Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido

ilustraciones, diagramas

Autores:
Becerra Barajas, Leyla Rocio
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85993
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85993
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía transactiva
Contratos inteligentes
Tecnologías de registro distribuido
Recursos renovables
Microrredes
Comunidades energéticas
Comercialización de energía
Microgrid
P2P
Blockchain
Ethereum
IoTA
Dapp
Distributed Ledger Technologies
Transactive Energy
energy communities
smart contracts
Energy trading
Renewable resources
Microgrid
Comercialización de energía eléctrica
Comercialización de energías renovables
electricity retailing
renewable energy commercialization
microgrid
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_710fa8748727831b9325eba7ff4cde9d
oai_identifier_str oai:repositorio.unal.edu.co:unal/85993
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
dc.title.translated.eng.fl_str_mv Prototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technology
title Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
spellingShingle Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía transactiva
Contratos inteligentes
Tecnologías de registro distribuido
Recursos renovables
Microrredes
Comunidades energéticas
Comercialización de energía
Microgrid
P2P
Blockchain
Ethereum
IoTA
Dapp
Distributed Ledger Technologies
Transactive Energy
energy communities
smart contracts
Energy trading
Renewable resources
Microgrid
Comercialización de energía eléctrica
Comercialización de energías renovables
electricity retailing
renewable energy commercialization
microgrid
title_short Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
title_full Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
title_fullStr Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
title_full_unstemmed Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
title_sort Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
dc.creator.fl_str_mv Becerra Barajas, Leyla Rocio
dc.contributor.advisor.spa.fl_str_mv Camargo Mendoza, Jorge Eliécer
Rosero Garcia, Javier Alveiro
dc.contributor.author.spa.fl_str_mv Becerra Barajas, Leyla Rocio
dc.contributor.researchgroup.spa.fl_str_mv UNSecureLab Research group
dc.contributor.orcid.spa.fl_str_mv Becerra Barajas, Leyla Rocío [0009-0006-9490-5821]
dc.contributor.cvlac.spa.fl_str_mv Becerra, Leyla Rocío
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía transactiva
Contratos inteligentes
Tecnologías de registro distribuido
Recursos renovables
Microrredes
Comunidades energéticas
Comercialización de energía
Microgrid
P2P
Blockchain
Ethereum
IoTA
Dapp
Distributed Ledger Technologies
Transactive Energy
energy communities
smart contracts
Energy trading
Renewable resources
Microgrid
Comercialización de energía eléctrica
Comercialización de energías renovables
electricity retailing
renewable energy commercialization
microgrid
dc.subject.proposal.spa.fl_str_mv Energía transactiva
Contratos inteligentes
Tecnologías de registro distribuido
Recursos renovables
Microrredes
Comunidades energéticas
Comercialización de energía
Microgrid
dc.subject.proposal.eng.fl_str_mv P2P
Blockchain
Ethereum
IoTA
Dapp
Distributed Ledger Technologies
Transactive Energy
energy communities
smart contracts
Energy trading
Renewable resources
dc.subject.unesco.eng.fl_str_mv Microgrid
dc.subject.wikidata.spa.fl_str_mv Comercialización de energía eléctrica
Comercialización de energías renovables
dc.subject.wikidata.eng.fl_str_mv electricity retailing
renewable energy commercialization
microgrid
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-29T19:30:47Z
dc.date.available.none.fl_str_mv 2024-04-29T19:30:47Z
dc.date.issued.none.fl_str_mv 2024-04-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85993
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85993
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147
Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030
Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014
Antal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062
Bertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81
Buterin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.
Chen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601
CorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.html
Cullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401
Dong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053
Dr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models.
Energy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/
Energy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumption
ENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/about
Factory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/
Fan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078
Geun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985
Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002
Górski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743
Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419
Jabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729
JavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.html
Kirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RIS
Marnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197
Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054
Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9
Miglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.
Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6
OpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contracts
Pedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439
Pervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193
Proof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/pos
Siano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172
Skowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700
Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036
The Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application
Transactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.org
Vieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900
Wohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813
Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33
Zhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737
Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85
Zia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947
Zia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85993/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85993/2/52152542.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85993/3/52152542.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f55343b10bcc3696f354c6275da4274e
a67eb0a6e2e622506b3c8cbd44fbb2b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089825965309952
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camargo Mendoza, Jorge Eliécerac7a39b905a0f361c4925b472819b8f0Rosero Garcia, Javier Alveiro275208baaebbfda7d303f6baf775f000600Becerra Barajas, Leyla Rocio6762f1544e72d552ba5c46e8d059f918600UNSecureLab Research groupBecerra Barajas, Leyla Rocío [0009-0006-9490-5821]Becerra, Leyla Rocío2024-04-29T19:30:47Z2024-04-29T19:30:47Z2024-04-24https://repositorio.unal.edu.co/handle/unal/85993Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos sistemas de energía transactiva se han convertido en mecanismos que favorecen el aprovechamiento de las fuentes de energía renovables al permitir a los nuevos prosumidores comercializar los excedentes de energía dentro de su comunidad. Los sistemas de energía transactiva distribuidos ofrecen beneficios al habilitar el comercio entre pares. Algunos proyectos en curso han implementado este concepto mediante una aplicación particular de las tecnologías de registro distribuido específicamente Blockchain. Sin embargo, su adopción, especialmente en comunidades pequeñas, implica altos costos de implementación y de operación, largos tiempos de aprobación de transacciones, comisiones en cada transacción y alto consumo de energía. Por lo anterior, este trabajo propone explorar una alternativa tecnológica de registro distribuido que permita la implementación de un prototipo de sistema de energía transactiva distribuida más conveniente para su uso en comunidades locales. Para lograrlo, se identifican las principales características de las tecnologías de registro distribuido y se enumeran las TRD más relevantes. Luego, se describen los aspectos de diseño, implementación y pruebas del prototipo de Sistema de Energía Transactiva distribuido, proponiendo su implementación mediante contratos inteligentes y una aplicación descentralizada utilizando dos TRD: Ethereum e IoTA. Además, propone un mecanismo para evaluar y comparar el desempeño términos de latencia de las transacciones de escritura. La evaluación muestra que la latencia para transacciones de escritura en la implementación en IoTA es más baja que en la implementación realizada en la red de Ethereum. (Texto tomado de la fuente).Transactive energy systems have become mechanisms that promote the utilization of renewable energy sources by allowing new prosumers to market energy surpluses within their community. Distributed transactive energy systems offer benefits by enabling peer-to-peer trading. Some ongoing projects have implemented this concept through a specific application of distributed ledger technologies, specifically Blockchain. However, their adoption, especially in small communities, entails high implementation and operation costs, delayed transaction approval times, fees for each transaction, and high energy consumption. Therefore, this work proposes to explore an alternative distributed ledger technology that allows the implementation of a more convenient distributed transactive energy system prototype for use in local communities. To achieve this, the main characteristics of distributed ledger technologies are identified, and the most relevant DLTs are listed. Then, the design, implementation, and testing aspects of the distributed Transactive Energy System prototype are described, proposing its implementation through smart contracts and a decentralized application using two DLT: Ethereum and IoTA. Additionally, a mechanism is proposed to evaluate and compare performance in terms of latency for write transactions. The evaluation shows that the latency for write transactions in the IoTA implementation is lower than in the implementation carried out on the Ethereum network.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación aplicadaxviii, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaEnergía transactivaContratos inteligentesTecnologías de registro distribuidoRecursos renovablesMicrorredesComunidades energéticasComercialización de energíaMicrogridP2PBlockchainEthereumIoTADappDistributed Ledger TechnologiesTransactive Energyenergy communitiessmart contractsEnergy tradingRenewable resourcesMicrogridComercialización de energía eléctricaComercialización de energías renovableselectricity retailingrenewable energy commercializationmicrogridPrototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuidoPrototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014Antal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062Bertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81Buterin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.Chen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601CorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.htmlCullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401Dong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053Dr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models.Energy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/Energy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumptionENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/aboutFactory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/Fan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078Geun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002Górski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419Jabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729JavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.htmlKirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RISMarnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9Miglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6OpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contractsPedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439Pervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193Proof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/posSiano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172Skowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036The Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-applicationTransactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.orgVieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900Wohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33Zhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85Zia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947Zia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85993/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL52152542.2024.pdf52152542.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf4889200https://repositorio.unal.edu.co/bitstream/unal/85993/2/52152542.2024.pdff55343b10bcc3696f354c6275da4274eMD52THUMBNAIL52152542.2024.pdf.jpg52152542.2024.pdf.jpgGenerated Thumbnailimage/jpeg5845https://repositorio.unal.edu.co/bitstream/unal/85993/3/52152542.2024.pdf.jpga67eb0a6e2e622506b3c8cbd44fbb2b6MD53unal/85993oai:repositorio.unal.edu.co:unal/859932024-04-29 23:06:05.932Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=