On the two-parabolic subgroups of sl(2,c)

We consider homomorphisms $H_{t}$ from the free group $F$ of rank $2$ onto the subgroup of SL$(2,\mathbb{C})$ that is generated by two parabolic matrices. Up to conjugation, $H_{t}$ depends only on one complex parameter $t$. We study the possible relators, that is, the words $w\in F$ with $w\neq 1$...

Full description

Autores:
Pommerenke, Christian
Toro, Margarita
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39448
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39448
http://bdigital.unal.edu.co/29545/
Palabra clave:
Representation
Parabolic
Wirtinger presentation
Two-generated groups
Homomorphism
Longitude
15A30
57M05
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We consider homomorphisms $H_{t}$ from the free group $F$ of rank $2$ onto the subgroup of SL$(2,\mathbb{C})$ that is generated by two parabolic matrices. Up to conjugation, $H_{t}$ depends only on one complex parameter $t$. We study the possible relators, that is, the words $w\in F$ with $w\neq 1$ such that $H_{t}(w)=I$ for some $t\in\mathbb{C}$. We find several families of relators. Of particular interest here are relators connected with $2$-bridge knots, which we consider in a purely algebraic setting. We describe an algorithm to determine whether a given word is a possible relator.