A modeling framework for hyporheic flow within hydrodynamics scale

ilustraciones, gráficas, tablas

Autores:
Preziosi Ribero, Antonio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79941
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79941
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Flujo de aguas subterráneas
Groundwater flow
Hyporheic flow
Model
Groundwater-Surface water processes
Fluid Mechanics
River bed
Flujo Hiporreico
Modelo
Procesos Agua Superficial - Agua Subterránea
Mecánica de Fluidos
Lechos de río
Agua del suelo
Soil water
Recursos hídricos
Water resources
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_729d949992346517afa81009fa1c66fc
oai_identifier_str oai:repositorio.unal.edu.co:unal/79941
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv A modeling framework for hyporheic flow within hydrodynamics scale
dc.title.translated.spa.fl_str_mv Un marco para la modelación de flujo hiporreico en escala hidrodinámica
title A modeling framework for hyporheic flow within hydrodynamics scale
spellingShingle A modeling framework for hyporheic flow within hydrodynamics scale
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Flujo de aguas subterráneas
Groundwater flow
Hyporheic flow
Model
Groundwater-Surface water processes
Fluid Mechanics
River bed
Flujo Hiporreico
Modelo
Procesos Agua Superficial - Agua Subterránea
Mecánica de Fluidos
Lechos de río
Agua del suelo
Soil water
Recursos hídricos
Water resources
title_short A modeling framework for hyporheic flow within hydrodynamics scale
title_full A modeling framework for hyporheic flow within hydrodynamics scale
title_fullStr A modeling framework for hyporheic flow within hydrodynamics scale
title_full_unstemmed A modeling framework for hyporheic flow within hydrodynamics scale
title_sort A modeling framework for hyporheic flow within hydrodynamics scale
dc.creator.fl_str_mv Preziosi Ribero, Antonio
dc.contributor.advisor.none.fl_str_mv Donado, Leonardo David
Escobar Vargas, Jorge
dc.contributor.author.none.fl_str_mv Preziosi Ribero, Antonio
dc.contributor.researchgroup.spa.fl_str_mv HYDS Hydrodynamics of the Natural Media Research Group
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Flujo de aguas subterráneas
Groundwater flow
Hyporheic flow
Model
Groundwater-Surface water processes
Fluid Mechanics
River bed
Flujo Hiporreico
Modelo
Procesos Agua Superficial - Agua Subterránea
Mecánica de Fluidos
Lechos de río
Agua del suelo
Soil water
Recursos hídricos
Water resources
dc.subject.other.none.fl_str_mv Flujo de aguas subterráneas
Groundwater flow
dc.subject.proposal.eng.fl_str_mv Hyporheic flow
Model
Groundwater-Surface water processes
Fluid Mechanics
River bed
dc.subject.proposal.spa.fl_str_mv Flujo Hiporreico
Modelo
Procesos Agua Superficial - Agua Subterránea
Mecánica de Fluidos
Lechos de río
dc.subject.unesco.none.fl_str_mv Agua del suelo
Soil water
Recursos hídricos
Water resources
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-12T22:42:14Z
dc.date.available.none.fl_str_mv 2021-08-12T22:42:14Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79941
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79941
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Barr, D. W. (2001). Turbulent Flow Through Porous Media. Ground Water, 39(5):646–650.
Barthel, R. and Banzhaf, S. (2015). Groundwater and Surface Water Interaction at the Regional-scale - A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1):1–32.
Bear, J. (1975). Dynamics of Fluids in Porous Media. Dover.
Bencala, K. (2000). Hyporheic zone hydrological processes. Hydrological Processes, 14(15):2797–2798.
Bernal, J. G. (2014). Evaluacion de la Dinamica del Agua Subterranea en la Ecohidrologia del Humedal Laguna de Sonso, Valle Del Cauca-Colombia. PhD thesis, Universidad Nacional de Colombia.
Boano, F., Harvey, J., Marion, A., Packman, A., Revelli, R., Ridolfi, L., and Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4).
Boano, F., Packman, A., Cortis, A., Revelli, R., and Ridolfi, L. (2007). A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 43(10).
Bonkile, M. P., Awasthi, A., Lakshmi, C., Mukundan, V., and Aswin, V. S. (2018). A systematic literature review of Burgers’ equation with recent advances. Pramana - Journal of Physics, 90(6):1–21.
Botella, O. and Peyret, R. (1998). Benchmark Spectral Results on the Lid Driven Cavity Flow. Computers and Fluids, 27(4):421–433.
Boudreau, B. (1997). A one-dimensional model for bed-boundary layer particle exchange. Journal of Marine Systems, 11(3-4):279–303.
Breugem, W. P., Boersma, B. J., and Uittenbogaard, R. E. (2006). The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562:35.
Brunke, M. (1999). Colmation and depth filtration within streambeds: Retention of particles in hyporheic interstices. International Review of Hydrobiology, 84(2).
Buendia, C., Gibbins, C. N., Vericat, D., and Batalla, R. J. (2014). Effects of flow and fine sediment dynamics on the turnover of stream invertebrate assemblages. Ecohydrology, 7(4).
Buss, S., Cai, Z., Cardenas, M., Fleckenstein, J., Hannah, D., Hepell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawler, D., Lerner, N., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, G., Pinay, G., Porter, J., Rhodes, G., Ritchie, A., Riley, J., Robertson, A., Sear, D., Shileds, B., Smith, J., Tellam, J., and Wood, P. (2009). The Hyporheic Handbook. Environment Agency, Bristol, 1 edition.
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (2009). Spectral methods. Springer.
Cardenas, M. (2015). Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 51(5):3601–3616.
Cardenas, M. and Wilson, J. (2006). The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. Journal of Hydrology, 331(1-2).
Cardenas, M. and Wilson, J. (2007a). Hydrodynamics of coupled flow above and below a sediment–water interface with triangular bedforms. Advances in Water Resources, 30(3).
Cardenas, M. and Wilson, J. (2007b). Thermal regime of dune-covered sediments under gaining and losing water bodies. Journal of Geophysical Research: Biogeosciences, 112(4).
Cardenas, M., Wilson, J., and Haggerty, R. (2008). Residence time of bedform-driven hyporheic exchange. Advances in Water Resources, 31(10).
Cardenas, M., Wilson, J., and Zlotnik, V. (2004). Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8)
Cardenas, M. B. and Wilson, J. L. (2007c). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8).
Cengel, Y. A. and Cimbala, J. M. (2006). Mecánica de fluidos : fundamentos y aplicaciones. México, D.F. : McGraw-Hill Interamericana, 2006.
Chen, C., Packman, A. I., and Gaillard, J.-F. (2008). Pore-scale analysis of permeability reduction resulting from colloid deposition. Geophysical Research Letters, 35(7).
Chen, X., Dong, W., Ou, G., Wang, Z., and Liu, C. (2013). Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns. Hydrology and Earth System Sciences, 17(7):2569–2579.
Clark, M. M. (2009). Transport modeling for environmental engineers and scientists. Environmental science and technology. New Jersey : Wiley, 2009.
Crenshaw, C. L., Valett, H. M., and Webster, J. R. (2002). Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. Freshwater Biology, 47(10).
Cushing, C. E., Minshall, G. W., and Newbold, J. D. (1993). Transport dynamics of fine particulate organic matter in two Idaho streams. Limnology and Oceanography, 38(6):1101–1115.
del Jesus, M., Lara, J. L., and Losada, I. J. (2012). Three-dimensional interaction of waves and porous coastal structures. Coastal Engineering, 64.
Delay, F., Ackerer, P., and Danquigny, C. (2005). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking. Vadose Zone Journal, 4(2).
Discacciati, M., Miglio, E., and Quarteroni, A. (2002). Mathematical and numerical models for coupling surface and groundwater flows. Applied Numerical Mathematics, 43(1-2).
Domenico, P. A. and Schwartz, F. W. (1998). Physical and chemical hydrogeology. Second edition. Wiley.
Dong, W., Chen, X., Wang, Z., Ou, G., and Liu, C. (2012). Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. Journal of Hydrology, 450-451:9–16.
Drummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., and Sharp, A. (2015). Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach. Environmental Science and Technology, 49(13).
Drummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., Sharp, A., and Packman, A. (2014). Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. Water Research, 66.
Drummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2017). Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research, 53(7).
Drummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2018). Less Fine Particle Retention in a Restored Versus Unrestored Urban Stream: Balance Between Hyporheic Exchange, Resuspension, and Immobilization. Journal of Geophysical Research: Biogeosciences, 123(4).
Elliott, A. H. and Brooks, N. H. (1997a). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research, 33(1).
Elliott, A. H. and Brooks, N. H. (1997b). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33(1).
Erturk, E., Corke, T. C., and Gökçöl, C. (2005). Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48(7).
Fox, A., Boano, F., and Arnon, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research, 50(3).
Fox, A., Packman, A., Boano, F., Phillips, C., and Arnon, S. (2018). Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions. Geophysical Research Letters, 45(9).
Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, NJ.
Gartner, J. D., Renshaw, C. E., Dade, W. B., and Magilligan, F. J. (2012). Time and depth scales of fine sediment delivery into gravel stream beds: Constraints from fallout radionuclides on fine sediment residence time and delivery. Geomorphology, 151-152.
Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.
Ghisalberti, M. (2009). Obstructed shear flows: similarities across systems and scales. Journal of Fluid Mechanics, 641:51.
González-Pinzón, R., Ward, A., Hatch, C., Wlostowski, A., Singha, K., Gooseff, M., Haggerty, R., Harvey, J., Cirpka, O., and Brock, J. (2015). A field comparison of multiple techniques to quantify groundwater-surface-water interactions. Freshwater Science, 34(1):139–160.
Gooseff, M. (2010). Defining Hyporheic Zones - Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geography Compass, 4(8).
Gooseff, M., Anderson, J., Wondzell, S., LaNier, J., and Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes, 20(11).
Gottselig, N., Bol, R., Nischwitz, V., Vereecken, H., Amelung, W., and Klumpp, E. (2014). Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 13(7).
Harvey, J., Drummond, J., Martin, R., McPhillips, L., Packman, A., Jerolmack, D., Stonedahl, S., Aubeneau, A., Sawyer, A., Larsen, L., and Tobias, C. (2012). Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 117(4).
Hester, E., Young, K., and Widdowson, M. (2013). Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions.Water Resources Research, 49(9).
Hesthaven, J. and Warburton, T. (2008). Nodal Discontinuous Galerkin Methods, volume 54 of Texts in Applied Mathematics. Springer New York.
Hesthaven, J. S. (1998). A stable penalty method for the compressible navier-stokes equations: III. Multidimensional domain decomposition schemes. SIAM Journal of Scientific Computing, 20(1):62–93.
Higashino, M. and Stefan, H. (2008). Velocity Pulse Model for Turbulent Diffusion from Flowing Water into a Sediment Bed. Journal of Environmental Engineering, 134(7):550–560.
Hope, D., Billett, M. F., and Cresser, M. S. (1994). A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution, 84(3):301–324.
Hsu, T.-J., Sakakiyama, T., and Liu, P. L.-F. (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering, 46(1):25–50.
Huang, C. J., Chang, H. H., and Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, 49(1-2):1–24.
Huang, C. J., Shen, M. L., and Chang, H. H. (2008). Propagation of a solitary wave over rigid porous beds. Ocean Engineering, 35(11-12):1194–1202.
Huettel, M., Ziebis, W., and Forster, S. (1996). Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography, 41(2):309–322.
Hünken, A. and Mutz, M. (2007). Field studies on factors affecting very fine and ultra fine particulate organic matter deposition in low-gradient sand-bed streams. Hydrological Processes, 21(4).
Jin, G., Zhang, Z., Tang, H., Xiaoquan, Y., Li, L., and Barry, D. A. (2019). Colloid transport and distribution in the hyporheic zone. Hydrological Processes, 33(6):932–944.
Kalbus, E., Reinstorf, F., Schirmer, M., and others (2006). Measuring methods for groundwater, surface water and their interactions: a review. Hydrology and Earth System Sciences, 3(4):873–887.
Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 97(2):414–443.
Karwan, D. L. and Saiers, J. E. (2009). Influences of seasonal flow regime on the fate and transport of fine particles and a dissolved solute in a New England stream. Water Resources Research, 45(11)
Karwan, D. L. and Saiers, J. E. (2012). Hyporheic exchange and streambed filtration of suspended particles. Water Resources Research, 48(1):1–13.
Kuzmin, D. and Hamalainen, J. (2015). Finite Element Methods for Computational Fluid Dynamics A Practical Guide. SIAM, Philadelphia, 1 edition.
Li, A., Aubeneau, A. F., Bolster, D., Tank, J. L., and Packman, A. I. (2017). Covariation in patterns of turbulence-driven hyporheic flow and denitrification enhances reach-scale nitrogen removal. Water Resources Research, 53(8).
Lian, Y., Dallmann, J., Sonin, B., Roche, K., Liu, W., Packman, A., and Wagner, G. (2019). Large eddy simulation of turbulent flow over and through a rough permeable bed. Computers and Fluids, 180:128–138.
Manes, C., Poggi, D., and Ridolfi, L. (2011). Turbulent boundary layers over permeable walls: scaling and near-wall structure. Journal of Fluid Mechanics, 687:141–170.
Manes, C., Pokrajac, D., McEwan, I., and Nikora, V. (2009). Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study. Physics of Fluids, 21(12):1–12.
Manes, C., Ridolfi, L., and Katul, G. (2012). A phenomenological model to describe turbulent friction in permeable-wall flows. Geophysical Research Letters, 39(14).
Marion, A., Bellinello, M., Guymer, I., and Packman, A. (2002). Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research, 38(10).
Marzadri, A., Tonina, D., Bellin, A., and Valli, A. (2016). Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources, 88
Matott, L. S. (2017). OSTRICH: an Optimization Software Tool, Documentation and User’s Guide. Version 17.12.19. University at Buffalo Center for Computational Research.
Mendoza-Lera, C., Frossard, A., Knie, M., Federlein, L. L., Gessner, M. O., and Mutz, M. (2017). Importance of advective mass transfer and sediment surface area for streambed microbial communities. Freshwater Biology, 62(1).
Montgomery, D. R. (1999). Process domains and the River Continuum. Journal of the American Water Resources Association, 35(2):397–410.
Mutz, M. (2000). Influences of woody debris on flow patterns and channel morphology in a low energy, sand-bed stream reach. International Review of Hydrobiology, 85(1).
Mutz, M. and Rohde, A. (2003). Processes of Surface-Subsurface Water Exchange in a Low Energy Sand-Bed Stream. International Review of Hydrobiology, 88(34):290–303.
Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., and Marmonier, P. (2011). Water-Sediment Exchanges Control Microbial Processes Associated with Leaf Litter Degradation in the Hyporheic Zone: A Microcosm Study. Microbial Ecology, 61(4).
Newbold, J. D., Thomas, S. A., Minshall, G. W., Cushing, C. E., and Georgian, T. (2005). Deposition, benthic residence, and resuspension of fine organic particles in a mountain stream. Limnology and Oceanography, 50(5):1571–1580.
Orghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(4):291–302.
Packman, A. (1997). Exchange of Colloidal Kaolinite between Stream and Sand Bed in a Laboratory Flume. PhD thesis, California Institute of Technology.
Packman, A. and Bencala, K. (2000). Modeling Surface–Subsurface Hydrological Interactions. In Streams and Ground Waters, pages 45–80. Elsevier.
Packman, A., Brooks, N., and Morgan, J. (2000a). Kaolinite exchange between a stream and streambed: Laboratory experiments and validation of a colloid transport model. Water Resources Research, 36(8).
Packman, A. and MacKay, J. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research, 39(4).
Packman, A. I., Brooks, N. H., and Morgan, J. J. (2000b). A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resources Research, 36(8).
Packman, A. I., Salehin, M., and Zaramella, M. (2004). Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7):647–656.
Paiva, R. C., Collischonn, W., and Tucci, C. E. (2011). Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406(3-4):170–181.
Partington, D., Therrien, R., Simmons, C. T., and Brunner, P. (2017). Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Reviews of Geophysics, 55(2).
Peñaloza-Giraldo, J., Escobar-Vargas, J., and Donado, L. (2015). A Spectral Multidomain Penalty Method Solver for the Simulation of the Velocity Attenuation in Hyporheic Flows. Procedia Environmental Sciences, 25:206–213.
Pokrajac, D. and Manes, C. (2009). Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transport in Porous Media, 78(3 SPEC. ISS.):367–383.
Pokrajac, D., Manes, C., and McEwan, I. (2007). Peculiar mean velocity profiles within a porous bed of an open channel. Physics of Fluids, 19(9):098109.
Preziosi-Ribero, A., Escobar-Vargas, J., Penaloza-Giraldo, J., and Donado, L. (2016). A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River. Goephysical Research Abstracts, 18(EGU2016-10673).
Preziosi-Ribero, A., Packman, A. I., Escobar-Vargas, J. A., Phillips, C. B., Donado, L. D., and Arnon, S. (2020). Fine Sediment Deposition and Filtration Under Losing and Gaining Flow Conditions: A Particle Tracking Model Approach. Water Resources Research, 56(2).
Prickett, T. a., Naymik, T. G., and Lonnquist, C. G. (1981). A Random-Walk"Solute Transport Model for Selected Groundwater Quality Evaluations. Technical report, Illinois Department of Energy and Natural Resources, Champaign.
Ren, J. and Packman, A. (2002).Effects of Background Water Composition on Stream–Subsurface Exchange of Submicron Colloids. Journal of Environmental Engineering, 128(7):624–634.
Roche, K., Blois, G., Best, J., Christensen, K., Aubeneau, A., and Packman, A. (2018). Turbulence Links Momentum and Solute Exchange in Coarse-Grained Streambeds. Water Resources Research.
Roche, K. R., Aubeneau, A. F., Xie, M., Aquino, T., Bolster, D., and Packman, A. I. (2016). An Integrated Experimental and Modeling Approach to Predict Sediment Mixing from Benthic Burrowing Behavior. Environmental Science and Technology, 50(18):10047–10054. Ruban, A. I. and Gajjar, J. S. B. (2014). Fluid Dynamics: Part 1: Classical Fluid Dynamics. Oxford University Press, Oxford.
Saavedra-Cifuentes, E. Y. (2017). Numerical Simulation of the Surface Water – Groundwater Interaction in High Mountain Riverbeds. PhD thesis, Universidad Nacional de Colombia.
Salehin, M., Packman, A., and Paradis, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11).
Simpson, S. C. and Meixner, T. (2012). Modeling effects of floods on streambed hydraulic conductivity and groundwater-surface water interactions. Water Resources Research, 48(2):1–14.
Stonedahl, S., Harvey, J., Wörman, A., Salehin, M., and Packman, A. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12):n/a–n/a.
Thomas, S. A., Newbold, J. D., Monaghan, M. T., Minshall, G. W., Georgian, T., and Cushing, C. E. (2001). The influence of particle size on seston deposition in streams. Limnology and Oceanography, 46(6):1415–1424.
Tolson, B. A. and Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1).
Tonina, D. and Buffington, J. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3):1063–1086.
Tonina, D., de Barros, F. P., Marzadri, A., and Bellin, A. (2016). Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams? Advances in Water Resources, 96:120–126.
Trauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J. (2013). Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resources Research, 49(9). Tropea, C., Yarin, A. L., and Foss, J. F., editors (2007). Springer Handbook of Experimental Fluid Mechanics. Springer Berlin Heidelberg, Berlin, Heidelberg.
Valdés-Parada, F. J., Aguilar-Madera, C. G., Ochoa-Tapia, J. A., and Goyeau, B. (2013). Velocity and stress jump conditions between a porous medium and a fluid. Advances in Water Resources, 62:327–339.
Vanoni, V. A. (1974). FACTORS DETERMINING BED FORMS OF ALLUVIAL STREAMS. ASCE J Hydraul Div, 100(HY3).
Vaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin, 66(3):479–489.
Voermans, J. J., Ghisalberti, M., and Ivey, G. N. (2017). The variation of flow and turbulence across the sediment-water interface. Journal of Fluid Mechanics, 824:413–437.
Vogt, T., Hoehn, E., Schneider, P., Freund, A., Schirmer, M., and Cirpka, O. (2010). Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances in Water Resources, 33(11):1296–1308.
Ward, A. S. and Packman, A. I. (2019). Advancing our predictive understanding of river corridor exchange. Wiley Interdisciplinary Reviews: Water, 6(1):e1327.
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620. Whitaker, S. (1996). The Forchheimer equation: A theoretical development. Transport in Porous Media, 25(1):27–61.
White, B. L. and Nepf, H. M. (2007). Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M. (1998). Ground water and surface water: A single resource. USGS Publications.
Woessner, W. W. and Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater, 38(3).
Wohl, E. (2015). Legacy effects on sediments in river corridors. Earth-Science Reviews, 147.
Wörman, A., Packman, A., Marklund, L., Harvey, J., and Stone, S. (2007). Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7).
Xue, P., Schwab, D. J., Sawtell, R. W., Sayers, M. J., Shuchman, R. A., and Fahnenstiel, G. L. (2017). A particle-tracking technique for spatial and temporal interpolation of satellite images applied to Lake Superior chlorophyll measurements. Journal of Great Lakes Research, 43(3).
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 110 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79941/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79941/2/210804_Tesis_Preziosi.pdf
https://repositorio.unal.edu.co/bitstream/unal/79941/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79941/4/210804_Tesis_Preziosi.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
1539db251a220d8f2d4f7c98ee47f4ee
4460e5956bc1d1639be9ae6146a50347
4cd2edc9f5c4431c17100d55c9db7a3a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089403912421376
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Donado, Leonardo Davidb6774b9bc0083853c2f42c1c2bee51fe600Escobar Vargas, Jorgebe6633f7d6ec462904e415c93abae866Preziosi Ribero, Antonio7f51e570d7d82f4d16ba9a3384894253600HYDS Hydrodynamics of the Natural Media Research Group2021-08-12T22:42:14Z2021-08-12T22:42:14Z2021https://repositorio.unal.edu.co/handle/unal/79941Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasIn tropical countries, like Colombia and in other parts of the world, free surface streams play a key role either as freshwater supply for human settlements, or as wastewater receivers from households and industrial compounds. Population growth, internal migration of people towards cities and the effects of climate change make that pressure on aquatic ecosystems become a topic of interest for science and public administration. Therefore, understanding different water bodies, their interaction and their integral modelling process are a research topic of great interest in earth sciences and engineering. In fact, in the last 30 years, academia has studied the interaction between free surface streams and aquifers beneath them, focusing on the effects of these type of flows. This milestone marked the beginning of the studies of Hyporheic Flow (HF) and Hyporheic Zone (HZ). Hyporheic Zone (HZ) is defined as "a subsurface flowpath along which water 'recently' from the stream will mix with subsurface water to 'soon' return to the stream''. This place has a great relevance in ecologic, biologic and chemical processes such as contaminant attenuation, nutrient, sediment and heat transport for biota growth, nitrification processes in water bodies and river restoration. These phenomena are closely related with chemical water quality and are modeled usually with conservative and reactive transport equations. Nevertheless, species transport in HZ depends on water flow and the patterns it follows. The flow within the HZ is known as Hyporheic Flow (HF) and its main feature is the wide range of scales in which it acts. Hence, within HZ there is flow from the pore scale and it is controlled by pressure gradients, to the scale of flows controlled by the stream morphology. This wide variety of scales, along with media heterogeneity make the study of processes within the HZ a challenge for the scientific community. Moreover, in countries like Colombia, streams play a key role in society since they are the main freshwater supply and also receive the water disposal. The main goal of this research project is to formulate a methodological frame for HZ modelling from the continuous media perspective. To that end, this work presents the study of HF, starting from different numerical models, proposing simplifications that can portray HF. In the same way, the use of numerical models allows the decomposition of the physical phenomena to characterize their individual contribution to the HF. The models' results are compared with experimental results to validate their practical usefulness and propose their use in different case studies related with biological, chemical and ecological processes. To accomplish the main goal, this document presents three different approaches to HF driven by hydrodynamics, using different numerical tools. These approaches are based in continuum media mechanics, despite using different numerical schemes; each one of the presents pros and cons, but above all, each one of them gives key information about Hyporheic Flow that, in the near future, can be upscaled and used for decision making regarding hydraulic resources. The first numerical model proposed uses Burgers' Equation (BE) to represent HF in a bed with cubical packed spheres. The main goal is to study turbulent velocity decay within uniform media to characterize HF through a simple expression as the BE taking into account the interaction between non linear effects and energy dissipation, characteristic within multiscale flows. For the computational model a Spectral Multidomain Penalty method (SMPM) to avoid numerical errors associated with traditional numerical schemes as finite differences, elements or volumes. The BE model is presented as a first approach of HF in a lab scale. In second place, the use of the Navier-Stokes Equations (NSE) to represent the combination of free surface flow and a sand bed. Again, the main goal is to determine a mean velocity profile representing the transition between free surface flow in a flume and a regular bed. To achieve this goal the Finite Volume Method was used along with an open source code that was modified to include different viscosity values and source/sink terms that are able to capture the velocity decay. The results of flow are compared with different numerical and experimental models. This analysis includes also a conservative transport model that was also compared with experimental results. For the final approach, a numerical particle-tracking model is proposed to assess their influence of HF in fine sediment deposition in river beds. The main goal of this part is to evaluate the process of deposition taking into account different flow scenarios within the HZ. Besides flow in porous media, this model includes particle filtration within the bed to retain particles and show places where deposition is more prone to occur. The results, once again, are compared with flume experiments of kaolinite deposition in a recirculating flume. To wrap up, the three models presented in this work offer a novel vision on Hyporheic Flow within scales driven by hydrodynamical effects. Mainly, the free flow conditions driving flow in porous media and high Reynolds number flows presence within porous media determine hydrodynamics and processes associated with it, such as fine sediment deposition.En paises tropicales como Colombia y en gran parte del mundo, las corrientes superficiales juegan un rol importante como fuente de agua potable para grandes asentamientos humanos, a la vez que receptores de vertimientos domésticos e industriales. El crecimiento de la población, la migración interna a las ciudades y los efectos del cambio climático, hacen que la presión sobre los ecosistemas acuáticos se vuelva un tema de interés para la ciencia y la administración pública. En consecuencia, el entendimiento de los diferentes cuerpos de agua, las relaciones entre ellos y su modelación integral son un tema de investigación con gran acogida en las geociencias y la ingeniería. De hecho, desde hace cerca de 30 añnos, la academia se ha fijado en las realciones entre las corrientes de agua y los acuíferos debajo de las mismas para estudiar diferentes fenómenos ocasionados por este tipo de flujos. De esta forma nace el estudio del Flujo Hiporreico (HF) y la Zona Hiporreica (HZ). La Zona Hiporreica (HZ) se define como "la trayectoria de flujo de agua que ha abandonado un cuerpo de agua superficial hace "poco'' tiempo, para mezclarse con agua subterránea y "pronto'' volver al mismo cuerpo de agua''. Este lugar tiene gran importancia en procesos ecológicos, biológicos y químicos como la atenuación de contaminantes, el transporte de nutrientes, sedimentos y calor para el crecimiento de biota, los procesos de nitrificación de los cuerpos de agua y la restauración de cuerpos de agua. Estos fenómenos están ligados estrechamente con el concepto de calidad y química del agua, y son modelados con ecuaciones de transporte conservativo o reactivo. No obstante, el transporte de sustancias en este medio depende del flujo de agua y los patrones que este sigue. Al flujo de agua en la HZ se le denomina Flujo Hiporreico (HF), y su principal característica es el amplio rango de escalas en el que está presente. De esta forma, dentro de la HZ se pueden observar flujo desde la escala de poros, controlado por gradientes de presión, hasta la escala de flujos controlados por la morfología de las corrientes de agua. Esta amplia variedad de escalas, sumada a la heterogeneidad de los medios naturales, hacen que el estudio de procesos en la HZ se transforme en un reto para la comunidad científica. El objetivo del presente trabajo de investigación es el de formular un marco metodológico para la modelación de la HZ desde la perspectiva de la mecánica del medio continuo. Para tal fin, este trabajo presenta un estudio del HF, a partir de diferentes modelos numéricos, proponiendo simplificaciones que puedan representar el HF. Asimismo, el uso de modelos numéricos permite descomponer los fenómenos físicos para caracterizar la contribución de cada uno al HF. Los resultados de los modelos son comparados con resultados experimentales para verificar su utilidad práctica y proponer su uso en diferentes casos de estudio relacionados con procesos biológicos, químicos y ecológicos. Para el cumplimiento del objetivo general se presentan tres aproximaciones de modelación de Flujo Hiporreico dominado por factores hidrodinámicos, por medio de diferentes herramientas numéricas. Estas aproximaciones se basan en la mecánica del medio continuo, a pesar de utilizar diferentes esquemas numéricos; presentan diferentes fortalezas y debilidades y, sobre todo, brindan información sobre el Flujo Hiporreico que, en un futuro, puede ser escalada para contribuir con la toma de decisiones en lo referente al recurso hídrico. El primer modelo numérico propuesto utiliza la ecuación de Burgers (BE) para representar el HF en un lecho de esferas dispuestas en forma cúbica. El objetivo principal es estudiar el decaimiento de las velocidades turbulentas dentro de un medio uniforme para caracterizar el HF mediante una expresión simple como la BE teniendo en cuenta la interacción de efectos no lineales y disipación de energía, propios de los flujos multiescala. Para el modelo computacional se utilizó un método de multidominio espectral (SMPM) para evitar errores numéricos asociados a los métodos tradicionales como las diferencias, elementos o volúmenes finitos. Este modelo se presenta como una primera aproximación hacia el HF a escala de laboratorio. En segundo lugar, se propone un modelo basado en las ecuaciones de Navier-Stokes (NSE) modificada para representar la combinación de un flujo libre y el lecho de un canal. De nuevo, el objetivo es determinar un perfil de velocidades promedio que represente la transición entre el flujo de un canal y un lecho de forma regular. Para este fin se utilizó el método de los volúmenes finitos y un paquete de software de código abierto que fue modificado para incluir viscosidades diferentes y términos de fuente/sumidero que representen el decaimiento de velocidades. Los resultados de flujo son comparados con diferentes modelos numéricos y experimentales. De igual manera, este análisis incluye además una implementación de transporte conservativo de especies que fue también comparado con resultados experimentales. Como última aproximación, se propone un modelo de rastreo numérico de partículas para evaluar la influencia del HF en la depositación de sedimentos finos en lechos de ríos. El objetivo principal de este aparte es analizar el proceso de depositación de sedimentos, teniendo en cuenta diferentes escenarios de flujo en la HZ. Además del flujo en el medio poroso, el modelo implementado utiliza la filtración de materiales dentro del lecho para retener partículas finas y mostrar los lugares donde se espera que haya mayor depositación de estas. Los resultados, una vez más, son validados de forma cualitativa con experimentos de laboratorio realizados con kaolinita en canales recirculantes experimentales. En síntesis, los tres modelos presentados en este trabajo ofrecen una visión novedosa sobre el Flujo Hiporreico en escalas dominadas por efectos hidrodinámicos. Principalmente, el dominio de las condiciones de flujo libre presentes sobre el flujo en el medio poroso y la presencia de flujos con altos números de Reynolds dentro del medio poroso dominan la hidrodinámica y los procesos asociados a la misma, como la despositación de sedimentos finos.Convocatoria 647/2014 de Colciencias - Doctorados nacionales Cohorte 2016 - Beca estudiante doctoral colombiano - Comisión Fulbright ColombiaDoctoradoDoctor en Ingeniería - Ingeniería CivilAgua y medio ambiente110 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería CivilDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaFlujo de aguas subterráneasGroundwater flowHyporheic flowModelGroundwater-Surface water processesFluid MechanicsRiver bedFlujo HiporreicoModeloProcesos Agua Superficial - Agua SubterráneaMecánica de FluidosLechos de ríoAgua del sueloSoil waterRecursos hídricosWater resourcesA modeling framework for hyporheic flow within hydrodynamics scaleUn marco para la modelación de flujo hiporreico en escala hidrodinámicaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBarr, D. W. (2001). Turbulent Flow Through Porous Media. Ground Water, 39(5):646–650.Barthel, R. and Banzhaf, S. (2015). Groundwater and Surface Water Interaction at the Regional-scale - A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1):1–32.Bear, J. (1975). Dynamics of Fluids in Porous Media. Dover.Bencala, K. (2000). Hyporheic zone hydrological processes. Hydrological Processes, 14(15):2797–2798.Bernal, J. G. (2014). Evaluacion de la Dinamica del Agua Subterranea en la Ecohidrologia del Humedal Laguna de Sonso, Valle Del Cauca-Colombia. PhD thesis, Universidad Nacional de Colombia.Boano, F., Harvey, J., Marion, A., Packman, A., Revelli, R., Ridolfi, L., and Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4).Boano, F., Packman, A., Cortis, A., Revelli, R., and Ridolfi, L. (2007). A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 43(10).Bonkile, M. P., Awasthi, A., Lakshmi, C., Mukundan, V., and Aswin, V. S. (2018). A systematic literature review of Burgers’ equation with recent advances. Pramana - Journal of Physics, 90(6):1–21.Botella, O. and Peyret, R. (1998). Benchmark Spectral Results on the Lid Driven Cavity Flow. Computers and Fluids, 27(4):421–433.Boudreau, B. (1997). A one-dimensional model for bed-boundary layer particle exchange. Journal of Marine Systems, 11(3-4):279–303.Breugem, W. P., Boersma, B. J., and Uittenbogaard, R. E. (2006). The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562:35.Brunke, M. (1999). Colmation and depth filtration within streambeds: Retention of particles in hyporheic interstices. International Review of Hydrobiology, 84(2).Buendia, C., Gibbins, C. N., Vericat, D., and Batalla, R. J. (2014). Effects of flow and fine sediment dynamics on the turnover of stream invertebrate assemblages. Ecohydrology, 7(4).Buss, S., Cai, Z., Cardenas, M., Fleckenstein, J., Hannah, D., Hepell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawler, D., Lerner, N., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, G., Pinay, G., Porter, J., Rhodes, G., Ritchie, A., Riley, J., Robertson, A., Sear, D., Shileds, B., Smith, J., Tellam, J., and Wood, P. (2009). The Hyporheic Handbook. Environment Agency, Bristol, 1 edition.Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (2009). Spectral methods. Springer.Cardenas, M. (2015). Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 51(5):3601–3616.Cardenas, M. and Wilson, J. (2006). The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. Journal of Hydrology, 331(1-2).Cardenas, M. and Wilson, J. (2007a). Hydrodynamics of coupled flow above and below a sediment–water interface with triangular bedforms. Advances in Water Resources, 30(3).Cardenas, M. and Wilson, J. (2007b). Thermal regime of dune-covered sediments under gaining and losing water bodies. Journal of Geophysical Research: Biogeosciences, 112(4).Cardenas, M., Wilson, J., and Haggerty, R. (2008). Residence time of bedform-driven hyporheic exchange. Advances in Water Resources, 31(10).Cardenas, M., Wilson, J., and Zlotnik, V. (2004). Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8)Cardenas, M. B. and Wilson, J. L. (2007c). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8).Cengel, Y. A. and Cimbala, J. M. (2006). Mecánica de fluidos : fundamentos y aplicaciones. México, D.F. : McGraw-Hill Interamericana, 2006.Chen, C., Packman, A. I., and Gaillard, J.-F. (2008). Pore-scale analysis of permeability reduction resulting from colloid deposition. Geophysical Research Letters, 35(7).Chen, X., Dong, W., Ou, G., Wang, Z., and Liu, C. (2013). Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns. Hydrology and Earth System Sciences, 17(7):2569–2579.Clark, M. M. (2009). Transport modeling for environmental engineers and scientists. Environmental science and technology. New Jersey : Wiley, 2009.Crenshaw, C. L., Valett, H. M., and Webster, J. R. (2002). Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. Freshwater Biology, 47(10).Cushing, C. E., Minshall, G. W., and Newbold, J. D. (1993). Transport dynamics of fine particulate organic matter in two Idaho streams. Limnology and Oceanography, 38(6):1101–1115.del Jesus, M., Lara, J. L., and Losada, I. J. (2012). Three-dimensional interaction of waves and porous coastal structures. Coastal Engineering, 64.Delay, F., Ackerer, P., and Danquigny, C. (2005). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking. Vadose Zone Journal, 4(2).Discacciati, M., Miglio, E., and Quarteroni, A. (2002). Mathematical and numerical models for coupling surface and groundwater flows. Applied Numerical Mathematics, 43(1-2).Domenico, P. A. and Schwartz, F. W. (1998). Physical and chemical hydrogeology. Second edition. Wiley.Dong, W., Chen, X., Wang, Z., Ou, G., and Liu, C. (2012). Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. Journal of Hydrology, 450-451:9–16.Drummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., and Sharp, A. (2015). Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach. Environmental Science and Technology, 49(13).Drummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., Sharp, A., and Packman, A. (2014). Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. Water Research, 66.Drummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2017). Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research, 53(7).Drummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2018). Less Fine Particle Retention in a Restored Versus Unrestored Urban Stream: Balance Between Hyporheic Exchange, Resuspension, and Immobilization. Journal of Geophysical Research: Biogeosciences, 123(4).Elliott, A. H. and Brooks, N. H. (1997a). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research, 33(1).Elliott, A. H. and Brooks, N. H. (1997b). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33(1).Erturk, E., Corke, T. C., and Gökçöl, C. (2005). Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48(7).Fox, A., Boano, F., and Arnon, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research, 50(3).Fox, A., Packman, A., Boano, F., Phillips, C., and Arnon, S. (2018). Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions. Geophysical Research Letters, 45(9).Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, NJ.Gartner, J. D., Renshaw, C. E., Dade, W. B., and Magilligan, F. J. (2012). Time and depth scales of fine sediment delivery into gravel stream beds: Constraints from fallout radionuclides on fine sediment residence time and delivery. Geomorphology, 151-152.Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.Ghisalberti, M. (2009). Obstructed shear flows: similarities across systems and scales. Journal of Fluid Mechanics, 641:51.González-Pinzón, R., Ward, A., Hatch, C., Wlostowski, A., Singha, K., Gooseff, M., Haggerty, R., Harvey, J., Cirpka, O., and Brock, J. (2015). A field comparison of multiple techniques to quantify groundwater-surface-water interactions. Freshwater Science, 34(1):139–160.Gooseff, M. (2010). Defining Hyporheic Zones - Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geography Compass, 4(8).Gooseff, M., Anderson, J., Wondzell, S., LaNier, J., and Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes, 20(11).Gottselig, N., Bol, R., Nischwitz, V., Vereecken, H., Amelung, W., and Klumpp, E. (2014). Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 13(7).Harvey, J., Drummond, J., Martin, R., McPhillips, L., Packman, A., Jerolmack, D., Stonedahl, S., Aubeneau, A., Sawyer, A., Larsen, L., and Tobias, C. (2012). Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 117(4).Hester, E., Young, K., and Widdowson, M. (2013). Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions.Water Resources Research, 49(9).Hesthaven, J. and Warburton, T. (2008). Nodal Discontinuous Galerkin Methods, volume 54 of Texts in Applied Mathematics. Springer New York.Hesthaven, J. S. (1998). A stable penalty method for the compressible navier-stokes equations: III. Multidimensional domain decomposition schemes. SIAM Journal of Scientific Computing, 20(1):62–93.Higashino, M. and Stefan, H. (2008). Velocity Pulse Model for Turbulent Diffusion from Flowing Water into a Sediment Bed. Journal of Environmental Engineering, 134(7):550–560.Hope, D., Billett, M. F., and Cresser, M. S. (1994). A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution, 84(3):301–324.Hsu, T.-J., Sakakiyama, T., and Liu, P. L.-F. (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering, 46(1):25–50.Huang, C. J., Chang, H. H., and Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, 49(1-2):1–24.Huang, C. J., Shen, M. L., and Chang, H. H. (2008). Propagation of a solitary wave over rigid porous beds. Ocean Engineering, 35(11-12):1194–1202.Huettel, M., Ziebis, W., and Forster, S. (1996). Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography, 41(2):309–322.Hünken, A. and Mutz, M. (2007). Field studies on factors affecting very fine and ultra fine particulate organic matter deposition in low-gradient sand-bed streams. Hydrological Processes, 21(4).Jin, G., Zhang, Z., Tang, H., Xiaoquan, Y., Li, L., and Barry, D. A. (2019). Colloid transport and distribution in the hyporheic zone. Hydrological Processes, 33(6):932–944.Kalbus, E., Reinstorf, F., Schirmer, M., and others (2006). Measuring methods for groundwater, surface water and their interactions: a review. Hydrology and Earth System Sciences, 3(4):873–887.Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 97(2):414–443.Karwan, D. L. and Saiers, J. E. (2009). Influences of seasonal flow regime on the fate and transport of fine particles and a dissolved solute in a New England stream. Water Resources Research, 45(11)Karwan, D. L. and Saiers, J. E. (2012). Hyporheic exchange and streambed filtration of suspended particles. Water Resources Research, 48(1):1–13.Kuzmin, D. and Hamalainen, J. (2015). Finite Element Methods for Computational Fluid Dynamics A Practical Guide. SIAM, Philadelphia, 1 edition.Li, A., Aubeneau, A. F., Bolster, D., Tank, J. L., and Packman, A. I. (2017). Covariation in patterns of turbulence-driven hyporheic flow and denitrification enhances reach-scale nitrogen removal. Water Resources Research, 53(8).Lian, Y., Dallmann, J., Sonin, B., Roche, K., Liu, W., Packman, A., and Wagner, G. (2019). Large eddy simulation of turbulent flow over and through a rough permeable bed. Computers and Fluids, 180:128–138.Manes, C., Poggi, D., and Ridolfi, L. (2011). Turbulent boundary layers over permeable walls: scaling and near-wall structure. Journal of Fluid Mechanics, 687:141–170.Manes, C., Pokrajac, D., McEwan, I., and Nikora, V. (2009). Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study. Physics of Fluids, 21(12):1–12.Manes, C., Ridolfi, L., and Katul, G. (2012). A phenomenological model to describe turbulent friction in permeable-wall flows. Geophysical Research Letters, 39(14).Marion, A., Bellinello, M., Guymer, I., and Packman, A. (2002). Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research, 38(10).Marzadri, A., Tonina, D., Bellin, A., and Valli, A. (2016). Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources, 88Matott, L. S. (2017). OSTRICH: an Optimization Software Tool, Documentation and User’s Guide. Version 17.12.19. University at Buffalo Center for Computational Research.Mendoza-Lera, C., Frossard, A., Knie, M., Federlein, L. L., Gessner, M. O., and Mutz, M. (2017). Importance of advective mass transfer and sediment surface area for streambed microbial communities. Freshwater Biology, 62(1).Montgomery, D. R. (1999). Process domains and the River Continuum. Journal of the American Water Resources Association, 35(2):397–410.Mutz, M. (2000). Influences of woody debris on flow patterns and channel morphology in a low energy, sand-bed stream reach. International Review of Hydrobiology, 85(1).Mutz, M. and Rohde, A. (2003). Processes of Surface-Subsurface Water Exchange in a Low Energy Sand-Bed Stream. International Review of Hydrobiology, 88(34):290–303.Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., and Marmonier, P. (2011). Water-Sediment Exchanges Control Microbial Processes Associated with Leaf Litter Degradation in the Hyporheic Zone: A Microcosm Study. Microbial Ecology, 61(4).Newbold, J. D., Thomas, S. A., Minshall, G. W., Cushing, C. E., and Georgian, T. (2005). Deposition, benthic residence, and resuspension of fine organic particles in a mountain stream. Limnology and Oceanography, 50(5):1571–1580.Orghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(4):291–302.Packman, A. (1997). Exchange of Colloidal Kaolinite between Stream and Sand Bed in a Laboratory Flume. PhD thesis, California Institute of Technology.Packman, A. and Bencala, K. (2000). Modeling Surface–Subsurface Hydrological Interactions. In Streams and Ground Waters, pages 45–80. Elsevier.Packman, A., Brooks, N., and Morgan, J. (2000a). Kaolinite exchange between a stream and streambed: Laboratory experiments and validation of a colloid transport model. Water Resources Research, 36(8).Packman, A. and MacKay, J. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research, 39(4).Packman, A. I., Brooks, N. H., and Morgan, J. J. (2000b). A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resources Research, 36(8).Packman, A. I., Salehin, M., and Zaramella, M. (2004). Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7):647–656.Paiva, R. C., Collischonn, W., and Tucci, C. E. (2011). Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406(3-4):170–181.Partington, D., Therrien, R., Simmons, C. T., and Brunner, P. (2017). Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Reviews of Geophysics, 55(2).Peñaloza-Giraldo, J., Escobar-Vargas, J., and Donado, L. (2015). A Spectral Multidomain Penalty Method Solver for the Simulation of the Velocity Attenuation in Hyporheic Flows. Procedia Environmental Sciences, 25:206–213.Pokrajac, D. and Manes, C. (2009). Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transport in Porous Media, 78(3 SPEC. ISS.):367–383.Pokrajac, D., Manes, C., and McEwan, I. (2007). Peculiar mean velocity profiles within a porous bed of an open channel. Physics of Fluids, 19(9):098109.Preziosi-Ribero, A., Escobar-Vargas, J., Penaloza-Giraldo, J., and Donado, L. (2016). A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River. Goephysical Research Abstracts, 18(EGU2016-10673).Preziosi-Ribero, A., Packman, A. I., Escobar-Vargas, J. A., Phillips, C. B., Donado, L. D., and Arnon, S. (2020). Fine Sediment Deposition and Filtration Under Losing and Gaining Flow Conditions: A Particle Tracking Model Approach. Water Resources Research, 56(2).Prickett, T. a., Naymik, T. G., and Lonnquist, C. G. (1981). A Random-Walk"Solute Transport Model for Selected Groundwater Quality Evaluations. Technical report, Illinois Department of Energy and Natural Resources, Champaign.Ren, J. and Packman, A. (2002).Effects of Background Water Composition on Stream–Subsurface Exchange of Submicron Colloids. Journal of Environmental Engineering, 128(7):624–634.Roche, K., Blois, G., Best, J., Christensen, K., Aubeneau, A., and Packman, A. (2018). Turbulence Links Momentum and Solute Exchange in Coarse-Grained Streambeds. Water Resources Research.Roche, K. R., Aubeneau, A. F., Xie, M., Aquino, T., Bolster, D., and Packman, A. I. (2016). An Integrated Experimental and Modeling Approach to Predict Sediment Mixing from Benthic Burrowing Behavior. Environmental Science and Technology, 50(18):10047–10054. Ruban, A. I. and Gajjar, J. S. B. (2014). Fluid Dynamics: Part 1: Classical Fluid Dynamics. Oxford University Press, Oxford.Saavedra-Cifuentes, E. Y. (2017). Numerical Simulation of the Surface Water – Groundwater Interaction in High Mountain Riverbeds. PhD thesis, Universidad Nacional de Colombia.Salehin, M., Packman, A., and Paradis, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11).Simpson, S. C. and Meixner, T. (2012). Modeling effects of floods on streambed hydraulic conductivity and groundwater-surface water interactions. Water Resources Research, 48(2):1–14.Stonedahl, S., Harvey, J., Wörman, A., Salehin, M., and Packman, A. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12):n/a–n/a.Thomas, S. A., Newbold, J. D., Monaghan, M. T., Minshall, G. W., Georgian, T., and Cushing, C. E. (2001). The influence of particle size on seston deposition in streams. Limnology and Oceanography, 46(6):1415–1424.Tolson, B. A. and Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1).Tonina, D. and Buffington, J. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3):1063–1086.Tonina, D., de Barros, F. P., Marzadri, A., and Bellin, A. (2016). Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams? Advances in Water Resources, 96:120–126.Trauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J. (2013). Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resources Research, 49(9). Tropea, C., Yarin, A. L., and Foss, J. F., editors (2007). Springer Handbook of Experimental Fluid Mechanics. Springer Berlin Heidelberg, Berlin, Heidelberg.Valdés-Parada, F. J., Aguilar-Madera, C. G., Ochoa-Tapia, J. A., and Goyeau, B. (2013). Velocity and stress jump conditions between a porous medium and a fluid. Advances in Water Resources, 62:327–339.Vanoni, V. A. (1974). FACTORS DETERMINING BED FORMS OF ALLUVIAL STREAMS. ASCE J Hydraul Div, 100(HY3).Vaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin, 66(3):479–489.Voermans, J. J., Ghisalberti, M., and Ivey, G. N. (2017). The variation of flow and turbulence across the sediment-water interface. Journal of Fluid Mechanics, 824:413–437.Vogt, T., Hoehn, E., Schneider, P., Freund, A., Schirmer, M., and Cirpka, O. (2010). Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances in Water Resources, 33(11):1296–1308.Ward, A. S. and Packman, A. I. (2019). Advancing our predictive understanding of river corridor exchange. Wiley Interdisciplinary Reviews: Water, 6(1):e1327.Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620. Whitaker, S. (1996). The Forchheimer equation: A theoretical development. Transport in Porous Media, 25(1):27–61.White, B. L. and Nepf, H. M. (2007). Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593.Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M. (1998). Ground water and surface water: A single resource. USGS Publications.Woessner, W. W. and Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater, 38(3).Wohl, E. (2015). Legacy effects on sediments in river corridors. Earth-Science Reviews, 147.Wörman, A., Packman, A., Marklund, L., Harvey, J., and Stone, S. (2007). Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7).Xue, P., Schwab, D. J., Sawtell, R. W., Sayers, M. J., Shuchman, R. A., and Fahnenstiel, G. L. (2017). A particle-tracking technique for spatial and temporal interpolation of satellite images applied to Lake Superior chlorophyll measurements. Journal of Great Lakes Research, 43(3).EspecializadaMincienciasComisión Fulbright ColombiaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79941/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL210804_Tesis_Preziosi.pdf210804_Tesis_Preziosi.pdfTesis de Doctorado en ingeniería - Ingeniería Civilapplication/pdf16417518https://repositorio.unal.edu.co/bitstream/unal/79941/2/210804_Tesis_Preziosi.pdf1539db251a220d8f2d4f7c98ee47f4eeMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79941/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL210804_Tesis_Preziosi.pdf.jpg210804_Tesis_Preziosi.pdf.jpgGenerated Thumbnailimage/jpeg4322https://repositorio.unal.edu.co/bitstream/unal/79941/4/210804_Tesis_Preziosi.pdf.jpg4cd2edc9f5c4431c17100d55c9db7a3aMD54unal/79941oai:repositorio.unal.edu.co:unal/799412023-07-25 23:03:44.167Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==