Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
ilustraciones, diagramas
- Autores:
-
Becerra Barajas, Leyla Rocio
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85993
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía transactiva
Contratos inteligentes
Tecnologías de registro distribuido
Recursos renovables
Microrredes
Comunidades energéticas
Comercialización de energía
Microgrid
P2P
Blockchain
Ethereum
IoTA
Dapp
Distributed Ledger Technologies
Transactive Energy
energy communities
smart contracts
Energy trading
Renewable resources
Microgrid
Comercialización de energía eléctrica
Comercialización de energías renovables
electricity retailing
renewable energy commercialization
microgrid
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_710fa8748727831b9325eba7ff4cde9d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85993 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
dc.title.translated.eng.fl_str_mv |
Prototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technology |
title |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
spellingShingle |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Energía transactiva Contratos inteligentes Tecnologías de registro distribuido Recursos renovables Microrredes Comunidades energéticas Comercialización de energía Microgrid P2P Blockchain Ethereum IoTA Dapp Distributed Ledger Technologies Transactive Energy energy communities smart contracts Energy trading Renewable resources Microgrid Comercialización de energía eléctrica Comercialización de energías renovables electricity retailing renewable energy commercialization microgrid |
title_short |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
title_full |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
title_fullStr |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
title_full_unstemmed |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
title_sort |
Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido |
dc.creator.fl_str_mv |
Becerra Barajas, Leyla Rocio |
dc.contributor.advisor.spa.fl_str_mv |
Camargo Mendoza, Jorge Eliécer Rosero Garcia, Javier Alveiro |
dc.contributor.author.spa.fl_str_mv |
Becerra Barajas, Leyla Rocio |
dc.contributor.researchgroup.spa.fl_str_mv |
UNSecureLab Research group |
dc.contributor.orcid.spa.fl_str_mv |
Becerra Barajas, Leyla Rocío [0009-0006-9490-5821] |
dc.contributor.cvlac.spa.fl_str_mv |
Becerra, Leyla Rocío |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Energía transactiva Contratos inteligentes Tecnologías de registro distribuido Recursos renovables Microrredes Comunidades energéticas Comercialización de energía Microgrid P2P Blockchain Ethereum IoTA Dapp Distributed Ledger Technologies Transactive Energy energy communities smart contracts Energy trading Renewable resources Microgrid Comercialización de energía eléctrica Comercialización de energías renovables electricity retailing renewable energy commercialization microgrid |
dc.subject.proposal.spa.fl_str_mv |
Energía transactiva Contratos inteligentes Tecnologías de registro distribuido Recursos renovables Microrredes Comunidades energéticas Comercialización de energía Microgrid |
dc.subject.proposal.eng.fl_str_mv |
P2P Blockchain Ethereum IoTA Dapp Distributed Ledger Technologies Transactive Energy energy communities smart contracts Energy trading Renewable resources |
dc.subject.unesco.eng.fl_str_mv |
Microgrid |
dc.subject.wikidata.spa.fl_str_mv |
Comercialización de energía eléctrica Comercialización de energías renovables |
dc.subject.wikidata.eng.fl_str_mv |
electricity retailing renewable energy commercialization microgrid |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-29T19:30:47Z |
dc.date.available.none.fl_str_mv |
2024-04-29T19:30:47Z |
dc.date.issued.none.fl_str_mv |
2024-04-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85993 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85993 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147 Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030 Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014 Antal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062 Bertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81 Buterin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM. Chen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601 CorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.html Cullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401 Dong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053 Dr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models. Energy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/ Energy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumption ENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/about Factory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/ Fan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078 Geun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985 Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002 Górski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743 Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419 Jabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729 JavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.html Kirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RIS Marnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197 Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054 Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9 Miglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418. Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6 OpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contracts Pedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439 Pervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193 Proof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/pos Siano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172 Skowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700 Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036 The Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application Transactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.org Vieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900 Wohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813 Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33 Zhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737 Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85 Zia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947 Zia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85993/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85993/2/52152542.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85993/3/52152542.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f55343b10bcc3696f354c6275da4274e a67eb0a6e2e622506b3c8cbd44fbb2b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089825965309952 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camargo Mendoza, Jorge Eliécerac7a39b905a0f361c4925b472819b8f0Rosero Garcia, Javier Alveiro275208baaebbfda7d303f6baf775f000600Becerra Barajas, Leyla Rocio6762f1544e72d552ba5c46e8d059f918600UNSecureLab Research groupBecerra Barajas, Leyla Rocío [0009-0006-9490-5821]Becerra, Leyla Rocío2024-04-29T19:30:47Z2024-04-29T19:30:47Z2024-04-24https://repositorio.unal.edu.co/handle/unal/85993Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos sistemas de energía transactiva se han convertido en mecanismos que favorecen el aprovechamiento de las fuentes de energía renovables al permitir a los nuevos prosumidores comercializar los excedentes de energía dentro de su comunidad. Los sistemas de energía transactiva distribuidos ofrecen beneficios al habilitar el comercio entre pares. Algunos proyectos en curso han implementado este concepto mediante una aplicación particular de las tecnologías de registro distribuido específicamente Blockchain. Sin embargo, su adopción, especialmente en comunidades pequeñas, implica altos costos de implementación y de operación, largos tiempos de aprobación de transacciones, comisiones en cada transacción y alto consumo de energía. Por lo anterior, este trabajo propone explorar una alternativa tecnológica de registro distribuido que permita la implementación de un prototipo de sistema de energía transactiva distribuida más conveniente para su uso en comunidades locales. Para lograrlo, se identifican las principales características de las tecnologías de registro distribuido y se enumeran las TRD más relevantes. Luego, se describen los aspectos de diseño, implementación y pruebas del prototipo de Sistema de Energía Transactiva distribuido, proponiendo su implementación mediante contratos inteligentes y una aplicación descentralizada utilizando dos TRD: Ethereum e IoTA. Además, propone un mecanismo para evaluar y comparar el desempeño términos de latencia de las transacciones de escritura. La evaluación muestra que la latencia para transacciones de escritura en la implementación en IoTA es más baja que en la implementación realizada en la red de Ethereum. (Texto tomado de la fuente).Transactive energy systems have become mechanisms that promote the utilization of renewable energy sources by allowing new prosumers to market energy surpluses within their community. Distributed transactive energy systems offer benefits by enabling peer-to-peer trading. Some ongoing projects have implemented this concept through a specific application of distributed ledger technologies, specifically Blockchain. However, their adoption, especially in small communities, entails high implementation and operation costs, delayed transaction approval times, fees for each transaction, and high energy consumption. Therefore, this work proposes to explore an alternative distributed ledger technology that allows the implementation of a more convenient distributed transactive energy system prototype for use in local communities. To achieve this, the main characteristics of distributed ledger technologies are identified, and the most relevant DLTs are listed. Then, the design, implementation, and testing aspects of the distributed Transactive Energy System prototype are described, proposing its implementation through smart contracts and a decentralized application using two DLT: Ethereum and IoTA. Additionally, a mechanism is proposed to evaluate and compare performance in terms of latency for write transactions. The evaluation shows that the latency for write transactions in the IoTA implementation is lower than in the implementation carried out on the Ethereum network.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación aplicadaxviii, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaEnergía transactivaContratos inteligentesTecnologías de registro distribuidoRecursos renovablesMicrorredesComunidades energéticasComercialización de energíaMicrogridP2PBlockchainEthereumIoTADappDistributed Ledger TechnologiesTransactive Energyenergy communitiessmart contractsEnergy tradingRenewable resourcesMicrogridComercialización de energía eléctricaComercialización de energías renovableselectricity retailingrenewable energy commercializationmicrogridPrototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuidoPrototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014Antal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062Bertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81Buterin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.Chen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601CorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.htmlCullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401Dong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053Dr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models.Energy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/Energy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumptionENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/aboutFactory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/Fan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078Geun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002Górski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419Jabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729JavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.htmlKirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RISMarnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9Miglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.Muhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6OpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contractsPedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439Pervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193Proof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/posSiano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172Skowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036The Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-applicationTransactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.orgVieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900Wohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33Zhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85Zia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947Zia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85993/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL52152542.2024.pdf52152542.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf4889200https://repositorio.unal.edu.co/bitstream/unal/85993/2/52152542.2024.pdff55343b10bcc3696f354c6275da4274eMD52THUMBNAIL52152542.2024.pdf.jpg52152542.2024.pdf.jpgGenerated Thumbnailimage/jpeg5845https://repositorio.unal.edu.co/bitstream/unal/85993/3/52152542.2024.pdf.jpga67eb0a6e2e622506b3c8cbd44fbb2b6MD53unal/85993oai:repositorio.unal.edu.co:unal/859932024-04-29 23:06:05.932Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |