Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia

ilustraciones, diagramas, mapas

Autores:
Espinosa Ordoñez, Paula Andrea
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85049
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85049
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Contaminantes del agua
Circulación atmosférica
Efluentes
Atmospheric circulation
Water pollutants
Effluent
Circulación
Corrientes
Olas
Marea
Viento
Trazadores pasivos
Current circulation
Wave-driven
Tide-driven
Wind-driven
Discharge
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_71397c3abf06edce014290242887855a
oai_identifier_str oai:repositorio.unal.edu.co:unal/85049
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
dc.title.translated.eng.fl_str_mv Currents and circulation patterns in a Caribbean Island and their influence on effluent discharge. Case study: San Andrés, Colombia
title Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
spellingShingle Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Contaminantes del agua
Circulación atmosférica
Efluentes
Atmospheric circulation
Water pollutants
Effluent
Circulación
Corrientes
Olas
Marea
Viento
Trazadores pasivos
Current circulation
Wave-driven
Tide-driven
Wind-driven
Discharge
title_short Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
title_full Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
title_fullStr Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
title_full_unstemmed Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
title_sort Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia
dc.creator.fl_str_mv Espinosa Ordoñez, Paula Andrea
dc.contributor.advisor.none.fl_str_mv Osorio Arias, Andres Fernando
Osorio Cano, Juan David
dc.contributor.author.none.fl_str_mv Espinosa Ordoñez, Paula Andrea
dc.contributor.researchgroup.spa.fl_str_mv Oceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacional
dc.contributor.orcid.spa.fl_str_mv Osorio Cano, Juan David [0000-0002-5324-7790]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Contaminantes del agua
Circulación atmosférica
Efluentes
Atmospheric circulation
Water pollutants
Effluent
Circulación
Corrientes
Olas
Marea
Viento
Trazadores pasivos
Current circulation
Wave-driven
Tide-driven
Wind-driven
Discharge
dc.subject.armarc.spa.fl_str_mv Contaminantes del agua
dc.subject.lemb.spa.fl_str_mv Circulación atmosférica
Efluentes
dc.subject.lemb.eng.fl_str_mv Atmospheric circulation
Water pollutants
Effluent
dc.subject.proposal.spa.fl_str_mv Circulación
Corrientes
Olas
Marea
Viento
Trazadores pasivos
dc.subject.proposal.eng.fl_str_mv Current circulation
Wave-driven
Tide-driven
Wind-driven
Discharge
description ilustraciones, diagramas, mapas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-06T20:53:28Z
dc.date.available.none.fl_str_mv 2023-12-06T20:53:28Z
dc.date.issued.none.fl_str_mv 2023-08-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85049
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85049
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Adcroft, A., Hallberg, R., Dunne, J. P., Samuels, B. L., Galt, J. A., Barker, C. H., & Payton, D. (2010). Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters, 37(18). https://doi.org/10.1029/2010GL044689
Akter, A., & Tanim, A. H. (2021). Salinity Distribution in River Network of a Partially Mixed Estuary. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020055. https://doi.org/10.1061/(asce)ww.1943-5460.0000621
Albarakati, A. M. A., Ahmad, F., Albarakati, A. M. A., & Ahmad, F. (2012). Water column conditions in a coastal lagoon near Jeddah, Red Sea Red Sea Lagoon Water column Open access under CC BY-NC-ND license. 676. OCEANOLOGIA, 54(4), 675-685. https://doi.org/10.5697/oc.54-4.675
Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191-26201. https://doi.org/10.1029/2000JC000300
Aucan, J., Desclaux, T., Le Gendre, R., Liao, V., & Andréfouët, S. (2021). Tide and wave driven flow across the rim reef of the atoll of Raroia (Tuamotu, French Polynesia). Marine Pollution Bulletin, 171, 112718. https://doi.org/10.1016/j.marpolbul.2021.112718
Azouri, A., Roeber, V., & Luther, D. S. (2018). THE RESPONSE OF HARBOR ENVIRONMENTS PROTECTED BY IRREGULAR FRINGING REEF SYSTEMS TO STRONG GRAVITY WAVE FORCING - A CASE STUDY. Coastal Engineering Proceedings, 1(36), currents.44. https://doi.org/10.9753/icce.v36.currents.44
Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Engineering, 7(3), 191-203. https://doi.org/https://doi.org/10.1016/0378-3839(83)90017-0
Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622
Brodie, K. L., & Cohn, N. T. (2021). Coastal Geology: Coastal Landforms and Processes. En D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (pp. 894-905). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.12483-2
Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., & Wright, J. (1999). Chapter 2 - Tides. En The Open University (Ed.), Waves, Tides and Shallow-Water Processes (pp. 50-86). Butterworth-Heinemann. https://doi.org/10.1016/B978-008036372-1/50002-7
Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568). NOAA National Centers for Environmental Information, 5.5.
Camp, E. F., Edmondson, J., Doheny, A., Rumney, J., Grima, A. J., Huete, A., & Suggett, D. J. (2019). Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Marine Ecology Progress Series, 625, 1-14. https://www.int-res.com/abstracts/meps/v625/p1-14/
Chevalier, C., Devenon, J. L., Pagano, M., Rougier, G., Blanchot, J., & Arfi, R. (2017). The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity. Estuarine, Coastal and Shelf Science, 196, 182-197. https://doi.org/https://doi.org/10.1016/j.ecss.2017.06.027
Chevalier, C., Devenon, J. L., Rougier, G., & Blanchot, J. (2015). Hydrodynamics of the Toliara Reef Lagoon (Madagascar): Example of a Lagoon Influenced by Waves and Tides. Coastal Research, 31(6), 1403-1416. https://doi.org/10.2112/JCOASTRES-D-13-00077.1
Chow, A. C., Verbruggen, W., Morelissen, R., Al-Osairi, Y., Ponnumani, P., Lababidi, H. M. S., Al-Anzi, B., & Adams, E. E. (2019). Numerical prediction of background buildup of salinity due to desalination brine discharges into the northern Arabian Gulf. Water (Switzerland), 11(11), 1-14. https://doi.org/10.3390/w11112284
Copernicus. (2018). “ERA5 Hourly Data on Single Levels from 1979 to Present.” Retrieved (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). https://doi.org/10.24381/cds.adbb2d47
Coralina. (2008). Plan de Acción Institucional 2016-2019 (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004
Coronado, C., Candela, J., Iglesias-Prieto, R., Sheinbaum, J., López, M., & Ocampo-Torres, F. J. (2007). On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26(1), 149-163. https://doi.org/10.1007/s00338-006-0175-9
DANE. (2019). Encuesta de hábitat y usos socioeconómicos, 2019 archipiélago de San Andrés, Providencia y Santa Catalina.
DANE. (2020). Boletín Técnico Encuesta de Hábitat y Usos Socioeconómicos 2019.
Deltares. (2014). Delft3D-FLOW User Manual Hydro-Morphodynamics. 710.
Deltares, D. (2019). Conceptual Description - Wave current interaction. En Delft3D-Flow User Manual (p. 230).
Diaz, J. M., Barrios, L. M., Cendales, M. H., Garzón, J., Geister, J., López, M., Ospina, G. H., Parra, F., Pinzón, J., Vargas, B., Zapata, F., & Zea, S. (2000). Áreas Coralinas de Colombia. En J. M. Diaz (Ed.), Invemar: Vol. Sereie de (Número November).
Egon, A. (2009). Hydrodynamics of Lagoon Fringed by a Coral Reef.
Escobar, C. A., Velásquez, L., & Posada, F. (2015). Marine Currents in the Gulf of Urabá, Colombian Caribbean Sea. Journal of Coastal Research, 31(6), 1363-1374. https://doi.org/10.2112/JCOASTRES-D-14-00186.1
Espinosa-Ordoñez, P. A. (2020). Estudio de la disipación del oleaje en un arrecife de coral: Caso de estudio Isla de San Andrés, Colombia [Tesis de pregrado]. Universidad Nacional de Colombia.
Ezer, T., Heyman, W. D., Houser, C., & Kjerfve, B. (2012). Extreme flows and unusual water levels near a Caribbean coral reef: Was this a case of a «perfect storm»? Ocean Dynamics, 62(7), 1043-1057. https://doi.org/10.1007/s10236-012-0545-5
Fallatah, M. M., Kavil, Y. N., Shanas, P. R., Al-Farawati, R., Shaban, Y. A., Orif, M. I., Schmidt, M., Ghandourah, M. A., & Albarakati, A. (2021). Environmental impact assessment of desalination plants through observations and modeling over Central Red Sea-Yanbu and Rabig. Arabian Journal of Geosciences, 14(5). https://doi.org/10.1007/s12517-021-06729-9
Filali, M. B., & Bessenasse, M. (2018a). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213
Filali, M. B., & Bessenasse, M. (2018b). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213
Fourniotis, N. T., Leftheriotis, G. A., & Horsch, G. M. (2021). Towards enhancing tidally-induced water renewal in coastal lagoons. Environmental Fluid Mechanics, 21(2), 343-360. https://doi.org/10.1007/S10652-020-09776-0/METRICS
Fussalba, S., & Aguas, A. (2021). Análisis De Las Características Fisicoquímicas Y Microbiológicas De Las Aguas Costeras De San Andrés Isla, Asociados A La Operación Del Emisario Submarino Durante Los Años 2008, 2017 Y 2018.
García-Rentería, F.-F., Nieto, G. A. C., & Cortez, G. H. (2023). Evaluation of Wastewater Discharge Reduction Scenarios in the Buenaventura Bay. Water, 15(6). https://doi.org/10.3390/w15061027
Geister, J., & Díaz, J. (2007a). Ambientes arrecifales y geología de un archipiélago oceánico: San Andrés, Providencia y Santa Catalina. En INGEOMINAS. https://doi.org/http://dx.doi.org/10.1016/j.compositesb.2013.05.033
Geister, J., & Díaz, J. M. (2007b). Reef Environments and Geology of an Oceanic Archipelago: San Andrés, Old Providence and Sta. Catalina (Caribbean Sea, Colombia). 104.
Gómez Giraldo, A., Osorio, A., Toro, F., Osorio, J., Álvarez, O., & Arrieta, A. (2009). Patrón de circulación en Bahía Barbacoas y su influencia sobre el transporte de sedimentos hacia las islas del Rosario. Avances en Recursos Hidráulicos, 20, 21-39.
Gonzáles, O. C., & Hurtado, G. (2012). Caracterización climática del archipiélago de San Andrés y Providencia. pp (48-52) en CORALINA-INVEMAR, 2012. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de. En Serie de publicaciones especiales, Invema, No. 28, p. 180 (28.a ed., Vol. 28). Serie de Publicaciones Especiales INVEMAR. http://www.invemar.org.co/redcostera1/invemar/docs/10447AtlasSAISeaflower.pdf
Grimaldi, C. M., Lowe, R. J., Benthuysen, J. A., Green, R. H., Reyns, J., Kernkamp, H., & Gilmour, J. (2022). Wave and Tidally Driven Flow Dynamics Within a Coral Reef Atoll off Northwestern Australia. Journal of Geophysical Research: Oceans, 127(3). https://doi.org/10.1029/2021JC017583
IDEAM. (2015). Estudio Nacional del Agua 2014. En Estudio Nacional del Agua 2014.
Invemar, & Coralina. (2020). Unidades Bióticas | Atlas de las Áreas Coralinas de Colombia. MiniAmbiente. https://areas-coralinas-de-colombia-invemar.hub.arcgis.com/pages/unidades-bioticas
Jonsson, I. G. (1966). WAVE BOUNDARY LAYERS AND FRICTION FACTORS. Coastal Engineering Proceedings, 10, 127-148.
Karimpour, A., & Chen, Q. (2017). Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox. Computers & Geosciences, 106, 181-189. https://doi.org/10.1016/J.CAGEO.2017.06.010
Lee, W., & Kaihatu, J. M. (2018). Effects of desalination on hydrodynamic process in Persian Gulf. http://marinecopernicus.eu/
Lentz, S. J., Churchill, J. H., Davis, K. A., Farrar, J. T., Pineda, J., & Starczak, V. (2016). The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea. Journal of Geophysical Research: Oceans, 121(2), 1360-1376. https://doi.org/10.1002/2015JC011141
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8), 883-915. https://doi.org/https://doi.org/10.1016/j.coastaleng.2004.07.014
Lin, N., Marsooli, R., & Colle, B. A. (2019). Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States. Climatic Change, 154(1), 143-158. https://doi.org/10.1007/s10584-019-02431-8
Lopera, L., Cardona, Y., & Zapata-Ramírez, P. A. (2020). Circulation in the Seaflower Reserve and Its Potential Impact on Biological Connectivity. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00385
Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009a). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114(6), 1-18. https://doi.org/10.1029/2008JC005081
Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009b). Wave-driven circulation of a coastal reef-lagoon system. Journal of Physical Oceanography, 39(4), 873-893. https://doi.org/10.1175/2008JPO3958.1
Lykkebo, K., Heck, N., Reguero, B. G., Potts, D., Hovagimian, A., & Paytan, A. (2019). Biological and Physical Effects of Brine Discharge from the Carlsbad Desalination Plant and Implications for Future Desalination Plant Constructions. Water, 11, 21. https://doi.org/10.3390/w11020208
Madsen, O. S. (1995). Spectral wave-current bottom boundary layer flows. Proceedings of the Coastal Engineering Conference, 1, 384-398.
Madsen, O. S. ., Poon, Y. K., & Graber, H. C. (1988). Spectral wave attenuation by bottom friction: theory. Coastal Engineering Proceedings, 21, 492-504. https://doi.org/10.1061/9780872626874.035
Maggioni, F., Pujo-Pay, M., Aucan, J., Cerrano, C., Calcinai, B., Payri, C., Benzoni, F., Letourneur, Y., & Rodolfo-Metalpa, R. (2021). The Bouraké semi-enclosed lagoon (New Caledonia)- A natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions. Biogeosciences, 18(18), 5117-5140. https://doi.org/10.5194/bg-18-5117-2021
Mariño-Tapia, I., Silva-Casarín, R., Enriquez-Ortiz, C., Mendoza-Baldwin, E., Mancera, E. E., & Ruiz-Rentería, F. (2010). Wave transformation and wave-driven circulation on natural reefs under extreme hurricane conditions. COASTAL ENGINEERING. https://doi.org/10.9753/icce.v32.waves.28
Martyr-Koller, R. C., Kernkamp, H. W. J., van Dam, A., van der Wegen, M., Lucas, L. V., Knowles, N., Jaffe, B., & Fregoso, T. A. (2017). Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuarine, Coastal and Shelf Science, 192, 86-107. https://doi.org/10.1016/j.ecss.2017.04.024
Massel, S. R. (1989). Currents in coastal zone. En Elsevier Oceanography Series (Ed.), Hydrodynamics Of Coastal Zones (Vol. 48, pp. 253-275).
Monismith, S. G., Herdman, L. M. M., Ahmerkamp, S., & Hench, J. L. (2013). Wave Transformation and Wave-Driven Flow across a Steep Coral Reef. Journal of Physical Oceanography, 43(7), 1356-1379. https://doi.org/10.1175/JPO-D-12-0164.1
Monismith, S. G., Rogers, J. S., Koweek, D., & Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10), 4063-4071. https://doi.org/10.1002/2015GL063804
Montoya, R. D., Menendez, M., & Osorio, A. F. (2018). Exploring changes in Caribbean hurricane-induced wave heights. Ocean Engineering, 163, 126-135. https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.05.032
Moustapha, S., Chevalier, C., Sow, B., Pagano, M., & Devenon, J.-L. (2021). Coupled effects of tide and swell on water renewal in a meso-tidal channel lagoon: Case of the Toliara Lagoon (Madagascar). Estuarine, Coastal and Shelf Science, 259, 107463. https://doi.org/https://doi.org/10.1016/j.ecss.2021.107463
Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, 4, 299-308.
Niepelt, A., Bleninger, T., & Jirka, G. (2008). Coupling of Hydrodynamic Models for Brine Discharge Analysis. https://www.researchgate.net/publication/228369390
Nortek. (2017). The Comprehensive Manual: Part 2: Waves. https://support.nortekgroup.com/hc/en-us/articles/360029839331-The-Comprehensive-Manual-ADCP
Olarte, P. M. (2019). Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés. Universidad Nacional de Colombia.
Ortiz, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 313(Figure 2), 557-568. https://doi.org/10.2112/jcoastres-d-14-00072.1
Ortiz Royero, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 31(3), 557-568. https://doi.org/10.2112/JCOASTRES-D-14-00072.1
Osorio, A. F., Montoya, R. D., Ortiz, J. C., & Peláez, D. (2016). Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Applied Ocean Research, 56, 119-131. https://doi.org/10.1016/j.apor.2016.01.004
Osorio, A. F., Santiago Peláez-Zapata, D., Guerrero-Gallego, J., Álvarez-Silva, O., David Osorio-Cano, J., Toro, F. M., & Giraldo, A. (2014). Hidrodinámica aplicada a la gestión y la conservación de ecosistemas marinos y costeros: Isla Gorgona, Océano Pacífico Colombiano. En Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 62).
Osorio-Cano, J. D., Alcérreca-Huerta, J. C., Osorio, A. F., & Oumeraci, H. (2018). CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs, 37(4), 1093-1108. https://doi.org/10.1007/s00338-018-1736-4
Pérez-Santos, I., Garcés-Vargas, J., Schneider, W., Ross, L., Parra, S., & Valle-Levinson, A. (2014). Double-diffusive layering and mixing in Patagonian fjords. https://doi.org/10.1016/j.pocean.2014.03.012
Piccolo, M. C. (2021). Chapter 12 - Effects of rainfall extreme events on coastal marine ecosystems. En J. Rodrigo-Comino (Ed.), Precipitation (pp. 261-285). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822699-5.00024-0
Piecuch, C. G., & Ponte, R. M. (2012). Buoyancy-driven interannual sea level changes in the southeast tropical Pacific. Geophysical Research Letters, 39(5). https://doi.org/10.1029/2012GL051130
Rey, W., Ruiz-Salcines, P., Salles, P., Urbano-Latorre, C. P., Escobar-Olaya, G., Osorio, A. F., Ramírez, J. P., Cabarcas-Mier, A., Jigena-Antelo, B., & Appendini, C. M. (2021). Hurricane Flood Hazard Assessment for the Archipelago of San Andres, Providencia and Santa Catalina, Colombia. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.766258
Ricaurte, C., Morales, D. F., Coca, O., Bastidad, M. L., & Romero, D. A. (2015). Erosión costera en la isla de san andrés informe técnico final. Invemar, 72.
Rogers, J. S., Monismith, S. G., Koweek, D. A., & Dunbar, R. B. (2016). Wave dynamics of a Pacific Atoll with high frictional effects. Journal of Geophysical Research: Oceans, 121, 350-367. https://doi.org/10.1002/jgrc.20224
Soliman, M. N., Guen, F. Z., Ahmed, S. A., Saleem, H., Khalil, M. J., & Zaidi, S. J. (2021). Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 147, 589-608. https://doi.org/10.1016/j.psep.2020.12.038
Spall, M. A. (2002). Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea. Journal of Geophysical Research: Oceans, 107(C1), 6-1. https://doi.org/10.1029/2001JC000966
Stevens, C., Ward, B., Law, C., & Walkington, M. (2010). Surface layer mixing during the SAGE ocean fertilization experiment. https://doi.org/10.1016/j.dsr2.2010.10.017
Sun, Z., Xu, D., Liu, X., Zhang, H., & Cai, Z. (2021). Observation and simulation of wind waves near a typical reef lagoon in South China Sea. Journal of Hydrodynamics, 33(1), 24-32. https://doi.org/10.1007/s42241-021-0010-3
Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., & Symonds, G. (2012). A numerical study of the dynamics of the wave-driven circulation within a fringing reef system. Ocean Dynamics, 62(4), 585-602. https://doi.org/10.1007/s10236-011-0514-4
Telesford, J. N. (2021). Critiquing «islandness» as immunity to COVID-19: A case exploration of the Grenada, Carriacou and Petite Martinique archipelago in the Caribbean region. Island Studies Journal, 16(1), 308-324. https://doi.org/10.24043/isj.155
Thomas, Y. F., Nicolae-Lerma, A., & Posada, B. (2012). Atlas climatológico del Mar Caribe Colombiano. En Serie de Publicaciones especiales (Número 25).
Tippins, D., & Tomczak, M. (2003). Meridional Turner angles and density compensation in the upper ocean. Ocean Dynamics, 53(4), 332-342. https://doi.org/10.1007/s10236-003-0056-5
Troost, T. A., de Kluijver, A., & Los, F. J. (2014). Evaluation of eutrophication variables and thresholds in the Dutch North Sea in a historical context — A model analysis. Journal of Marine Systems, 134, 45-56. https://doi.org/https://doi.org/10.1016/j.jmarsys.2014.01.015
Valle-Levinson, A. (2022a). Introduction and Classification. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 5-7). Cambridge University Press. https://doi.org/10.1017/9781108974240.004
Valle-Levinson, A. (2022b). Tides in Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 27-50). Cambridge University Press. https://doi.org/10.1017/9781108974240.004
Valle-Levinson, A. (2022c). Wind-Driven Flows in Homogeneous, Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 84-97). Cambridge University Press. https://doi.org/10.1017/9781108974240.004
van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., & Katsman, C. A. (2021). Double-diffusive mixing makes a small contribution to the global ocean circulation. Communications Earth & Environment, 2(1), 46. https://doi.org/10.1038/s43247-021-00113-x
Velásquez, C. (2020). The 2016 Water Crisis in San Andres Island: An Opportunity for Change? Ciencia Política, 15(29), 73-109. https://doi.org/10.15446/cp.v15n29.86373
Walstra, D. J. R., Roelvink, J. A., & Groeneweg, J. (2000). Calculation of Wave-Driven Currents in a 3D Mean Flow Model. Coastal Engineering, 1050-1063. https://doi.org/10.1061/40549(276)81
Winter, G., Van Dongeren, A., De Schipper, M., & Van Thiel De Vries, J. (2012). A FIELD AND NUMERICAL STUDY INTO RIP CURRENTS IN WIND-SEA DOMINATED ENVIRONMENTS. Coastal Engineering Proceedings, 1(33), currents.36. https://doi.org/10.9753/icce.v33.currents.36
Yamano, H., Kayanne, H., Yonekura, N., Nakamura, H., & Kudo, K. (1998). Water circulation in a fringing reef located in a monsoon area: Kabira Reef, Ishigaki Island, Southwest Japan. Coral Reefs, 17(1), 89-99. https://doi.org/10.1007/s003380050101
Yao, Y., Huang, Z., He, W., & Monismith, S. G. (2018). Wave-induced setup and wave-driven current over Quasi-2DH reef-lagoon-channel systems. Coastal Engineering, 138, 113-125. https://doi.org/https://doi.org/10.1016/j.coastaleng.2018.04.009
Yao, Y., Liu, Y., Chen, L., Deng, Z., & Jiang, C. (2020). Study on the wave-driven current around the surf zone over fringing reefs. https://doi.org/10.1016/j.oceaneng.2020.106968
You, Y. (2002). A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure. En Deep-Sea Research I (Vol. 49).
Zea, S., Geister, J., Garzon-Ferreira, J., & Diaz, J. M. (1998). Biotic changes in the reef complex of San Andres Island (Southeastern Caribbean Sea, Columbia) occuring over three decades. Atoll Research Bulletin, 456(456), 1-30. https://doi.org/10.5479/si.00775630.456.1
Zheng, J., Yao, Y., Chen, S., Chen, S., & Zhang, Q. (2020). Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system. https://doi.org/10.1016/j.coastaleng.2020.103772
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 105 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv San Andres (Isla), Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85049/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85049/2/1017233648.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85049/3/1017233648.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a60d1938cea4f5d6e71dd576384f0002
dce456b065c36f343c339bf45d1d31ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089526218326016
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Arias, Andres Fernando81cc941243fa5b804b2287c6f5d32cf2Osorio Cano, Juan David5b24aa226d5883f38fcbd2fc56739f96Espinosa Ordoñez, Paula Andrea4873121d277721e945d68e128901fa9dOceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad NacionalOsorio Cano, Juan David [0000-0002-5324-7790]2023-12-06T20:53:28Z2023-12-06T20:53:28Z2023-08-01https://repositorio.unal.edu.co/handle/unal/85049Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasLos patrones de circulación de corrientes en aguas poco profundas pueden controlar procesos claves como el transporte y difusión de efluentes. En este estudio, se investigaron los patrones de circulación de corrientes y la influencia sobre las descargas de efluentes en la isla de San Andrés ubicada al noroeste del mar Caribe. Para caracterizar estos patrones se empleó el modelo numérico acoplado de olas y corrientes Delft Wave-Flow, calibrado y validado con datos de campo de corrientes, olas y marea. Los resultados revelaron que la marea ejerce una mayor influencia en la laguna arrecifal con velocidades entre 0.01 ms-1 y 0.04 ms-1. Las corrientes influenciadas por las olas alcanzaron velocidades entre 0.3 ms-1 - 0.75 ms-1 sobre la cresta de la barrera arrecifal. El viento ejerce influencia sobre las corrientes generando magnitudes de velocidad que oscilan entre 0.2 ms-1 y 0.8 ms-1 en la cresta de los arrecifes y en aguas poco profundas del oeste de la isla. En el análisis de estacionalidad de las corrientes, se encontró que durante el trimestre de diciembre, enero y febrero las magnitudes de las corrientes son máximas y pueden variar entre 0.6 ms-1 a 0.8 ms-1, mientras que para el trimestre de septiembre, octubre y noviembre las corrientes son mínimas con valores entre 0.15 ms-1 a 0.35 ms-1. Los escenarios de eventos sintéticos extremos muestran que las corrientes pueden alcanzar velocidades entre 0.75 ms-1 y 1.2 ms-1 cuando se propagan olas desde el norte con una altura de ola significante de 3.5 m. Finalmente se evaluó el transporte de las descargas de efluentes en el costado oeste y al norte de la isla, bajo condiciones estacionales y extremas. En condiciones extremas se encontró que el 10% de la concentración de la descarga en el norte cubre áreas de la isla con presencia de ecosistemas marinos sensibles tales como, corales, pastos y manglares. El presente estudio permitiría contribuir a la formulación de lineamientos técnicos y toma de decisiones informadas en relación con la protección y conservación de los ecosistemas costeros, así como la gestión sostenible de los recursos marinos. (Texto tomado de la fuente)Current circulation patterns in shallow waters can control key processes such as effluent transport and diffusion. This study investigated current circulation patterns and their influence on effluent discharge on San Andres Island in the northwestern Caribbean Sea. The Delft Wave-Flow coupled numerical wave-current model, calibrated, and validated with current, wave, and tidal field data, was used to characterize these patterns. The results revealed that the tide exerts an influence on the reef lagoon with velocities between 0.01 ms-1 and 0.04 ms-1. Wave-influenced currents reached velocities between 0.3 ms-1to 0.75 ms-1at the coral reef crest. Wind influences the currents, generating velocity magnitudes ranging from 0.2 ms-1 to 0.8 ms-1. In the analysis of the seasonality of currents, we found that during the December, January, and February quarters, the magnitudes of currents are maximum and can vary between 0.6 ms-1to 0.8 ms-1, while for the September, October, and November quarters, the currents are minimal, with values between 0.15 ms-1 to 0.35 ms-1. The extreme synthetic event scenarios show that currents can reach velocities of 0.75 ms-1 and 1.2 ms-1 whit waves from the north with a significant wave height of 3.5 m. Finally, we evaluated the transport of effluent discharges on the west and north sides of the island under seasonal and extreme conditions. Under extreme conditions, 10% of the discharge concentration in the north covers areas of the island with marine ecosystems such as corals, grasses, and mangroves. This study contributes to the formulation of technical guidelines and informed decision-making concerning the protection and conservation of coastal ecosystems and the sustainable management of marine resources.Universidad Nacional de ColombiaFundación Universidad del Norte de BarranquillaMaestríaMagíster en Ingeniería - Recursos Hidráulicos- Mediciones de campo - Análsis de datos de campo - Implementación de modelos hidrodinámicosIngeniería de puertos y costasÁrea Curricular de Medio Ambiente105 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaContaminantes del aguaCirculación atmosféricaEfluentesAtmospheric circulationWater pollutantsEffluentCirculaciónCorrientesOlasMareaVientoTrazadores pasivosCurrent circulationWave-drivenTide-drivenWind-drivenDischargePatrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, ColombiaCurrents and circulation patterns in a Caribbean Island and their influence on effluent discharge. Case study: San Andrés, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMSan Andres (Isla), ColombiaRedColLaReferenciaAdcroft, A., Hallberg, R., Dunne, J. P., Samuels, B. L., Galt, J. A., Barker, C. H., & Payton, D. (2010). Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters, 37(18). https://doi.org/10.1029/2010GL044689Akter, A., & Tanim, A. H. (2021). Salinity Distribution in River Network of a Partially Mixed Estuary. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020055. https://doi.org/10.1061/(asce)ww.1943-5460.0000621Albarakati, A. M. A., Ahmad, F., Albarakati, A. M. A., & Ahmad, F. (2012). Water column conditions in a coastal lagoon near Jeddah, Red Sea Red Sea Lagoon Water column Open access under CC BY-NC-ND license. 676. OCEANOLOGIA, 54(4), 675-685. https://doi.org/10.5697/oc.54-4.675Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191-26201. https://doi.org/10.1029/2000JC000300Aucan, J., Desclaux, T., Le Gendre, R., Liao, V., & Andréfouët, S. (2021). Tide and wave driven flow across the rim reef of the atoll of Raroia (Tuamotu, French Polynesia). Marine Pollution Bulletin, 171, 112718. https://doi.org/10.1016/j.marpolbul.2021.112718Azouri, A., Roeber, V., & Luther, D. S. (2018). THE RESPONSE OF HARBOR ENVIRONMENTS PROTECTED BY IRREGULAR FRINGING REEF SYSTEMS TO STRONG GRAVITY WAVE FORCING - A CASE STUDY. Coastal Engineering Proceedings, 1(36), currents.44. https://doi.org/10.9753/icce.v36.currents.44Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Engineering, 7(3), 191-203. https://doi.org/https://doi.org/10.1016/0378-3839(83)90017-0Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622Brodie, K. L., & Cohn, N. T. (2021). Coastal Geology: Coastal Landforms and Processes. En D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (pp. 894-905). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.12483-2Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., & Wright, J. (1999). Chapter 2 - Tides. En The Open University (Ed.), Waves, Tides and Shallow-Water Processes (pp. 50-86). Butterworth-Heinemann. https://doi.org/10.1016/B978-008036372-1/50002-7Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568). NOAA National Centers for Environmental Information, 5.5.Camp, E. F., Edmondson, J., Doheny, A., Rumney, J., Grima, A. J., Huete, A., & Suggett, D. J. (2019). Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Marine Ecology Progress Series, 625, 1-14. https://www.int-res.com/abstracts/meps/v625/p1-14/Chevalier, C., Devenon, J. L., Pagano, M., Rougier, G., Blanchot, J., & Arfi, R. (2017). The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity. Estuarine, Coastal and Shelf Science, 196, 182-197. https://doi.org/https://doi.org/10.1016/j.ecss.2017.06.027Chevalier, C., Devenon, J. L., Rougier, G., & Blanchot, J. (2015). Hydrodynamics of the Toliara Reef Lagoon (Madagascar): Example of a Lagoon Influenced by Waves and Tides. Coastal Research, 31(6), 1403-1416. https://doi.org/10.2112/JCOASTRES-D-13-00077.1Chow, A. C., Verbruggen, W., Morelissen, R., Al-Osairi, Y., Ponnumani, P., Lababidi, H. M. S., Al-Anzi, B., & Adams, E. E. (2019). Numerical prediction of background buildup of salinity due to desalination brine discharges into the northern Arabian Gulf. Water (Switzerland), 11(11), 1-14. https://doi.org/10.3390/w11112284Copernicus. (2018). “ERA5 Hourly Data on Single Levels from 1979 to Present.” Retrieved (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). https://doi.org/10.24381/cds.adbb2d47Coralina. (2008). Plan de Acción Institucional 2016-2019 (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004Coronado, C., Candela, J., Iglesias-Prieto, R., Sheinbaum, J., López, M., & Ocampo-Torres, F. J. (2007). On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26(1), 149-163. https://doi.org/10.1007/s00338-006-0175-9DANE. (2019). Encuesta de hábitat y usos socioeconómicos, 2019 archipiélago de San Andrés, Providencia y Santa Catalina.DANE. (2020). Boletín Técnico Encuesta de Hábitat y Usos Socioeconómicos 2019.Deltares. (2014). Delft3D-FLOW User Manual Hydro-Morphodynamics. 710.Deltares, D. (2019). Conceptual Description - Wave current interaction. En Delft3D-Flow User Manual (p. 230).Diaz, J. M., Barrios, L. M., Cendales, M. H., Garzón, J., Geister, J., López, M., Ospina, G. H., Parra, F., Pinzón, J., Vargas, B., Zapata, F., & Zea, S. (2000). Áreas Coralinas de Colombia. En J. M. Diaz (Ed.), Invemar: Vol. Sereie de (Número November).Egon, A. (2009). Hydrodynamics of Lagoon Fringed by a Coral Reef.Escobar, C. A., Velásquez, L., & Posada, F. (2015). Marine Currents in the Gulf of Urabá, Colombian Caribbean Sea. Journal of Coastal Research, 31(6), 1363-1374. https://doi.org/10.2112/JCOASTRES-D-14-00186.1Espinosa-Ordoñez, P. A. (2020). Estudio de la disipación del oleaje en un arrecife de coral: Caso de estudio Isla de San Andrés, Colombia [Tesis de pregrado]. Universidad Nacional de Colombia.Ezer, T., Heyman, W. D., Houser, C., & Kjerfve, B. (2012). Extreme flows and unusual water levels near a Caribbean coral reef: Was this a case of a «perfect storm»? Ocean Dynamics, 62(7), 1043-1057. https://doi.org/10.1007/s10236-012-0545-5Fallatah, M. M., Kavil, Y. N., Shanas, P. R., Al-Farawati, R., Shaban, Y. A., Orif, M. I., Schmidt, M., Ghandourah, M. A., & Albarakati, A. (2021). Environmental impact assessment of desalination plants through observations and modeling over Central Red Sea-Yanbu and Rabig. Arabian Journal of Geosciences, 14(5). https://doi.org/10.1007/s12517-021-06729-9Filali, M. B., & Bessenasse, M. (2018a). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213Filali, M. B., & Bessenasse, M. (2018b). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213Fourniotis, N. T., Leftheriotis, G. A., & Horsch, G. M. (2021). Towards enhancing tidally-induced water renewal in coastal lagoons. Environmental Fluid Mechanics, 21(2), 343-360. https://doi.org/10.1007/S10652-020-09776-0/METRICSFussalba, S., & Aguas, A. (2021). Análisis De Las Características Fisicoquímicas Y Microbiológicas De Las Aguas Costeras De San Andrés Isla, Asociados A La Operación Del Emisario Submarino Durante Los Años 2008, 2017 Y 2018.García-Rentería, F.-F., Nieto, G. A. C., & Cortez, G. H. (2023). Evaluation of Wastewater Discharge Reduction Scenarios in the Buenaventura Bay. Water, 15(6). https://doi.org/10.3390/w15061027Geister, J., & Díaz, J. (2007a). Ambientes arrecifales y geología de un archipiélago oceánico: San Andrés, Providencia y Santa Catalina. En INGEOMINAS. https://doi.org/http://dx.doi.org/10.1016/j.compositesb.2013.05.033Geister, J., & Díaz, J. M. (2007b). Reef Environments and Geology of an Oceanic Archipelago: San Andrés, Old Providence and Sta. Catalina (Caribbean Sea, Colombia). 104.Gómez Giraldo, A., Osorio, A., Toro, F., Osorio, J., Álvarez, O., & Arrieta, A. (2009). Patrón de circulación en Bahía Barbacoas y su influencia sobre el transporte de sedimentos hacia las islas del Rosario. Avances en Recursos Hidráulicos, 20, 21-39.Gonzáles, O. C., & Hurtado, G. (2012). Caracterización climática del archipiélago de San Andrés y Providencia. pp (48-52) en CORALINA-INVEMAR, 2012. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de. En Serie de publicaciones especiales, Invema, No. 28, p. 180 (28.a ed., Vol. 28). Serie de Publicaciones Especiales INVEMAR. http://www.invemar.org.co/redcostera1/invemar/docs/10447AtlasSAISeaflower.pdfGrimaldi, C. M., Lowe, R. J., Benthuysen, J. A., Green, R. H., Reyns, J., Kernkamp, H., & Gilmour, J. (2022). Wave and Tidally Driven Flow Dynamics Within a Coral Reef Atoll off Northwestern Australia. Journal of Geophysical Research: Oceans, 127(3). https://doi.org/10.1029/2021JC017583IDEAM. (2015). Estudio Nacional del Agua 2014. En Estudio Nacional del Agua 2014.Invemar, & Coralina. (2020). Unidades Bióticas | Atlas de las Áreas Coralinas de Colombia. MiniAmbiente. https://areas-coralinas-de-colombia-invemar.hub.arcgis.com/pages/unidades-bioticasJonsson, I. G. (1966). WAVE BOUNDARY LAYERS AND FRICTION FACTORS. Coastal Engineering Proceedings, 10, 127-148.Karimpour, A., & Chen, Q. (2017). Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox. Computers & Geosciences, 106, 181-189. https://doi.org/10.1016/J.CAGEO.2017.06.010Lee, W., & Kaihatu, J. M. (2018). Effects of desalination on hydrodynamic process in Persian Gulf. http://marinecopernicus.eu/Lentz, S. J., Churchill, J. H., Davis, K. A., Farrar, J. T., Pineda, J., & Starczak, V. (2016). The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea. Journal of Geophysical Research: Oceans, 121(2), 1360-1376. https://doi.org/10.1002/2015JC011141Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8), 883-915. https://doi.org/https://doi.org/10.1016/j.coastaleng.2004.07.014Lin, N., Marsooli, R., & Colle, B. A. (2019). Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States. Climatic Change, 154(1), 143-158. https://doi.org/10.1007/s10584-019-02431-8Lopera, L., Cardona, Y., & Zapata-Ramírez, P. A. (2020). Circulation in the Seaflower Reserve and Its Potential Impact on Biological Connectivity. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00385Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009a). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114(6), 1-18. https://doi.org/10.1029/2008JC005081Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009b). Wave-driven circulation of a coastal reef-lagoon system. Journal of Physical Oceanography, 39(4), 873-893. https://doi.org/10.1175/2008JPO3958.1Lykkebo, K., Heck, N., Reguero, B. G., Potts, D., Hovagimian, A., & Paytan, A. (2019). Biological and Physical Effects of Brine Discharge from the Carlsbad Desalination Plant and Implications for Future Desalination Plant Constructions. Water, 11, 21. https://doi.org/10.3390/w11020208Madsen, O. S. (1995). Spectral wave-current bottom boundary layer flows. Proceedings of the Coastal Engineering Conference, 1, 384-398.Madsen, O. S. ., Poon, Y. K., & Graber, H. C. (1988). Spectral wave attenuation by bottom friction: theory. Coastal Engineering Proceedings, 21, 492-504. https://doi.org/10.1061/9780872626874.035Maggioni, F., Pujo-Pay, M., Aucan, J., Cerrano, C., Calcinai, B., Payri, C., Benzoni, F., Letourneur, Y., & Rodolfo-Metalpa, R. (2021). The Bouraké semi-enclosed lagoon (New Caledonia)- A natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions. Biogeosciences, 18(18), 5117-5140. https://doi.org/10.5194/bg-18-5117-2021Mariño-Tapia, I., Silva-Casarín, R., Enriquez-Ortiz, C., Mendoza-Baldwin, E., Mancera, E. E., & Ruiz-Rentería, F. (2010). Wave transformation and wave-driven circulation on natural reefs under extreme hurricane conditions. COASTAL ENGINEERING. https://doi.org/10.9753/icce.v32.waves.28Martyr-Koller, R. C., Kernkamp, H. W. J., van Dam, A., van der Wegen, M., Lucas, L. V., Knowles, N., Jaffe, B., & Fregoso, T. A. (2017). Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuarine, Coastal and Shelf Science, 192, 86-107. https://doi.org/10.1016/j.ecss.2017.04.024Massel, S. R. (1989). Currents in coastal zone. En Elsevier Oceanography Series (Ed.), Hydrodynamics Of Coastal Zones (Vol. 48, pp. 253-275).Monismith, S. G., Herdman, L. M. M., Ahmerkamp, S., & Hench, J. L. (2013). Wave Transformation and Wave-Driven Flow across a Steep Coral Reef. Journal of Physical Oceanography, 43(7), 1356-1379. https://doi.org/10.1175/JPO-D-12-0164.1Monismith, S. G., Rogers, J. S., Koweek, D., & Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10), 4063-4071. https://doi.org/10.1002/2015GL063804Montoya, R. D., Menendez, M., & Osorio, A. F. (2018). Exploring changes in Caribbean hurricane-induced wave heights. Ocean Engineering, 163, 126-135. https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.05.032Moustapha, S., Chevalier, C., Sow, B., Pagano, M., & Devenon, J.-L. (2021). Coupled effects of tide and swell on water renewal in a meso-tidal channel lagoon: Case of the Toliara Lagoon (Madagascar). Estuarine, Coastal and Shelf Science, 259, 107463. https://doi.org/https://doi.org/10.1016/j.ecss.2021.107463Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, 4, 299-308.Niepelt, A., Bleninger, T., & Jirka, G. (2008). Coupling of Hydrodynamic Models for Brine Discharge Analysis. https://www.researchgate.net/publication/228369390Nortek. (2017). The Comprehensive Manual: Part 2: Waves. https://support.nortekgroup.com/hc/en-us/articles/360029839331-The-Comprehensive-Manual-ADCPOlarte, P. M. (2019). Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés. Universidad Nacional de Colombia.Ortiz, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 313(Figure 2), 557-568. https://doi.org/10.2112/jcoastres-d-14-00072.1Ortiz Royero, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 31(3), 557-568. https://doi.org/10.2112/JCOASTRES-D-14-00072.1Osorio, A. F., Montoya, R. D., Ortiz, J. C., & Peláez, D. (2016). Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Applied Ocean Research, 56, 119-131. https://doi.org/10.1016/j.apor.2016.01.004Osorio, A. F., Santiago Peláez-Zapata, D., Guerrero-Gallego, J., Álvarez-Silva, O., David Osorio-Cano, J., Toro, F. M., & Giraldo, A. (2014). Hidrodinámica aplicada a la gestión y la conservación de ecosistemas marinos y costeros: Isla Gorgona, Océano Pacífico Colombiano. En Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 62).Osorio-Cano, J. D., Alcérreca-Huerta, J. C., Osorio, A. F., & Oumeraci, H. (2018). CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs, 37(4), 1093-1108. https://doi.org/10.1007/s00338-018-1736-4Pérez-Santos, I., Garcés-Vargas, J., Schneider, W., Ross, L., Parra, S., & Valle-Levinson, A. (2014). Double-diffusive layering and mixing in Patagonian fjords. https://doi.org/10.1016/j.pocean.2014.03.012Piccolo, M. C. (2021). Chapter 12 - Effects of rainfall extreme events on coastal marine ecosystems. En J. Rodrigo-Comino (Ed.), Precipitation (pp. 261-285). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822699-5.00024-0Piecuch, C. G., & Ponte, R. M. (2012). Buoyancy-driven interannual sea level changes in the southeast tropical Pacific. Geophysical Research Letters, 39(5). https://doi.org/10.1029/2012GL051130Rey, W., Ruiz-Salcines, P., Salles, P., Urbano-Latorre, C. P., Escobar-Olaya, G., Osorio, A. F., Ramírez, J. P., Cabarcas-Mier, A., Jigena-Antelo, B., & Appendini, C. M. (2021). Hurricane Flood Hazard Assessment for the Archipelago of San Andres, Providencia and Santa Catalina, Colombia. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.766258Ricaurte, C., Morales, D. F., Coca, O., Bastidad, M. L., & Romero, D. A. (2015). Erosión costera en la isla de san andrés informe técnico final. Invemar, 72.Rogers, J. S., Monismith, S. G., Koweek, D. A., & Dunbar, R. B. (2016). Wave dynamics of a Pacific Atoll with high frictional effects. Journal of Geophysical Research: Oceans, 121, 350-367. https://doi.org/10.1002/jgrc.20224Soliman, M. N., Guen, F. Z., Ahmed, S. A., Saleem, H., Khalil, M. J., & Zaidi, S. J. (2021). Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 147, 589-608. https://doi.org/10.1016/j.psep.2020.12.038Spall, M. A. (2002). Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea. Journal of Geophysical Research: Oceans, 107(C1), 6-1. https://doi.org/10.1029/2001JC000966Stevens, C., Ward, B., Law, C., & Walkington, M. (2010). Surface layer mixing during the SAGE ocean fertilization experiment. https://doi.org/10.1016/j.dsr2.2010.10.017Sun, Z., Xu, D., Liu, X., Zhang, H., & Cai, Z. (2021). Observation and simulation of wind waves near a typical reef lagoon in South China Sea. Journal of Hydrodynamics, 33(1), 24-32. https://doi.org/10.1007/s42241-021-0010-3Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., & Symonds, G. (2012). A numerical study of the dynamics of the wave-driven circulation within a fringing reef system. Ocean Dynamics, 62(4), 585-602. https://doi.org/10.1007/s10236-011-0514-4Telesford, J. N. (2021). Critiquing «islandness» as immunity to COVID-19: A case exploration of the Grenada, Carriacou and Petite Martinique archipelago in the Caribbean region. Island Studies Journal, 16(1), 308-324. https://doi.org/10.24043/isj.155Thomas, Y. F., Nicolae-Lerma, A., & Posada, B. (2012). Atlas climatológico del Mar Caribe Colombiano. En Serie de Publicaciones especiales (Número 25).Tippins, D., & Tomczak, M. (2003). Meridional Turner angles and density compensation in the upper ocean. Ocean Dynamics, 53(4), 332-342. https://doi.org/10.1007/s10236-003-0056-5Troost, T. A., de Kluijver, A., & Los, F. J. (2014). Evaluation of eutrophication variables and thresholds in the Dutch North Sea in a historical context — A model analysis. Journal of Marine Systems, 134, 45-56. https://doi.org/https://doi.org/10.1016/j.jmarsys.2014.01.015Valle-Levinson, A. (2022a). Introduction and Classification. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 5-7). Cambridge University Press. https://doi.org/10.1017/9781108974240.004Valle-Levinson, A. (2022b). Tides in Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 27-50). Cambridge University Press. https://doi.org/10.1017/9781108974240.004Valle-Levinson, A. (2022c). Wind-Driven Flows in Homogeneous, Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 84-97). Cambridge University Press. https://doi.org/10.1017/9781108974240.004van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., & Katsman, C. A. (2021). Double-diffusive mixing makes a small contribution to the global ocean circulation. Communications Earth & Environment, 2(1), 46. https://doi.org/10.1038/s43247-021-00113-xVelásquez, C. (2020). The 2016 Water Crisis in San Andres Island: An Opportunity for Change? Ciencia Política, 15(29), 73-109. https://doi.org/10.15446/cp.v15n29.86373Walstra, D. J. R., Roelvink, J. A., & Groeneweg, J. (2000). Calculation of Wave-Driven Currents in a 3D Mean Flow Model. Coastal Engineering, 1050-1063. https://doi.org/10.1061/40549(276)81Winter, G., Van Dongeren, A., De Schipper, M., & Van Thiel De Vries, J. (2012). A FIELD AND NUMERICAL STUDY INTO RIP CURRENTS IN WIND-SEA DOMINATED ENVIRONMENTS. Coastal Engineering Proceedings, 1(33), currents.36. https://doi.org/10.9753/icce.v33.currents.36Yamano, H., Kayanne, H., Yonekura, N., Nakamura, H., & Kudo, K. (1998). Water circulation in a fringing reef located in a monsoon area: Kabira Reef, Ishigaki Island, Southwest Japan. Coral Reefs, 17(1), 89-99. https://doi.org/10.1007/s003380050101Yao, Y., Huang, Z., He, W., & Monismith, S. G. (2018). Wave-induced setup and wave-driven current over Quasi-2DH reef-lagoon-channel systems. Coastal Engineering, 138, 113-125. https://doi.org/https://doi.org/10.1016/j.coastaleng.2018.04.009Yao, Y., Liu, Y., Chen, L., Deng, Z., & Jiang, C. (2020). Study on the wave-driven current around the surf zone over fringing reefs. https://doi.org/10.1016/j.oceaneng.2020.106968You, Y. (2002). A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure. En Deep-Sea Research I (Vol. 49).Zea, S., Geister, J., Garzon-Ferreira, J., & Diaz, J. M. (1998). Biotic changes in the reef complex of San Andres Island (Southeastern Caribbean Sea, Columbia) occuring over three decades. Atoll Research Bulletin, 456(456), 1-30. https://doi.org/10.5479/si.00775630.456.1Zheng, J., Yao, Y., Chen, S., Chen, S., & Zhang, Q. (2020). Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system. https://doi.org/10.1016/j.coastaleng.2020.103772Análisis de impactos ambientales en sistemas acoplados de desalinización de agua de mar (DAM) - generación de energía de gradiente salino (EGS) y planteamiento de medidas preventivasMinisterio de Ciencia Tecnología e InnovaciónAdministradoresConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85049/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1017233648.2023.pdf1017233648.2023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf33391024https://repositorio.unal.edu.co/bitstream/unal/85049/2/1017233648.2023.pdfa60d1938cea4f5d6e71dd576384f0002MD52THUMBNAIL1017233648.2023.pdf.jpg1017233648.2023.pdf.jpgGenerated Thumbnailimage/jpeg5012https://repositorio.unal.edu.co/bitstream/unal/85049/3/1017233648.2023.pdf.jpgdce456b065c36f343c339bf45d1d31efMD53unal/85049oai:repositorio.unal.edu.co:unal/850492023-12-06 23:04:54.233Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=