, P., & Setzer, W. N. (2017). Essential Oil from Piper aduncum: Chemical Analysis, Antimicrobial Assessment, and Literature Review. Medicines, 4(3), 49. https://doi.org/10.3390/MEDICINES4030049Moreno, J., Aparicio, R., Velasco, J., Rojas, L. B., Usubillaga, A., & Lue-Merú, M. (2010). Chemical Composition and Antibacterial Activity of the Essential Oil from Fruits of Bursera tomentosa. Natural Product Communications , 5, 311-313.Muhammad, S., Gilani, U., Ahmed, S., Hasan, M. M., & Ghousia Baig, S. (2019). Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. ~ 2222 ~ Journal of Pharmacognosy and Phytochemistry, 8(4).Muñoz Florez, J. E., Londoño, X., Rugeles, P., Andrés, Posso, M., Franco, ;, Vallejo, A., : F., & Arango, J. E. (2010). Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana.Muthuramalingam, P., Akassh, S., Rithiga, S. B., Prithika, S., Gunasekaran, R., Shin, H., Kumar, R., Baskar, V., & Kim, J. (2023). Integrated omics profiling and network pharmacology uncovers the prognostic genes and multi-targeted therapeutic bioactives to combat lung cancer. European Journal of Pharmacology, 940, 175479. https://doi.org/10.1016/j.ejphar.2022.175479Negi, A., Singh, K., Jaiswal, S., Kokkat, J. G., Angadi, U. B., Iquebal, M. A., Umadevi, P., Rai, A., & Kumar, D. (2022). Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. Frontiers in Plant Science, 13, 1445. https://doi.org/10.3389/FPLS.2022.846937/BIBTEXNegrão, R., Monro, A. K., Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia.Noorolahi, S. M., Sadeghi, S., Mohammadi, M., Azadi, M., Rahimi, N. A., Vahabi, F., Arjmand, M., Hosseini, H., Mosallatpur, S., & Zamani, Z. (2016). Metabolomic profiling of cancer cells to Aloe vera extract by 1HNMR spectroscopy. Journal of Metabolomics, 2(1), 1-7. https://doi.org/10.7243/2059-0008-2-1Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The Need for Multi-Omics Biomarker Signatures in Precision Medicine. International Journal of Molecular Sciences, 20(4781), 1-13.Otto, L. G., Mondal, P., Brassac, J., Preiss, S., Degenhardt, J., He, S., Reif, J. C., & Sharbel, T. F. (2017). Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics, 18(1), 1-18. https://doi.org/10.1186/s12864-017-3991-0Pájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022a). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-Infectives, 3-57. https://doi.org/10.1016/B978-0-323-90999- 0.00005-7Pájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022b). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-infectives: Current Knowledge and New Perspectives, 3-57. https://doi.org/10.1016/B978-0-323-90999-0.00005-7Palazzotto, E., & Weber, T. (2018). ScienceDirect Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 45, 109-116. https://doi.org/10.1016/j.mib.2018.03.004Pandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021a). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296Pandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021b). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296Panossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015a). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004Panossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015b). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004Pedrete, T. A., Hauser-davis, R. A., & Moreira, J. C. (2019). International Journal of Biological Macromolecules Proteomic characterization of medicinal plants used in the treatment of diabetes. international journal of biological macromolecules, 140, 294-302. https://doi.org/10.1016/j.ijbiomac.2019.08.035Pérez, D., Matiz-Guerra, L. C., Pérez, D., & Matiz-Guerra, L. C. (2017). Uso de las plantas por comunidades campesinas en la ruralidad de Bogotá D.C., Colombia. Caldasia, 39(1), 68. https://doi.org/10.15446/caldasia.v39n1.59932Prieto-Rodríguez, J. A., Lévuok-Mena, K. P., Cardozo-Muñoz, J. C., Parra-Amin, J. E., Lopez-Vallejo, F., Cuca-Suárez, L. E., & Patiño-Ladino, O. J. (2022). In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Plants, 11(17), 2188. https://doi.org/10.3390/PLANTS11172188/S1Quintero, W. L., Moreno, E. M., Pinto, S. M. L., Sanabria, S. M., Stashenko, E., & García, L. T. (2021). Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/S12906-021-03347-6Ran, D., Hong, W., Yan, W., & Mengdie, W. (2021). Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. Journal of Ethnopharmacology, 273, 113958. https://doi.org/10.1016/j.jep.2021.113958Rao, T., Tan, Z., Peng, J., Guo, Y., Chen, Y., Zhou, H., & Ouyang, D. (2019). The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacological Research, 146, 104283. https://doi.org/10.1016/j.phrs.2019.104283Rivas Mena, K. E., Muñoz, D. L., Pino Benítez, C. N., & Balcázar Morales, N. (2015). Antioxidant activity, total phenolic content and cytotoxicity of polar extracts from colombian antidiabetic plants. Revista Cubana de Plantas Medicinales, 20(3), 277-289.Rocha, D., Santos, C., Bajay, M., Campos, J., Blank, A., Pinheiro, J., & Zucchi, M. (2015). Development of a novel set of microsatellite markers for Lippia alba (Verbenaceae). Genetics and Molecular Research, 14(1), 971-974. https://doi.org/10.4238/2015.February.3.4Rowe, H. C., Renaut, S., & Guggisberg, A. (2011). RAD in the realm of next-generation sequencing technologies. Molecular ecology, 20(17), 3499-3502. https://doi.org/10.1111/J.1365-294X.2011.05197.XRubin, B. E. R., Ree, R. H., & Moreau, C. S. (2012). Inferring Phylogenies from RAD Sequence Data. PLOS ONE, 7(4), e33394. https://doi.org/10.1371/JOURNAL.PONE.0033394Rugeles-Silva, P. A., Posso-Terranova, A. M., Londoño, X., Marín, N. B.-, & Muñoz-Flórez, J. E. (2012). Caracterización molecular de Guadua angustifolia Kunth mediante marcadores moleculares RAMs. Acta Agronómica, 61(4), 325-330. https://doi.org/10.15446/ACAGRuiz-Vásquez, L., Ruiz Mesia, L., Caballero Ceferino, H. D., Ruiz Mesia, W., Andrés, M. F., Díaz, C. E., & Gonzalez-Coloma, A. (2022). Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants, 11(14), 1793. https://doi.org/10.3390/plants11141793Sahoo, S., & S., B. (2019). Pharmacogenomic assessment of herbal drugs in affective disorders. Biomedicine & Pharmacotherapy, 109, 1148-1162. https://doi.org/10.1016/j.biopha.2018.10.135Santos, F. R. C., Lima, P. F., Priolli, R. H. G., Siqueira, W. J., & Colombo, C. A. (2012). Isolation and characteristics of eight novel polymorphic microsatellite loci in Lippia alba (Verbenaceae). American Journal of Botany, 99(8), e301-e303. https://doi.org/10.3732/AJB.1100578Santos, N., Pascon, R., Vallim, M., Figueiredo, C., Soares, M., Lago, J., & Sartorelli, P. (2016). Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae). Medicines, 3(3), 22. https://doi.org/10.3390/medicines3030022Seebaluck, R., Gurib-Fakim, A., & Mahomoodally, F. (2015). Medicinal plants from the genus Acalypha (Euphorbiaceae)–A review of their ethnopharmacology and phytochemistry. Journal of Ethnopharmacology, 159, 137-157. https://doi.org/10.1016/J.JEP .2014.10.040Sequeda-Castañeda, L. G., Modesti Costa, G. 1, Celis, C., Gamboa, F., Gutiérrez, S., & Luengas, P. (2016, diciembre 30). (PDF) Ilex guayusa (Aquifoliaceae): Amazon and Andean Native Plant. Pharmacology online. https://www.researchgate.net/publication/311981728_Ilex_guayusa_Aquifoliaceae_Amaz on_and_Andean_Native_PlantShan, Y., Wang, F., Wei, Z., & Lu, Y. (2021). Synthetic lethality theory approaches to effective substance discovery and functional mechanisms elucidation of anti-cancer phytomedicine. Phytomedicine, 91, 153718. https://doi.org/10.1016/j.phymed.2021.153718Shen, Y., Sun, Z., Shi, P., Wang, G., Wu, Y., Li, S., Zheng, Y., Huang, L., Lin, L., Lin, X., & Yao, H. (2018). Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent’s analysis by GC-MS. Journal of Ethnopharmacology, 217, 126-133. https://doi.org/10.1016/J.JEP .2018.02.019Shipa, S. J., Khandokar, L., Bari, M. S., Qais, N., Rashid, M. A., Haque, M. A., & Mohamed, I. N. (2022). An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. Journal of Ethnopharmacology, 293, 115245. https://doi.org/10.1016/J.JEP.2022.115245Shyamli, P. S., Pradhan, S., Panda, M., & Parida, A. (2021). De novo Whole-Genome Assembly of Moringa oleifera Helps Identify Genes Regulating Drought Stress Tolerance. 12(December), 1-14. https://doi.org/10.3389/fpls.2021.766999SiB Colombia. (2023, febrero 28). Sistema de Información sobre Biodiversidad de Colombia. https://cifras.biodiversidad.co/Silveira, N., Saar, J., Santos, A. D. C., Barison, A., Sandjo, L. P., Kaiser, M., Schmidt, T. J., & Biavatti, M. W. (2016). A New Alkamide with an Endoperoxide Structure from Acmella ciliata (Asteraceae) and Its in Vitro Antiplasmodial Activity. Molecules, 21(6). https://doi.org/10.3390/MOLECULES21060765Singh, G., Passsari, A. K., Singh, P., Leo, V. V., Subbarayan, S., Kumar, B., Singh, B. P., lalhlenmawia, H., & Kumar, N. S. (2017). Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complementary and Alternative Medicine, 17(1). https://doi.org/10.1186/S12906-017- 2000-0Singh, P. K., Sharma, H., Srivastava, N., Bhagyawant, S. S., Singh, P. K., Sharma, H., Srivastava, N., & Bhagyawant, S. S. (2014). Analysis of Genetic Diversity among Wild and Cultivated Chickpea Genotypes Employing ISSR and RAPD Markers. American Journal of Plant Sciences, 5(5), 676-682. https://doi.org/10.4236/AJPS.2014.55082Smit, R., Du Toit, E. S., & Vorster, B. J. (2013). RAPD and SSR genetic diversity analysis of Moringa oleifera. South African Journal of Botany, 86, 182. https://doi.org/10.1016/J.SAJB.2013.02.162Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015a). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072bSun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., Zhao, H., Chen, L., Ming, T., Meng, X., & Xu, H. (2022). Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine, 94, 153805. https://doi.org/10.1016/j.phymed.2021.153805Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015b). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072bSuzuki, M., Nakabayashi, R., Ogata, Y., Sakurai, N., Tokimatsu, T., Goto, S., Suzuki, M., Jasinski, M., Martinoia, E., Otagaki, S., Matsumoto, S., Saito, K., & Shiratake, K. (2015). Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. En Plant Physiology (Vol. 168, Número 1). https://doi.org/10.1104/pp.114.254375Tan, J., Tian, Y., Cai, R., Yi, T., Jin, D., & Guo, J. (2019). Antiproliferative and Proapoptotic Effects of a Protein Component Purified from Aspongopus chinensis Dallas on Cancer Cells In Vitro and In Vivo. 2019. https://doi.org/10.1155/2019/8934794Tang, X., Guo, J., Chen, L., & Ho, P. C. (2020). Journal of Pharmaceutical and Biomedical Analysis Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. Journal of Pharmaceutical and Biomedical Analysis, 191, 113609. https://doi.org/10.1016/j.jpba.2020.113609Tanuja, & Parani, M. (2023). Whole transcriptome analysis identifies full-length genes for neoandrographolide biosynthesis from Andrographis alata, an alternate source for antiviral compounds. Gene, 851(October 2022), 146981. https://doi.org/10.1016/j.gene.2022.146981Valdiani, A., Abdul, M., Soon, K., & Tan, G. (2012). Nain-e Havandi Andrographis paniculata present yesterday , absent today: A plenary review on underutilized herb of Iran ’ s pharmaceutical plants. Mol Biol Rep, 39, 5409-5424. https://doi.org/10.1007/s11033- 011-1341-xValdivia, C., Marquez, N., Eriksson, J., Vilaseca, A., Muñoz, E., & Sterner, O. (2008). Bioactive alkenylphenols from Piper obliquum. Bioorganic & Medicinal Chemistry, 16(7), 4120-4126. https://doi.org/10.1016/j.bmc.2008.01.018Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. https://doi.org/10.1093/genetics/123.3.585Vega-Vela, N. E., & Sánchez, M. I. C. (2012). Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America. Ecology and Evolution, 2(11), 2669-2681. https://doi.org/10.1002/ece3.360Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/f1000research.15931.2Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high- performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. https://doi.org/10.1093/bioinformatics/bts606Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLOS ONE, 3(10), e3376. https://doi.org/10.1371/journal.pone.0003376Bohonak, A. J. (2002). IBD (Isolation by Distance): A Program for Analyses of Isolation by Distance. Journal of Heredity, 93(2), 153-154. https://doi.org/10.1093/jhered/93.2.153Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124- 3140. https://doi.org/10.1111/mec.12354Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes|Genomes|Genetics, 1(3), 171-182. https://doi.org/10.1534/g3.111.000240Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109Davey, J. W., & Blaxter, M. L. (2010). RADSeq: Next-generation population genetics. Briefings in Functional Genomics, 9(5-6), 416-423. https://doi.org/10.1093/bfgp/elq031Díaz-Arce, N., & Rodríguez-Ezpeleta, N. (2019). Selecting RAD-Seq Data Analysis Parameters for Population Genetics: The More the Better? Frontiers in Genetics, 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00533Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.xGarcía Barriga, H. (1974). Flora medicinal de Colombia: Botánica médica. Instituto de Ciencias Naturales.Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293- W296. https://doi.org/10.1093/nar/gkab301Maruki, T., & Lynch, M. (2017). Genotype Calling from Population-Genomic Sequencing Data. G3: Genes|Genomes|Genetics, 7(5), 1393-1404. https://doi.org/10.1534/g3.117.039008McDermott, J. M., & McDonald, B. A. (1993). Gene Flow in Plant Pathosystems. Annual Review of Phytopathology, 31(1), 353-373. https://doi.org/10.1146/annurev.py.31.090193.002033Medicinal Plants as anti-infectives. Current Knowledge and New Perspectives. (2022). Academic Press is an imprint of Elsevier. https://www.sciencedirect.com/science/article/pii/B9780323909990000215?via%3Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: A road map for stacks. Methods in Ecology and Evolution, 8(10), 1360-1373. https://doi.org/10.1111/2041-210X.12775Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559-575.Ravinet, M., Westram, A., Johannesson, K., Butlin, R., André, C., & Panova, M. (2016). Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Molecular Ecology, 25(1), 287-305. https://doi.org/10.1111/mec.13332Valoyes, D. C., & Palacios Palacios, L. (2020). Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia). Ciencia en Desarrollo, 11(2), 85-96. https://doi.org/10.19053/01217488.V11.N2.2020.10583Xiao, M., Zhang, Y., Chen, X., Lee, E. J., Barber, C. J. S., Chakrabarty, R., Desgagné- Penix, I., Haslam, T. M., Kim, Y. B., Liu, E., MacNevin, G., Masada-Atsumi, S., Reed, D. W., Stout, J. M., Zerbe, P., Zhang, Y., Bohlmann, J., Covello, P. S., De Luca, V., ... Sensen, C. W. (2013). Transcriptome analysis based on next- generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166(3), 122-134. https://doi.org/10.1016/J.JBIOTEC.2013.04.004Aproximación biológica, fitoquímica y agronómica para la gestión de recursos vegetales con potencial farmacológico: Aporte a cadena de valor para el sector de los fitomedicamentos en ColombiaPontificia Universidad JaverianaEstudiantesInvestigadoresPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86616/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1070970724.2024.pdf1070970724.2024.pdfTesis de Maestría en Ciencias Biológicasapplication/pdf4716641https://repositorio.unal.edu.co/bitstream/unal/86616/2/1070970724.2024.pdf6bc3619e872960dd6399da255f7e157fMD52THUMBNAIL1070970724.2024.pdf.jpg1070970724.2024.pdf.jpgGenerated Thumbnailimage/jpeg5329https://repositorio.unal.edu.co/bitstream/unal/86616/3/1070970724.2024.pdf.jpgdf766cf1af7b6ac1bca5e1a474261983MD53unal/86616oai:repositorio.unal.edu.co:unal/866162024-08-26 23:10:58.811Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |