Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo

ilustraciones, gráficas, tablas

Autores:
Monsalve Camacho, Oscar Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79401
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79401
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Factores edáficos
Relaciones planta suelo
Relaciones planta agua
Calidad del suelo
Edaphic factors
Plant soil relations
Plant water relations
Soil quality
MSEAS
Indicador de sostenibilidad
Calidad del suelo
Relación suelo-planta
Relación suelo-agua
Relación suelo-atmósfera
DSSAT
LCA
Sustainability indicator
Soil quality
Soil-plant relationship
Soil-water relationship
Soil-athmosphere relationship
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_70c713189abd59e0c4aa96f1a17eaac2
oai_identifier_str oai:repositorio.unal.edu.co:unal/79401
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
title Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
spellingShingle Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Factores edáficos
Relaciones planta suelo
Relaciones planta agua
Calidad del suelo
Edaphic factors
Plant soil relations
Plant water relations
Soil quality
MSEAS
Indicador de sostenibilidad
Calidad del suelo
Relación suelo-planta
Relación suelo-agua
Relación suelo-atmósfera
DSSAT
LCA
Sustainability indicator
Soil quality
Soil-plant relationship
Soil-water relationship
Soil-athmosphere relationship
title_short Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
title_full Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
title_fullStr Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
title_full_unstemmed Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
title_sort Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
dc.creator.fl_str_mv Monsalve Camacho, Oscar Iván
dc.contributor.advisor.spa.fl_str_mv Henao Toro, Martha Cecilia
dc.contributor.author.spa.fl_str_mv Monsalve Camacho, Oscar Iván
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Factores edáficos
Relaciones planta suelo
Relaciones planta agua
Calidad del suelo
Edaphic factors
Plant soil relations
Plant water relations
Soil quality
MSEAS
Indicador de sostenibilidad
Calidad del suelo
Relación suelo-planta
Relación suelo-agua
Relación suelo-atmósfera
DSSAT
LCA
Sustainability indicator
Soil quality
Soil-plant relationship
Soil-water relationship
Soil-athmosphere relationship
dc.subject.agrovoc.spa.fl_str_mv Factores edáficos
Relaciones planta suelo
Relaciones planta agua
Calidad del suelo
dc.subject.agrovoc.eng.fl_str_mv Edaphic factors
Plant soil relations
Plant water relations
Soil quality
dc.subject.proposal.spa.fl_str_mv MSEAS
Indicador de sostenibilidad
Calidad del suelo
Relación suelo-planta
Relación suelo-agua
Relación suelo-atmósfera
dc.subject.proposal.eng.fl_str_mv DSSAT
LCA
Sustainability indicator
Soil quality
Soil-plant relationship
Soil-water relationship
Soil-athmosphere relationship
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-14T20:48:09Z
dc.date.available.none.fl_str_mv 2021-04-14T20:48:09Z
dc.date.issued.none.fl_str_mv 2021-02
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79401
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79401
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbona, E.A., Sarandón, S.J., Marasas, M.E., Astier, M., 2007. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 119, 335–445. https://doi.org/10.1016/j.agee.2006.08.001
Acar, M., Celik, I., Günal, H., 2018. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Eurasian J Soil Sci. 7 (1) 51 - 58, http://doi.org/10.18393/ejss.335329
Acton, D.F., L.J. Gregorich., 1995. The health of our soils: Toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa. Publication 1906/E, 138 p.
Acuña, G. A. C. 2009. Formulación y evaluación financiera de proyectos de inversión con aplicaciones en Excel. Bogotá, Colombia: Universidad Nacional de Colombia. Facultad de Ciencias Económicas.
Adavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Sci. Hortic. (Amsterdam). 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017
Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services - A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
Agronet - Colombian Ministry of Agriculture and Rural Development, 2017. Statistics for the Agricultural Sector. Available at: http://www.agronet.gov.co (accessed 20.02.20). Agronet- Colombian Ministry of Agriculture and Rural Development., 2019. Reporte: Área, Producción y Rendimiento Nacional por Cultivo (Papa). Ministerio de Agricultura y Desarrollo Rural, Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Accessed 19 Sept 2019
Aharonov-Nadborny, R., Tsechansky, L., Raviv, M., Graber, E.R., 2018. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Sci. Total Environ. 630, 1115–1123. https://doi.org/10.1016/j.scitotenv.2018.02.270
Allahyari, M.S., Daghighi Masouleh, Z., Koundinya, V., 2016. Implementing Minkowski fuzzy screening, entropy, and aggregation methods for selecting agricultural sustainability indicators. Agroecol. Sustain. Food Syst. 40, 277–294. https://doi.org/10.1080/21683565.2015.1133467
Altieri, M y Nicholls, C. 2008. Los impactos del cambio climático sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Agroecología. 3: 7–28. http://revistas.um.es/agroecologia/article/view/95471
Altieri, M.A., 2018. Agroecology. The science of sustainable agriculture, 2nd ed. Taylor y Francis Group, United Kingdom.
Amacher, M. C., O’Neil, K. P., Perry, C. H., 2007. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p. https://doi.org/10.2737/RMRS-RP-65
Andrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 68, 1945. https://doi.org/10.2136/sssaj2004.1945
Andrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8
Antón, A., 2004. Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Barcelona. Universitat Politècnica de Catalunya. PhD Thesis. http://tdx.cat/handle/10803/6827.
Añez, B., Espinoza, W., 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agric. Andin. 11, 28–38.
Arias, M.E., Gonzáles- Pérez, J.A., González-Vila, F.J., Ball, A.S., 2005. Soil health — a new challenge for microbiologists and. Int. Microbiol. 8, 13–21. https://doi.org/http://hdl.handle.net/10261/2130
Arizpe, N., Giampietro, M., Ramos-Martin, J., 2011. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). CRC. Crit. Rev. Plant Sci. 30, 45–63. https://doi.org/10.1080/07352689.2011.554352
Astier, M., Speelman, E.N., López-Ridaura, S., Masera, O.R., Gonzalez-Esquivel, C.E., 2011. Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. Int. J. Agric. Sustain. 9, 409–422. https://doi.org/10.1080/14735903.2011.583481
Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliett, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., Van Zeijts, H., 2003. Harmonisation of environmental life cycle assessment for agriculture, European Commission DG VI Agriculture. Retrieved from http://jurcom5.juris.de/bundesrecht/bbodschg/
Baggs, E.M., 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3, 321–327. https://doi.org/10.1016/j.cosust.2011.08.011
Bai, Z., Caspari, T., Gonzalez, M.R., Batjes, N.H., Mäder, P., Bünemann, E.K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C.S.S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., Tóth, Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. https://doi.org/10.1016/j.agee.2018.05.028
Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K. E.O., Wallenstein, M. D., 2018. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 24(3), 895–905. http://doi.org/10.1111/gcb.13926
Balaguera-López, H., Álvarez-Herrera, J., Martínez-Arévalo, G., Balaguera, W., 2011. El contenido de arcilla del suelo influye en el rendimiento de un cultivo de tomate (Solanum lycopersicum L.). Rev. Colomb. Cienc. Hortic, 3(2), 199-209. https://doi.org/10.17584/rcch.2009v3i2.1213
Barrera, L. 1998. Fertilización del cultivo de la papa en los departamentos de Cundinamarca y Boyacá. in: Guerrero, R (Ed), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos S.A.
Barto, E.K., Alt, F., Oelmann, Y., Wilcke, W., Rillig, M.C., 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 42, 2316–2324. https://doi.org/10.1016/j.soilbio.2010.09.008
Battilani, A., Plauborg, F.L., Hansen, S., Dolezal, F., Mazurczyk, W., Bizik, J., 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Hortic. 792, 61–67. https://doi.org/http://dx.doi.org/10.17660/ActaHortic.2008.792.4 10
Baush, J.C., Bojórquez, L.T., Eakin, H., 2014. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainable Science. 1–17. https://doi.org/10.1007/s11625-014-0243-y
Bélanger, V., Vanasse, A., Parent, D., Allard, G., y Pellerin, D., 2012. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421-430. http://doi.org/10.1016/j.ecolind.2012.04.027
Bell, S., Morse, S., 2008. Sustainability Indicators: Measuring the Immeasurable?, second ed. Earthscan.London.Sterling,VA. https://doi.org/10.1016/S0743-0167(99)00036-4
Benoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: Just in time! Int. J. Life Cycle Assess. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8
Bentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5 (6): 349e357. https://doi.org/10.1007/BF02978670
Bergström, L. F., y Kirchmann, H. 2010. Leaching of Total Nitrogen from Nitrogen-15-Labeled Poultry Manure and Inorganic Nitrogen Fertilizer. Journal of Environment Quality, 28(4), 1283. https://doi.org/10.2134/jeq1999.00472425002800040032x
Bernard, E., Larkin, R.P., Tavantzis, S., Erich, M.S., Alyokhin, A., Sewell, G., Lannan, A., Gross, S.D., 2012. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl. Soil Ecol. 52, 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002
Bernard, F., Van Noordwijk, M., Luedeling, E., Villamor, G. B., Sileshi, G. W., Namirembe, S., 2014. Social actors and unsustainability of agriculture. Curr. Opin. Environ. Sustain. 6, 155–161, http://doi.org/10.1016/j.cosust.2014.01.002
Beyer, L., Sieling, K., Pingpank, K., 1999. The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol. Fertil. Soils 28, 156–161. https://doi.org/10.1007/s003740050478
Binder, C.R., Feola, G., Steinberger, J.K., 2010. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 30, 71–81. https://doi.org/10.1016/j.eiar.2009.06.002
Blanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. CRC. Crit. Rev. Plant Sci. 23, 481–504. https://doi.org/10.1080/07352680490886842
Blum, W., 2005. Soils and climate change. Soils y Sediments. 5 (2): 67 – 68. https://doi.org/10.1065/jss2005.02.006
Bockstaller, C., Feschet, P., y Angevin, F., 2015. Issues in evaluating sustainability of farming systems with indicators. Oilseeds y Fats Crops and Lipids, 22(1), D102. http://doi.org/10.1051/ocl/2014052
Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., y Gaillard, G. 2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235. http://doi.org/10.1051/agro:2008058
Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5. https://doi.org/10.1038/ncomms4858
Boeckx, P., Van Cleemput, O., 2001. Estimates of N2Oand CH4 fluxes fromagricultural lands in various regions in Europe. Nutr. Cycl. agroecosystems 60, 35–47.
Bogotá trade chamber (CCB)., 2019. Steps to create company. In: www.ccb.org.co; (accessed 25.06.19).
Bojacá, C.R., A. Cooman y H. Ubaque. 2009. Ecofisiología del cultivo y manejo del clima. pp. 65–83. En: Escobar, H y Lee, R (Ed). Manual de producción de tomate bajo invernadero. Fundación Universidad Jorge Tadeo Lozano.
Bojacá, C.R., Wyckhuys, K.A.G., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69, 26–33. https://doi.org/10.1016/j.jclepro.2014.01.078
Bone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., Voulvoulis, N., 2010. Soil quality assessment under emerging regulatory requirements. Environ. Int. 36, 609–622. https://doi.org/10.1016/j.envint.2010.04.010
Borg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment y Health, 16, 55-58. Recuperado de www.jstor.org/stable/40965845
Borg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine y Science in Sports y Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012
Boshell, J. F., 2008. Elementos de análisis para el manejo de las amenazas del cambio climáticas en la agricultura colombiana. Revista de Innovación y Cambio tecnológico. 7: 38-50. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=24511yshelfbrowse_itemnumber=25693
Bouma, J., Montanarella, L., Evanylo, G., 2019. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 35, 538–546. https://doi.org/10.1111/sum.12518
Bouwman, A.F., Van Der Hoek, K.W., Olivier, J.G.J., 1995. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. 100, 2785–2800. https://doi.org/10.1029/94JD02946
Brentrup, F., Kusters, J., Lammel, J., Kuhlmann, H., 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5, 349–357. https://doi.org/10.1006/bbrc.2000.4000
Brouder, S. M., y Volenec, J. J., 2008. Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant. 133: 705–724. https://doi.org/10.1111/j.1399-3054.2008.01136.x
Brunett Pérez, L., González Esquivel, C., García Hernández, L.A., 2005. Evaluación de la sustentabilidad de dos agroecosistemas campesinos de producción de maíz y leche, utilizando indicadores. Livest. Res. Rural Dev. 17.
Burger, J.A., Kelting, D.L., 1999. Using soil quality indicators to assess forest stand management. For. Ecol. Manage. 122, 155–166. https://doi.org/https://doi.org/10.1016/S0378-1127(99)00039-0
Burton, D.L., Zebarth, B.J., Gillam, K.M., Macleod, J.A., 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes.
Can. J. Soil Sci. 99, 117–125. https://doi.org/10.1139/cjss-2018-0150 Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. https://doi.org/10.1016/j.envint.2006.05.002
Campbell, B.M., Thornton, P., Zougmoré, R., van Asten, P., Lipper, L., 2014. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002
Cano-Betancur, S, M., Gallego-Becerra, M., Chavarriaga-Montoya, W., 2011. Efecto de la aplicación de calcio y fósforo en un suelo ácido y la respuesta en el cultivo de tomate chonto (Solanum lycopersicum L. Mill). Agronomía 19 (1): 77-87. Retrieved of: http://agronomia.ucaldas.edu.co/downloads/Agronomia%2019(1)%20Completa.pdf#page=77
Castellini, C., Boggia, A., Cortina, C., Dal Bosco, A., Paolotti, L., Novelli, E., y Mugnai, C., 2012. A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, 37, 192-201. http://doi.org/10.1016/j.jclepro.2012.07.006
Cellura, M., Longo, S., Mistretta, M., 2012. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 28, 56–62. https://doi.org/10.1016/j.jclepro.2011.10.021
Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., Cayuela, M.L., 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosystems 111, 103–125. https://doi.org/10.1007/s10705-017-9903-5
Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., Cerri, C.C., 2016a. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS One 11, 1–26. https://doi.org/10.1371/journal.pone.0150860
Cherubin, M.R., Karlen, D.L., Franco, A.L.C., Cerri, C.E.P., Tormena, C.A., Cerri, C.C., 2016b. A soil management assessment framework (SMAF) evaluation of brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226. https://doi.org/10.2136/sssaj2015.09.0328
Chong, I.G., Jun, C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B, Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles, in: Stocker, T.F., Qin. D., Plattner, G-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 6. Cambridge University Press, pp 465–570.
Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R., 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological y Environmental Research, Washington, 7 DC., USA, 154 pp.
Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19, 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
Daccache, A., Keay, C., Jones, R.J.A., Waterhead, E.K., Stalhman, M.A., Knox, J.W., 2012. Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J. Agric. Sci. 150, 161–177. https://doi.org/10.1017/S0021859611000839
Dane, J.H., Hopmans, J.H., 2002. Water retention and storage. In: Dane, J.H., Topp, G.C (Editors). Methods of soil analysis Part 4, SSSA Book Ser 5. Madison, WI.: SSSA. pp. 671–717.
Dantsis, T., Douma, C., Giourga, C., Loumou, A., Polychronaki, E.A., 2010. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 10, 256–263. https://doi.org/10.1016/j.ecolind.2009.05.007
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. Reviews. 440 (9): 165-173. https://doi.org/10.1038/nature04514
De Jager, a., Onduru, D., van Wijk, M.S., Vlaming, J., Gachini, G.N., 2001. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agric. Syst. 69, 99–118. https://doi.org/10.1016/S0308-521X(01)00020-8
De Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263. https://doi.org/10.1016/0169-7439(93)85002-X
De La Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., 2004. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With Special reference to the Mediterranean region. Environmental Modelling y Software. 19(10): 929-942
De Luca, A.I., Falcone, G., Stillitano, T., Iofrida, N., Strano, A., Gulisano, G., 2018. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 171, 1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119
De Luca, A.I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., Gulisano, G., 2017. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 595, 352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284
De Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environ. Eng. Manag. J. 14 (7):1–11 Retrieved from: http://omicron.ch.tuiasi.ro/EEMJ/pdfs/vol14/no7/11_1052_De_Luca_14.pdf.
De Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems: the Mimesmas Project. Environ. Eng. Manag. J. 14, 1571–1581.
De Olde, E. M., Oudshoorn, F., Bokkers, E., Stubsgaard, A., Sørensen, C., y de Boer, I., 2016a. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability, 8(9), 957. http://doi.org/10.3390/su8090957
De Olde, E., Moller, H., Marchand, F., McDowell, R.W., MacLeod, C.J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E.A.M., De Boer, I.J.M., Legun, K.A., Le Quellec, I., Merfield, C., Oudshoorn, F.W., Reid, J., Shader, C., Szymanski, E., Sorensen, C.A.G., Whitehead, J., Manhire, J., 2016b. When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 1–16. https://doi.org/10.1007/s10668-016-9803-x
De Olde, E.M., Oudshoorn, F.W., Sørensen, C.A.G., Bokkers, E.A.M., De Boer, I.J.M., 2016c. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 66, 391–404. https://doi.org/10.1016/j.ecolind.2016.01.047
De Paul Obade, V., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096
Dempster, D.N., Jones, D.L., Murphy, D. V., 2012. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221. https://doi.org/10.1071/SR11316
Departamento Administrativo Nacional de Estadística (DANE)., 2017. El cultivo de la papa (Solanum tuberosum L.) y un estudio de caso de los costos de producción de papa Pastusa Suprema. Insumos y factores asociados a la producción agropecuaria. Boletín mensual No 15. Recuperado de https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ene_2017.pdf
Deytieux, V., Munier-Jolain, N., Caneill, J., 2016. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. http://doi.org/10.1016/j.eja.2015.10.005 Dirección de Impuestos y Aduanas Nacionales (DIAN)., 2019. Estatuto tributario. www.dian.gov.co; consulta: junio de 2019.
Dizdaroglu, D., y Yigitcanlar, T., 2014. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecological Indicators, 41, 115-130. http://doi.org/10.1016/j.ecolind.2014.01.037
Dong, F., Mitchell, P. D., y Colquhoun, J. 2015. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. Journal of Environmental Management, 147, 175–183. http://doi.org/10.1016/j.jenvman.2014.08.025
Doran, J. W., Zeiss, M. R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Life Sci. 62(16), 1433–1441. https://doi.org/10.1016/S0024-3205(98)00082-4
Doran, J.W., Parkin, T.B., 1994. Defining an assesing soil quality, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, USA, pp. 3–21.
Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Singh, H., Wichelns, D., 2015. Managing water and nutrients to ensure global food security, while sustaining ecosystem services, in: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D (Eds), Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). First edition, Paris, France, pp 1-8
Dzotsi, K.A., Jones, J.W., Adiku, S.G.K., Naab, J.B., Singh, U., Porter, C.H., Gijsman, A.J., 2010. Modeling soil and plant phosphorus within DSSAT. Ecol. Modell. 221, 2839–2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023
Ecoinvent Centre. 2017. Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available from: http://www.ecoinvent.org.
Elkington, J., 1997. Cannibals With Forks. The Triple Bottom Line of 21st Century Business. Capstone Publishing, Oxford.
Elkington, J., 1998. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 8, 37–51. https://doi.org/10.1002/tqem.3310080106
Engels, C., Kirkby, E., White, P., 2012. Mineral nutrition, yield and source–sink relationships, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368
European Comission., 2001. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development. https://doi.org/10.1021/jacs.6b12944
FAO (Food and Agriculture Organization of the United Nations)., 2009. International year of the potato 2008: new light on a hidden treasure. http://www.potato2008.org/en/events/book.html
FAOSTAT., 2019. World potato production quantity, yields and harvested areas for 2017. http://www.fao.org/faostat/en/#data/QC. Accessed 19 Sept 2019
Farahani, E., Emami, H., Keller, T., 2018. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 32, 69–80. https://doi.org/10.1515/intag-2016-0092
Federación colombiana de productores de papa (Fedepapa); Ministerio de Ambiente, Vivienda y Desarrollo Territorial (Minambiente)., 2004. Guía ambiental para el cultivo de la papa. Federación Colombiana de Productores de Papa
Fernandes, J. C., Gamero, C. A., Rodrigues, J. G. L., Mirás-Avalos, J, M., 2011. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research 112: 167–174. https://doi.org/10.1016/j.still.2011.01.001 Filzmoser, P y Gschwandtner, M. 2017. Mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.8. https://CRAN.R-project.org/package=mvoutlier
Finkbeiner, M., Schau, E. M., Lehmann, A., y Traverso, M., 2010. Towards life cycle sustainability assessment. Sustainability. 2(10), 3309-3322. http://doi.org/10.3390/su2103309
Fleisher, D.H., Barnaby, J., Sicher, R., Resop, J.P., Timlin, D.J., Reddy, V.R., 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171–172, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011
Fleisher, D.H., Timlin, D.J., Reddy, V.R., 2008. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J. 100, 711–719. https://doi.org/10.2134/agronj2007.0188
Foley J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478, 337–342, http://doi.org/10.1038/nature10452
Food and Agriculture Organization (FAO)., 2011. The State of the World’s Land and Water Resources for Food and Agriculture. Managing Systems at Risk. Lancet, 2(7929), 285, http://doi.org/10.4324/9780203142837
Food and Agriculture Organization (FAO)., 2013. Sustainability Assessment Of Food and Agriculture Systems. Guidelines Version 3.0. Retrieved from http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/
Food and Agriculture Organization of the United Nations (FAO). AquaCrop training handbooks. Book I. Anderstanding AquaCrop. FAO. P: 59.
Forero, H. D., y Garzón, M. E. 2000. Validación del modelo de simulación del crecimiento “Substor-potato V. 35” para cuatro variedades mejoradas de papa (Solanum tuberosum ssp. andígena) bajo condiciones de cultivo comercial. Tesis de pregrado. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Bogotá., Colombia. https://repository.agrosavia.co/handle/20.500.12324/16894
Freudenberg, M., 2003. Composite indicators of country performance: a critical assessment. OECD Sci. Technol. Ind. Work. Pap. 16, 35. https://doi.org/10.1787/405566708255
Galloway, J.N., Aer, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The Nitrogen Cascade. Bioscience 53, 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
Garrigues, E., Corson, M.S., Angers, D.A., Van Der Werf, H.M.G., Walter, C., 2012. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecol. Indic. 18, 434–442. https://doi.org/10.1016/j.ecolind.2011.12.014
Gasparatos, A., 2010. Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91(8), 1613–1622. https://doi:10.1016/j.jenvman.2010.03.014
Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba, N.E.-H., Niggli, U., 2012. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. 109, 18226–18231. https://doi.org/10.1073/pnas.1209429109
Gaudino, S., Goia, I., Borreani, G., Tabacco, E., Sacco, D., 2014. Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecol. Indic. 40, 76–89. https://doi.org/10.1016/j.ecolind.2014.01.004
Gavrilov, I., Pusev, R., 2014. Normtest: Tests for normality. R package version 1.1. https://CRAN.R-project.org/package=normtest
Gerdessen, J.C., Pascucci, S., 2013. Data envelopment analysis of sustainability indicators of european agricultural systems at regional level. Agric. Syst. 118, 78–90. https://doi.org/10.1016/j.agsy.2013.03.004
Gerik, T., Williams, J., Dagitz, S., Magre, M., Meinardus, A., Steglich, E., Taylor, R., 2015. Environmental Policy Integrated Climate. Texas AyM Agri Life, United States. P: 102
Gerrard, C., Smith, L.G., Pearce, B., Padel, S., Hitchings, R., y Measures, M., 2012. Public Goods and Farming. En: Lichtfouse, E. 2012. Farming for Food and Water Security. Sustainable agriculture reviews (Vol. 5). Springer. http://doi.org/10.1016/S1573-4285(04)80400-9
Ghisellini, P., Zucaro, A., Viglia, S., Ulgiati, S., 2014. Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecol. Modell. 271, 132–148. https://doi.org/10.1016/j.ecolmodel.2013.02.014
Giampietro, M., Aspinall, R. J., Ramos-Martin, J., y Bukkens, S. G. F. 2014. Resource accounting for sustainability assessment. The nexus between energy, food, water and land use (1st ed.). London and New York: Routledge. Taylor and Francis Group. Recuperado de: https://www.routledge.com/Resource-Accounting-for-Sustainability-Assessment-The-Nexus-between-Energy/Giampietro-Aspinall-Ramos-Martin-Bukkens/p/book/9780415720595
Giles, J., 2005. Nitrogen study fertilizes fears of pollution. Nature 433, 791. https://doi.org/10.1038/433791a
Global Strategy (GSARS)., 2014. Handbook on Agricultural Cost of Production Statistics. Technical report series. Improving agricultural y rural statistics. DRAFT Guidelines for Data Collection, Compilation Glover, J.D., Reganold, J.P., Andrews, P.K., 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 80, 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science. 327, 812–818. https://doi.org/10.1126/science.1185383
Godwin, D. C., Singh, U., 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuji, G. Y., Hoogenboom, G., Thornton, P. K (Eds), Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. p. 55–78. https://doi.org/10.1007/978-94-017-3624-4_4
Gómez, H. L. 1997. Estadística experimental aplicada a las ciencias agrícolas. Universidad Nacional de Colombia.
Gómez, L. J. A., y Arriaza, B. M. 2011. La construcción de indicadores sintéticos de sostenibilidad agrícola. En: Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía. Premios agrarios Unicaja.
Gómez, L. J. A., y Riesgo, L., 2009. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. Journal of Environmental Management, 90(11), 3345-3362. http://doi.org/10.1016/j.jenvman.2009.05.023
Gómez, L. J. A., y Sanchez, F. G., 2010. Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. http://doi.org/10.1016/j.ecolecon.2009.11.027
Gómez-Limón, J.A., Arriaza, B.M., 2011. Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía, premios agrarios Unicaja. Gómez-Macpherson, H., Gómez, J.A., Orgaz, F., Villalobos, F.J., Fereres, E. 2016. Soil conservation. In: Villalobos, F.J., Fereres, E (Eds), Principles of agronomy for sustainable agriculture. Springer. p 241-254. Recuperado de: https://link.springer.com/book/10.1007%2F978-3-319-46116-8
Gomiero, T., Pimentel, D., Paoletti, M.G., 2011. Is There a Need for a More Sustainable Agriculture? CRC. Crit. Rev. Plant Sci. 30, 6–23. https://doi.org/10.1080/07352689.2011.553515
Grabowski, P., Musumba, M., Palm, C., 2018. Sustainable agricultural intensification and measuring the immeasurable: Do we have a choice?, in: Bell, S., Mors, S. (Eds.), Routledge Handbook of Sustainability Indicators. Taylor y Francis Group, p. 568.
Grassini, P., van Bussel, L. G.J., Wart, J. V., Wolf, J., Claessens, L., Yanga, H., Boogaard, H., de Groote, H., van Ittersumb, M. K., y Cassman, K. G., 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 177: 49–63. http://dx.doi.org/10.1016/j.fcr.2015.03.004
Gu, Y.J., Han, C.L., Fan, J.W., Shi, X.P., Kong, M., Shi, X.Y., Siddique, K.H.M., Zhao, Y.Y., Li, F.M., 2018. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. F. Crop. Res. 215, 94–103. https://doi.org/10.1016/j.fcr.2017.10.010
Guerrero, R. 1998. Fertilización de cultivos de clima frío. Segunda edición. Monómeros Colombo-venezolanos, Bogotá. 370 p. Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R., Huijbregts, M.A.J., 2004. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands.
Haberern, J., 1992. A soil health index. J. Soil Water Conserv. 47, 6. Recuperado de https://www.jswconline.org/content/47/1/6.full.pdf
Haitovsky, Y., 1968. Missing Data in regression analysis. Journal of the Royal Statistical Society: Series B (Methodological). 30, 67–82. https://doi.org/10.1111/j.2517-6161.1968.tb01507.x
Häni, F., Braga, F., Stämpfli, A., Keller, T., Fischer, M., y Porsche, H. 2003. RISE, a tool for holistic sustainability assessment at the farm level. International Food and Agribusiness Management Review, 6(4).
Havlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. L., 2014. Soil Fertility and Fertilizers, an introduction to nutrient management. 8th ed. Pearson Education, Inc, Upper Saddle River.
Hayakawa, A., Akiyama, H., Sudo, S., Yagi, K., 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem. 41, 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011
Hayati, D., Ranjbar, Z., Karami, E., 2010. Measuring agricultural sustainability. En Sustainable Agriculture Reviews, 5, 73–100, http://doi.org/10.1007/978-90-481-9513-8
He, Z., Honeycutt, W. C., Olanya, M, O., Larkin, R, P., Halloran, J. M., Frantz, J. M.,2012. Comparison of soil phosphorus status and organic matter composition in potato fields with different crop rotation systems, in: He, Z., Larkin, R., Honeycutt, W (Eds). Sustainable potato production: Global case studies, 1st ed, Springer, New York, London. https://doi.org/10.1017/CBO9781107415324.004
Heijungs, R., Guinée, J. B. 2012. An overview of the life cycle assessment method - Past, Present, and Future, in: Curran, M. A (Ed), Life cycle assessment handbook. A guide for environmentally sustainable products. Willey. USA. P: 15-42
Herrick, J.E., 2000. Soil quality: An indicator of sustainable land management? Appl. Soil Ecol. 15, 75–83. https://doi.org/10.1016/S0929-1393(00)00073-1
Higueras, P., Campos, J.A., Esbrí, J.M., García-noguero, E.M., Elmayel, I., 2019. Petrogenesis and Exploration of the Earth’s Interior. Springer International Publishing. https://doi.org/10.1007/978-3-030-01575-6
Hirel, B., Tétu, T., Lea, P.J., Dubois, F., 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485. https://doi.org/10.3390/su3091452
Hoang, V.N., Alauddin, M., 2010. Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutr. Cycl. Agroecosystems 87, 353–368. https://doi.org/10.1007/s10705-010-9343-y
Hoogenboom, G., C.H. Porter, V. Shelia, K.J. Boote, U. Singh, J.W. White, L.A. Hunt, R. Ogoshi, J.I. Lizaso, J. Koo, S. Asseng, A. Singels, L.P. Moreno, and J.W. Jones. 2017. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7. DSSAT Foundation, Gainesville, Florida, USA. https://DSSAT.net
Hoogenboom, G., Jones, J. W., Traore, P. C. S., Boote, K. J., 2012. Experiments and Data for Model Evaluation and Application. En: Kijara, J., Fatondji, D., Jones, J. W., Hoogenboom, G., Tabo, R., Bationo, A. 2012. Inproving soil fertility recomendations in Africa using the Decision Support System for Agrothecnology Transfer (DSSAT). Springer, 9-18
Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Hosiny, E. I., Khafagy, E. E., Mosaad, I. S. M., y Seadh, A. K. 2017. Interaction effect between mineral zinc-nitrogen fertilization mixture and organic fertilization as compost on yield, nutrients uptake of rice and some soil properties. Agric.Eng.Int, 302–309. Recuperado de http://www.cigrjournal.org/index.php/Ejounral/article/view/4647
Hubeau, M., Marchand, F., Coteur, I., Mondelaers, K., Debruyne, L., Van Huylenbroeck, G., 2017. A new agri-food systems sustainability approach to identify shared transformation pathways towards sustainability. Ecol. Econ. 131, 52–63. https://doi.org/10.1016/j.ecolecon.2016.08.019
Hünnemeyer, A. J., de Camino, R., Müller, S. 1997. Analisis de desarrollo sostenible en Centroamerica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ GTZ.
Hussain, I., Olson, K.R., Wander, M.M., Karlen, D.L., 1999. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Till. Res. 50, 237–249. https://doi.org/10.1016/S0167-1987(99)00012-4
IDEAM, PNUD, MADS, DNP, CANCILLERÍA., 2015. Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones. Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf
Instituto Geográfico Agustín Codazzi (IGAC). (2014). Códigos para los levantamientos de suelos. Instructivo. Grupo interno de trabajo de levantamientos agrológicos. Recuperado de http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos%20para%20los%20levantamientos%20de%20suelos.pdf
Instituto Interamericano de Cooperación para la Agricultura (IICA)., 2015. Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. IICA. www.iica.int
Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727a
International Organization for Standardization (ISO). 2006a. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040
International Organization for Standardization (ISO). 2006b. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14044
Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Bui, E.N., Wilford, J., 2018. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int. J. Appl. Earth Obs. Geoinf. 68, 230–237. https://doi.org/10.1016/j.jag.2018.02.004
Jaramillo, J. 2009. The state of research in tomato in Colombia. Acta Hort. 821, 47–52. https://10.17660/ActaHortic.2009.821.3
Joice, L.A., 2003. Improving the flow of scientific information across the interface of forest science and policy. Forest Policy Econ. 5, 339–347.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7
Jones, J.W., Jianqiang, H., Boote, K.J., Wilkens, P., Porter, C.H., Hu, Z., 2011. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. In: Ahuja, L.R., Liwang, M. (Eds.), Methods of Introducing SystemModels into Agricultural Research. American Society of Agronomy, CropScience Society of America, Soil Science Society of America Madison, WI, USA.
Kachanoski, R.G., Carter, M.R., 1999. Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil Tillage Res. 51, 211–217. https://doi.org/10.1016/S0167-1987(99)00038-0
Kanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., Dale, V.H., Havlik, P., Kline, K.L., Scholes, R.J., Thornton, P., Tittonell, P., Andelman, S., 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. In Press. https://doi.org/10.1016/j.agsy.2016.09.010
Karaca, S., Gürses, A., Ejder, M., Açikyildiz, M., 2004. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 277, 257–263. https://doi.org/10.1016/j.jcis.2004.04.042
Karlen, D.L., Stott, D.E., 1994. A Framework for Evaluating Physical and Chemcial Indicators of Soil Quality. Soil Sci. Soc. Am. 264, 53–72. https://doi.org/10.1126/science.264.5156.281
Karlen, D.L., Stott, D.E., Cambardella, C.A., Kremer, R.J., King, K.W., McCarty, G.W., 2014. Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 69:393–401. https://doi:10.2489/jswc.69.5.393
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9
Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., Van Der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O., 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2, 111–128. https://doi.org/10.5194/soil-2-111-2016
Khakbazan, M., Mohr, R.M., Huang, J., Xie, R., Volkmar, K.M., Tomasiewicz, D.J., Moulin, A.P., Derksen, D.A., Irvine, B.R., Mclaren, D.L., Nelson, A., 2019. Effects of crop rotation on energy use e ffi ciency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 195, 104357. https://doi.org/10.1016/j.still.2019.104357
Khodaverdiloo, H., Momtaz, H., Liao, K., 2018. Performance of Soil Cation Exchange Capacity Pedotransfer Function as Affected by the Inputs and Database Size. Clean - Soil, Air, Water 46. https://doi.org/10.1002/clen.201700670
Kibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 363, 685–701. https://doi.org/10.1098/rstb.2007.2178
Kleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., Asseng, S., 2016. Simulating cultivar variations in potato yields for contrasting environments. Agric. Syst. 145, 51–63. https://doi.org/10.1016/j.agsy.2016.02.011
Kucukvar, M., Egilmez, G., Tatari, O., 2014. Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input-output analysis. J. Clean. Prod. 81, 234–243. https://doi.org/10.1016/j.jclepro.2014.06.033
Kuisma, P., 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agricultural and food science in Finland. 11: 59–74. https://doi.org/10.23986/afsci.5713
Kumar, S.N., Govindakrishnan, P.M., Swarooparani, D.N., Nitin, C., Surabhi, J., Aggarwal, P.K., 2015. Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int. J. Plant Prod. 9, 151–170. https://doi.org/https://dx.doi.org/10.5958/2231-3915.2015.00011.5
Kutílek, M., 2011. Soils and climate change. Soil y Tillage Research. 117: 1–7. https://doi.org/10.1016/j.still.2011.08.009
Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012
Lal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics; Washington D.C.: USDA/SMSS Technical Monograph 21
Lal, R., 2009. Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1–184. http://doi.org/10.1126/science.1097396
Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustain. 7, 5875–5895. https://doi.org/10.3390/su7055875 Lanfranco, B. C., y Helguera, L. P. 2006. Óptimo técnico y económico. Diversificación, costos ocultos y los estímulos para mejorar los procreos en la ganadería nacional. Revista INIA, 8, 2–5. Retrieved from http://www.ainfo.inia.uy/digital/bitstream/item/846/1/111219220807165946.pdf
Larkin, R.P., Honeycutt, C.W., 2006. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96, 68–79. https://doi.org/10.1094/PHYTO-96-0068
Larson, W.E., Pierce, F.J., 1994. The dynamics of soil quality as a measure of sustainable management, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, pp. 37–51.
Lebacq, T., Baret, P. V, Stilmant, D., 2013. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 33, 311–327. https://doi.org/10.1007/s13593-012-0121-x
Lemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., Francis, F., 2018. Short-Term Effects of Tillage Practices and Crop Residue Exportation on Soil Organic Matter and Earthworm Communities in Silt Loam Arable Soil, in: Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions. Elsevier Inc., pp. 53–71. https://doi.org/10.1016/B978-0-12-812128-3.00005-7
Li, L., Du, S., Wu, L., Liu, G., 2009. An overview of soil loss tolerance. Catena 78, 93–99. https://doi.org/10.1016/j.catena.2009.03.007
Liang, K., Jiang, Y., Nyiraneza, J., Fuller, K., Murnaghan, D., Meng, F.-R., 2019. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. F. Crop. Res. 242, 107603. https://doi.org/10.1016/j.fcr.2019.107603
Lima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., de Goede, R.G.M., 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64, 194–200. http://dx.doi.org/10.1016/j.apsoil.2012.12.009
Lisboaa, I.P., Cherubin, M.R., Satiro, L.S., Siqueira-Neto, M., Lima, R.P., Gmach, M.R., Wienhold, B.J., Schmer, M.R., Jin, V.L., Cerri, C.C., Cerri, C.E.P., 2019. Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops y Products 129, 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004
Litke, L., Gaile, Z., y Ruza, A., 2018. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Research Communications, 38(2), 243–249. http://doi.org/10.1556/CRC.38.2010.2.10
Liu, E.Y., Li, S., Lantz, V., Olale, E., 2019. Impacts of Crop Rotation and Tillage Practices on Potato Yield and Farm Revenue. Agron. J. 111, 1838. https://doi.org/10.2134/agronj2018.05.0325
Liu, H. L., Yang, J. Y., Tan, C. S., Drury, C. F., Reynolds, W. D., Zhang, T. Q., Hoogenboom, G., 2011. Simulating wáter content, crop yield and nitrate‐N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management. 98(6): 1105‐1111.
Lizana, X.C., Avila, A., Tolaba, A., Pablo, J., 2017. Agricultural and Forest Meteorology Field responses of potato to increased temperature during tuber bulking : Projection for climate change scenarios , at high-yield environments of Southern Chile. Agric. For. Meteorol. 239, 192–201. https://doi.org/10.1016/j.agrformet.2017.03.012
Loaiza, P. V, Pujol, P.E.I., Wittwer, R., van der Heijden, M., Six, J., 2018. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9. https://doi.org/10.1016/j.still.2018.02.007
Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS One 12, 1–25. https://doi.org/10.1371/journal.pone.0180442
Lutz, A.F., ter Maat, H.W., Biemans, H., Shrestha, A.B., Wester, P., Immerzeel, W.W., 2016. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005. https://doi.org/10.1002/joc.4608
Lynch, J., Marschner, P., Z, Rangel., 2012. Effect of internal and external factors on root growth and development, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 331-346
Meadows, D. H. 2009. Thinking in Systems. Journal of Chemical Information and Modeling (Vol. 53). http://doi.org/10.1017/CBO9781107415324.004
Maltas, A., Dupuis, B., y Sinaj, S., 2018. Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Research, 1–18. http://doi.org/10.1007/s11540-018-9361-8
Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., Lauwers, L., 2014. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 19(3), 46–56. https://doi.org/10.5751/ES-06876-190346
Marinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6, 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029
Marschner, P., 2012. Mineral nutrition of higher plants (Third edit). USA: Academic Press is an imprimint of Elsevier.
Marschner, P., Z, Rangel., 2012. Nutrient availability in soils, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 315-328
Martinez, R., Martinez, N. R., y Martinez, M. V. M., 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. Tomi I. Fondo Nacional Universitario.
Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., Finkbeiner, M., 2014. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J. Clean. Prod. 69, 34–48. https://doi.org/10.1016/j.jclepro.2014.01.044
Mascarenhas, A., Coelho, P., Subtil, E., Ramos, T.B., 2010. The role of common local indicators in regional sustainability assessment. Ecol. Indic. 10, 646–656. https://doi.org/10.1016/j.ecolind.2009.11.003
Mehmood, T., Liland, K.H., Snipen, L., Saebo, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118, 62–69. https://doi.org/10.1016/j.chemolab.2012.07.010
Mehmood, T., Martens, H., Saebo, S.,Warringer, J., Snipen, L., 2011. A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms Mol. Biol. 6. https://doi.org/10.1186/1748-7188-6-27
Mendiburu, F. 2017. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-6. https://CRAN.R-project.org/package=agricolae.
Meul, M., Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., Hauwermeiren, A., 2008. MOTIFS: a monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 28, 321–332. https://doi.org/10.1051/agro:2008001
Mevik, B. H., Wehrens, R., Hovde, L. K., 2019. pls: partial least squares and principal component regression. R package version 2.7-2. https://CRAN.R-project.org/package=pls
Milder, J.C., Arbuthnot, M., Blackman, A., Brooks, S.E., Giovannucci, D., Gross, L., Kennedy, E.T., Komives, K., Lambin, E.F., Lee, A., Meyer, D., Newton, P., Phalan, B., Schroth, G., Semroc, B., Van Rikxoort, H., Zrust, M., 2014. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conserv. Biol. 29, 309–320. https://doi.org/10.1111/cobi.12411
Monsalve, O.I., Casilimas, H.A. y Bojacá, C.R. 2011. Evaluación técnica y económica del pepino y el pimentón como alternativas al tomate bajo invernadero. Rev. Colomb. Cienc. Hortic, Vol 5. P: 69-82. https://doi.org/10.17584/rcch.2011v5i1.1254
Mtengeti, E. J., Brentrup, F., Mtengeti, E., Olav, E. L., Chambuya, R., 2015. Sustainable intensification of maize and rice in smallholder farming systems under climate change in Tanzania, in: Mwaseba, D. L., Kraybill, D., Hansen, D. O., Olav, L., Editors, E. (Eds), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa (1st ed.). Springer. http://doi.org/10.1007/978-3-319-09360-4
Muckel, G. B., Mausbach, M. J., 1996. Soil quality information sheets, in: Methods for Assessing Soil Quality, edited by: Doran, J. W., Jones, A. J., Soil Sci. Soc. Am., Special Publication 49, Madison, WI, 393–400. Mukherjee, A., Lal, R., 2014. Comparison of soil quality index using three methods. PLoS One 9. https://doi.org/10.1371/journal.pone.0105981
Munda, G. 2005. “Measuring sustainability”: A multi-criterion framework. Environment, Development and Sustainability. 7(1): 117–134. http://doi.org/10.1007/s10668-003-4713-0
Muthoni, J., Kabira, J.N., 2010. Effects of crop rotation on soil macronutrient content and pH in potato producing areas in Kenya: Case study of KARI Tigoni station. J. Soil Sci. Environ. Manag. 1, 227–233.
Nambiar, K.K.M., Gupta, A.P., Fu, Q., Li, S., 2001. Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agric. Ecosyst. Environ. 87, 209–214. https://doi.org/10.1016/S0167-8809(01)00279-1
Nannipieri, P., 1984. Microbial biomass and activity measurement in soils: ecological significance, in: Klug, M.J., Reddy, C.A. (Eds), Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, pp. 512–521
Nannipieri, P., Grego, S., Ceccanti, B., 1990. Ecological significance of the biological activity in soils, in: Bollag, J. M., Stotzky, G., Marcel Dekker (Eds), Soil Biochemical, New York, 293–355.
Ndiaye, E.L., Sandeno, J.M., McGrath, D., Dick, R.P., 2000. Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15, 26–36. https://doi.org/10.1017/s0889189300008432
Nelson, K.L., Lynch, D.H., Boiteau, G., 2009. Assessment of changes in soil health throughout organic potato rotation sequences. Agric. Ecosyst. Environ. 131, 220–228. https://doi.org/10.1016/j.agee.2009.01.014
Neugebauer, S., Martinez-Blanco, J., Finkbeiner, M., 2015. Enhancing the practical implementation of life cycle sustainability assessment - proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/j.jclepro.2015.04.053
Neumann, G., Römheld, V., 2012. Rhizosphere chemistry in relation to plant nutrition, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368
Nieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment. Springer Science, 430 pp. https://doi.org/10.1007/978-1-4020-8433-1
Nyiraneza, J., Peters, R.D., Rodd, V.A., Grimmett, M.G., Jiang, Y., 2015. Improving productivity of managed potato cropping systems in Eastern Canada: Crop rotation and nitrogen source effects. Agron. J. 107, 1447–1457. https://doi.org/10.2134/agronj14.0430
Obade, V.P., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Science of the Total Environment 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096
OECD (Organization for Economic Co-operation and Development) — JRC (Joint Research Centre)., 2008. Handbook on constructing composite indicators. Methodology and user guide. OECD, Paris.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry 76, 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
Ogle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 72: 87–121. https://doi.org/10.1007/s10533-004-0360-2
Okalebo, J.R., Gathua, K.W.K.W., Woomer, P.L.P.L., 2002. Laboratory methods of soil and plant analysis: a working manual, second ed. TSBF-CIAT, Africa.
Oldeman, L., 1994. The global extent of soil degradation. Soil Resil. Sustain. L. use 19–36. https://doi.org/10.1016/j.apsoil.2013.10.002 Ordoñez, D.N., Bolivar, G.A., 2014. Levantamiento agrológico del Centro Agropecuario (CAM), 1st ed. Instituto Geográfico Agustin Codazzi (IGAC), Bogotá, Colombia.
Ortíz, R. 2012. El cambio climático y la producción agrícola. Banco Interamericano de Desarrollo. Notas técnicas. ESG-TN-383. http://asocam.org/biblioteca/files/original/e7a4a8a00d9ba9390d273d6dc1bb5666.pdf
Pacini, C., Wossink, A., Giesen, G., Vazzana, C., Huirne, R., 2003. Evaluation of sustainability of organic, integrated and conventional farm systems: a farm and field scale analysis. Agriculture, Ecosystems and Environment, 95, 273–288.
Panell, D. J., Schilizzi, S., 1993. Sustainable agriculture: a matter of ecology, equity, economic, efficiency or expedience. Journal of Sustainable Agriculture. 13: 57-66
Pansau, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic Methods. Springer, Germany, p 995.
Papadopoulos, I., 1988. Nitrogen fertigation of trickle-irrigated potato. Fertil. Res. 167, 157–167. https://doi.org/https://doi.org/10.1007/BF01049771
Papendick, R. I., Parr. J. F., 1992. Soil quality—The key to a sustainable agriculture. Am. J. Altern. Agric. 7 (1-2): 2–3. https://doi.org/10.1017/S0889189300004343
Paracchini, M.L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., De Paola, C., 2015. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 133, 35–53. https://doi.org/10.1016/j.agsy.2014.10.004
Parris, T.M., Kates, R.W., 2003. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour. 28, 559–586. https://doi.org/10.1146/annurev.energy.28.050302.105551
Parton, W., Schimel, D., Ojima, D., Cole, C., 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pages 147-167 in R.B. Bryant and R.W. Arnold, editors. Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Passam, H.C., Karapanos, I.C., Bebeli, P.J. y Savvas, D. 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The european journal of plant science and biotechnology. Vol 1(1). P: 1-21. file:///D:/descargas/A_Review_of_Recent_Research_on_Tomato_Nu%20(2).pdf
Peano, C., Migliorini, P., y Sottile, F., 2014. A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecology and Society, 19(4), 24. http://doi.org/10.5751/ES-06972-190424
Peltre, C., Christensen, B.T., Dragon, S., Icard, C., Katterer, T., Houot, S. 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol. Biochem. 52, 49–60. http://dx.doi.org/10.1016/j.soilbio.2012.03.023
Peña, M. Y., CAsierra-Posada, F., Monsalve, O. I., 2013. Producción hidropónica de tomate (Solanum lycopersicum L.) en cascarilla de arroz mezclada con materiales minerales y orgánicos. Rev. Colomb. Cienc. Hortic., 7 (2), 217-227. https://doi.org/10.17584/rcch.2013v7i2.2236
Pérez, L.C., Rodríguez, L.E., Gómez, M.I., 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26, 477–486.
Pergola, M., D’Amico, M., Celano, G., Palese, A.M., Scuderi, A., Di Vita, G., Pappalardo, G., Inglese, P., 2013. Sustainability evaluation of Sicily’s lemon and orange production: Anenergy, economic and environmental analysis. J. Environ. Manage. 128, 674–682. https://doi.org/10.1016/j.jenvman.2013.06.007
Pintér, L., Hardi, P., Martinuzzi, A., Hall, J., 2012. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 17, 20–28. https://doi.org/10.1016/j.ecolind.2011.07.001
Pollesch, N., Dale, V. H., 2015. Applications of aggregation theory to sustainability assessment. Ecological Economics, 114, 117–127. http://doi.org/10.1016/j.ecolecon.2015.03.011
Porras, R.P.D., Herrera, H.C.A., 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia, 1st ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.
Praneetvatakul, S., Janekarnkij, P., Potchanasin, C., Prayoonwong, K., 2001. Assessing the sustainability of agriculture: A case of Mae Chaem Catchment, northern Thailand. Environ. Int. 27, 103–109. https://doi.org/10.1016/S0160-4120(01)00068-X
Pretty, J., Bharucha, Z.P., 2014. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596. https://doi.org/10.1093/aob/mcu205
Qadir, M., Oster, J.D., 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 323, 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Rao, N.H., Rogers, P.P., 2006. Assessment of agricultural sustainability. Curr. Sci. 91, 439–448. www.jstor.org/stable/24093944
Rawashdeh, R.A., Maxwell, P., 2014. Analysing the world potash industry. Resour. Policy 41, 143–151. https://doi.org/10.1016/j.resourpol.2014.05.004
Rawashdeh, R.A., Xavier-Oliveira, E., Maxwell, P., 2016. The potash market and its future prospects. Resour. Policy 47, 154–163. https://doi.org/10.1016/j.resourpol.2016.01.011
Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J.E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., Porter, C., 2017. Field Crops Research Performance of the SUBSTOR-potato model across contrasting growing conditions. F. Crop. Res. 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012
Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008
Reed, M.S., Fraser, E.D.G., Dougill, A.J., 2006. An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol. Econ. 59, 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008
Rees, H.W., Chow, T.L., Zebarth, B.J., Xing, Z., Toner, P., Lavoie, J., Daigle, J.L., 2011. Effects of supplemental poultry manure applications on soil erosion and runoff water quality from a loam soil under potato production in northwestern New Brunswick. Can. J. Soil Sci. 91, 595–613. https://doi.org/10.4141/cjss10093
Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J., Papen, H., 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology. 11 (Suppl. 1): 4–23. https://doi.org/10.1111/j.1438-8677.2009.00241.x
Repar, N., Jan, P., Dux, D., Nemecek, T., Doluschitz, R., 2017. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 140, 692–704. https://doi.org/10.1016/j.jclepro.2016.07.022
Riahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74, 7, 887-935.
Rigby, D., Howlett, D., Woodhouse, P., 2000. A Review of Indicators of Agricultural and Rural Livelihood Sustainability. FAO. AGRIS.
Rinne, J., Lyytimäki, J., Kautto, P., 2013. From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecol. Indic. 35, 35–42. https://doi.org/10.1016/j.ecolind.2012.09.023
Ripley, B., Venables, B., Douglas, M. B., Hornik, K., Gebhardt, A., Firth, D. 2017. MASS: Support functions and datasets. R package version 7.3-47. https://CRAN.R-project.org/package=MASS
Ritchie, J. T., 1981. Water dynamics in the Soil-Plant-athmosphere system. In Plant and Soil (Vol. 96, pp. 81–96). ICARDA. https://doi.org/https://doi.org/10.1007/BF02180050
Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J., 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6
Rodrigues, G.S., Rodrigues, I.A., Buschinelli, C.C. de A., de Barros, I., 2010. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 30, 229–239. https://doi.org/10.1016/j.eiar.2009.10.002
Rodríguez, A., 2012. Evaluación de las simulaciones de precipitación y temperatura de los modelos climáticos globales del proyecto CMIP5 con el clima presente en Colombia. Ideam-Meteo 34.
Rojas, B.E.O., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias. http://www.bdigital.unal.edu.co/5242/
Rojas, E. O. B., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interaunal y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias, Departamento de Geociencias. Bogotá., Colombia. http://www.bdigital.unal.edu.co/5242/
Römheld, V., Kirkby, E.A., 2010. Research on potassium in agriculture: Needs and prospects. Plant Soil 335, 155–180. https://doi.org/10.1007/s11104-010-0520-1
Rosegrant, M.W., Cline, S.A., 2003. Global Food Security: Challenges and Policies. Science 302, 1917–1919. https://doi.org/10.1126/science.1092958
Rossi, J. P., Franc, A., y Rousseau, G. X. 2009. Indicating soil quality and the GISQ. Soil Biology and Biochemistry, 41(2), 444–445. https://doi.org/10.1016/j.soilbio.2008.10.004
Roy, R., Chan, N.W., 2012. An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. Environmentalist 32, 99–110. https://doi.org/10.1007/s10669-011-9364-3
Ruser, R., Flessa, H., Schilling, R., Steindl, H., Beese, F., 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci. Soc. Am. J. 62, 1587–1595. https://doi.org/10.2136/sssaj1998.03615995006200060016x
Ryan, M., Hennessy, T., Buckley, C., Dillon, E. J., Donnellan, T., Hanrahan, K., y Moran, B., 2016. Developing farm-level sustainability indicators for Ireland using the Teagasc National Farm Survey. Irish Journal of Agricultural and Food Research, 55(2), 112-125. http://doi.org/10.1515/ijafr-2016-0011
Sadok, W., Angevin, F., Bergez, J.E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., Messéan, A., Doré, T., 2009. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 29, 447–461. https://doi.org/10.1051/agro/2009006
Sarkar, D., Haldar, A., 2005. Physical and chemical methods in soil analysis. Fundamental concepts of analytical chemistry and instrumental thecniques, vol 1. New Age International Publishers, New Delhi. http://doi.org/10.1017/CBO9781107415324.004
Schader, C., Baumgart, L., Landert, J., Muller, A., Ssebunya, B., Blockeel, J., Weisshaidinger, R., Petrasek, R., Mészáros, D., Padel, S., Gerrard, C., Smith, L., Lindenthal, T., Niggli, U., y Stolze, M., 2016. Using the Sustainability Monitoring and Assessment Routine (SMART) for the systematic analysis of trade-offs and synergies between sustainability dimensions and themes at farm level. Sustainability, 8(3), 1-20. http://doi.org/10.3390/su8030274
Schader, C., Grenz, J., Meier, M. S., Stolze, M., 2014. Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), 42–57. http://doi.org/10.5751/ES-06866-190342
Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.x
Scheffer, F., Schachtschabel, P., 2016. Soil Science. Springer. 16th edition. Germany. http://doi.org/10.1007/978-3-642-30942-7
Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S. Painter, T.H., Parton, W.J., Townsend, A.R., 2007. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global biogeochemical cycles. 8(3): 279-293. https://doi.org/10.1029/94GB00993
Schindler, J., Graef, F., König, H. J., 2015). Methods to assess farming sustainability in developing countries. A review. Agronomy for Sustainable Development, 35, 1043-1057. http://doi.org/10.1007/s13593-015-0305-2
Schmitz, A., Moss, C.B. (2015). Mechanized agriculture: Machine adoption, farm size, and labor displacement. AgBioForum 18, 278–296. Recuperado de https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/48143/MechanizedAgriculture.pdf?sequence=1
Shahbazi, F., y Jafarzadeh, A. 2010. Integrated assessment of rural land for sustainable development using MicroLEIS DSS in west Azerbaijan, Iran. Geoderma, 157(3): 175‐184.
Sharifi, M., Lynch, D.H., Hammermeister, A., Burton, D.L., Messiga, A.J., 2014. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in Eastern Canada. Nutr. Cycl. Agroecosystems 100, 135–146. https://doi.org/10.1007/s10705-014-9633-x
Shayler, H., McBride, M., Harrison, E., 2009. Sources and Impacts of Contaminants in Soils. Soil Sciences, CornelL Waste Management Institute. p: 1–6. http://cwmi.css.cornell.edu/sourcesandimpacts.pdf
Shibabaw, A., Alemayehu, G., Adgo, E., Asch, F., Freyer, B., 2018. Effects of organic manure and crop rotation system on potato (Solanum tuberosum L.) tuber yield in the highlands of Awi Zone. Ethiop. J. Sci. Technol. 11, 1. https://doi.org/10.4314/ejst.v11i1.1
Shukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil Tillage Res. 87, 194–204. https://doi.org/10.1016/j.still.2005.03.011
Shukla, S. K., Yadav, R. L., Gupta, R., Singh, A. K., Awasthi, S. K., Gaur, A., 2018. Deep Tillage, Soil Moisture Regime, and Optimizing N Nutrition for Sustaining Soil Health and Sugarcane Yield in Subtropical India. Communications in Soil Science and Plant Analysis, 49(4), 444–462. http://doi.org/10.1080/00103624.2018.1431263
Singh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K., 2012. An overview of sustainability assessment methodologies. Ecological Indicators, 15, 281–299. http://doi.org/10.1016/j.ecolind.2011.01.007
Smith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., Glover, J., 2017. Measuring sustainable intensification in smallholder agroecosystems: A review. Global Food Security, 12, 127–138, http://doi.org/10.1016/j.gfs.2016.11.002
Smith, A.J., Dumanski, J. 1994. FESLM: An international framework for evaluating sustainable land management. World Soil Resources Report No 73. FAO. Roma.
Smith, P., 2012. Soils and climate change. Current Opinion in Environmental Sustainability. 4: 539–544. http://dx.doi.org/10.1016/j.cosust.2012.06.005
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 789–813. https://doi.org/10.1098/rstb.2007.2184
Smith, P., Smith, J.U., Powlson, D.S., Mcgill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E.J., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P., 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153–225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00087-6
Smith, S.J., Wigley, T.M.L., 2006. Multi-Gas Forcing Stabilization with the MiniCAM. Energy Journal (Special Issue #3) pp 373-391. Soussana, J.F., 2014. Research priorities for sustainable agri-food systems and life cycle assessment. J. Clean. Prod. 73, 19–23. https://doi.org/10.1016/j.jclepro.2014.02.061
Sparks, A.H., Forbes, G.A., Hijmans, R.J., Garrett, K.A., 2014. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 20, 3621–3631. https://doi.org/10.1111/gcb.12587
Sparrow, L.A., 2015. Six years of results from a potato rotation and green manure trial in Tasmania, Australia. Acta Hortic. 1076, 29–36. Spiertz, J.H.J., 2010. Nitrogen , sustainable agriculture and food security . A review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064
St. Clair, S.B. y Lynch, J.P. 2010. The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil. 335: 101–115. https://doi.org/10.1007/s11104-010-0328-z
Stackhouse, P.W., Kusterer, J.M., 2019. NASA -POWER Data Access Viewer. NASA Langley ASDC User Serv. 1. https://power.larc.nasa.gov/ Stavi, I., Lal, R., 2013. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 33, 275–289. https://doi.org/10.1007/s13593-012-0110-0
Swart, R.J., Raskin, P., Robinson, J., 2004. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 14, 137–146. https://doi.org/10.1016/j.gloenvcha.2003.10.002
Tan, G., Shibasaki, R., 2003. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling. 168(3): 357-370.
Therond, O., Duru, M., Roger-Estrade, J., Richard, G., 2017. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 37. https://doi.org/10.1007/s13593-017-0429-7
Thoumazeau, A., Bessou, C., Renevier, M.S., Panklang, P., Puttaso, P., Peerawat, M., Heepngoen, P., Polwong, P., Koonklang, N., Sdoodee, S., Chantuma, P., Lawongsa, P., Nimkingrat, P., Thaler, P., Gay, F., Brauman, A., 2019. Biofunctool®: a new framework to assess the impact of land management on soil quality. Part B: investigating the impact of land management of rubber plantations on soil quality with the Biofunctool® index. Ecol. Indic. 97, 429–437. https://doi.org/10.1016/j.ecolind.2018.10.028
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., y Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. http://doi.org/10.1038/nature01014
Timsina, J., Godwin, D., Humphreys, E., Kukal, S. S., Smith, D., 2008. Evaluation of options for increasing yield and wáter productivity of wheat in Punjab, India Using the DSSAT‐CSM-CERES-Wheat model. Agricultural Wáter management. 95(9): 1099‐1110.
Tittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61. http://doi.org/10.1016/j.cosust.2014.08.006
Torrellas, M., Antón, A., Montero, J.I. 2013. An environmental calculator for greenhouse production systems. J. Environ. Manag. 118, 186e195. https://doi.org/10.1016/j.jenvman.2013.01.011
Tóth, G., Hermann, T., da Silva, M.R., Montanarella, L., 2018. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 190. https://doi.org/10.1007/s10661-017-6415-3
Tricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., Lo Giudice, A., 2018. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 172, 3747–3759. https://doi.org/10.1016/j.jclepro.2017.07.008
Triste, L., Marchand, F., Debruyne, L., Meul, M., Lauwers, L., 2014. Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Eclogy Soc. 19, 47–57. https://doi.org/10.5751/ES-06789-190347
Ulén, B., Larsbo, M., Koestel, J., Hellner, Q., Blomberg, M., Geranmayeh, P., 2018. Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio 47, 114–123. https://doi.org/10.1007/s13280-017-0991-x
Umar A. S., Iqbal, M., 2007. Nitrate accumulation in plants, factors affecting the process and human health implications. A review. Agron Sustain Dev, 27, 45–57, http://doi.org/10.1051/agro:2006021
USEPA., 1972. Quality of life indicators: A review of state-of-the-art and guidelines derived to assist in developing environmental indicators. USEPA Environmental Studies Division, Office of Research and Monitoring. Washington, DC.
Usman, M., Ibrahim, F., Oyetola, S.O., 2018. Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. Int. J. Res. Agric. Food Sci. 4, 1–17.
Vakhnyi, S., Khakhula, V., Fedoruk, Y., Panchenko, T., Herasymenko, L., 2018. The efficiency increase of the nutrition element uptake by various potato cultivars grown in one-crop system and in crop rotation. EurAsian J. Biosci. 12, 1–7.
Van Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Efert, F., Van Wagenberg, C. P. A., 2014. A protocol for evaluating the sustainability of agri-food production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315–321. http://doi.org/10.1016/j.ecolind.2014.02.027
Van Capelle, C., Schrader, S., Brunotte, J., 2012. Tillage-induced changes in the functional diversity of soil biota - A review with a focus on German data. Eur. J. Soil Biol. 50, 165–181. https://doi.org/10.1016/j.ejsobi.2012.02.005
Van Passel, S., y Meul, M. (2012). Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 32, 170-180. http://doi.org/10.1016/j.eiar.2011.08.005
Vargas, C. Z. R., 2009. La investigación aplicada: una forma de conocer las realidades con evidencia científica. Revista Educación, 33(1), 155–165. http://doi.org/0379-7082
Velasquez, E., Lavelle, P., Andrade, M., 2007. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 39, 3066–3080. https://doi.org/10.1016/j.soilbio.2007.06.013
Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Rev. 94, 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
Verhulst, N., François, I., Govaerts, B., 2010. Conservation agriculture, improving soil quality for sustainable production systems?, in: Rattan, L., Stewart, B.A. (Eds.), Food Security and Soil Quality. Taylor y Francis Group, London and New York, p. 418.
Xing, Y., Niu, X., Wang, N., Jiang, W., Gao, Y., Wang, X. 2020. The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR. Sustainability. 12, 1588. https://doi.org/10.3390/su12041588
Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., Verbruggen, A., 2014. Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability 6, 5512–5534. https://doi.org/10.3390/su6095512
Walkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. https://doi.org/10.1097/00010694-193401000-00003
Walraevens, K., Tewolde, T.G., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., Kebede, S., Van Hulle, L., Deckers, J., Martens, K., Van Camp, M., 2015. Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the mendae plain (Tigray, Ethiopia). L. Degrad. Dev. 26, 725–736. https://doi.org/10.1002/ldr.2377
Wang, L., Palta, J. A., Chen, W., Chen, Y., Deng, X., 2018. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 197, 41–53. http://doi.org/10.1016/j.agwat.2017.11.010
Wang, Y., Fan, J., Cao, L., Zheng, X., Ren, P., Zhao, S., 2018. The influence of tillage practices on soil detachment in the red soil region of China. Catena 165, 272–278. https://doi.org/10.1016/j.catena.2018.02.011
Wayne, W. D. 2002., Bioestatistics: A foundation for analysis in the health sciences. John Wiley and Sons, Inc. New York.
WCED (World Comission on Environment and Develpment). 1987. Our common future. Oxford University Press
Weidema, B. P., 2000. Agricultural data for life Cycle Assessments, Vol 2. Agricultural Economics Research Institute (LEI). La Haya.
Weldeslassie, T., Naz, H., Singh, S., Oves, M., 2018. Chemical contaminants for soil, air and aquatic ecosystem, in: Oves, M., Khan, M. Z., Ismail, I. M. I. (Eds), Modern age environmental problems and their remediation. Springer (1st ed.). http://doi.org/10.1007/978-3-319-64501-8
West, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-X
Wise, MA., Calvin, K.V., Thomson, A.M., Clarke, L.E., Bond-Lamberty, B., Sands, R.D., Smith, S.J., Janetos, A.C., Edmonds, J.A., 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science. 324:1183-1186. May 29, 2009
World Comission on Environment and Development WCED., 1987. Our common future. Oxford University Press
Wszelaczyńska, E., Pobereżny, J., Spychaj-Fabisiak, E., Janowiak, J., 2012. Effect of organic and nitrogen fertilization on selected components in potato tubers grown in a simplified crop rotation. J. Elemntology 1153–1165. https://doi.org/10.5601/jelem.2014.19.3.381
Yang, J.M., Yang, J.Y., Dou, S., Yang, X.M., Hoogenboom, G., 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr. Cycl. Agroecosystems 95, 287–303. https://doi.org/10.1007/s10705-013-9563-z
Yang, Q., Meng, F.R., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P.A., 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric. Ecosyst. Environ. 132, 23–31. https://doi.org/10.1016/j.agee.2009.02.012
Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
Yli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749
Yli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749
Youker, R. E., McGuinness, J. L., 1957. A short method of obtaining mean weightdiameter values of aggregate analyses of soils. Soil Science 83(4), 291–294. Recuperado de https://journals.lww.com/soilsci/Citation/1957/04000/A_SHORT_METHOD_OF_OBTAINING_MEAN_WEIGHT_DIAMETER.4.aspx
Zahm, F., Viaux, P., Vilain, L., Girardin, P., y Mouchet, C. 2008. Assessing farm sustainability with the IDEA method - From the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. http://doi.org/10.1002/sd.380
Zegada-lizarazu, W., Monti, A., 2010. Energy crops in rotation. A review. Biomass and Bioenergy 35, 12–25. https://doi.org/10.1016/j.biombioe.2010.08.001
Zhang, T.Q., Zheng, Z.M., Lal, R., Lin, Z.Q., Sharpley, A.N., Shober, A.L., Smith, D., Tan, C.S., Van Cappellen, P., 2018. Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators. J. Environ. Qual. 47, 191. https://doi.org/10.2134/jeq2017.10.0398
Zhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., Wu, L., 2016. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 265, 176–186. https://doi.org/10.1016/j.geoderma.2015.11.027
Zörb, C., Senbayram, M., 0|Peiter, E., 2014. Potassium in agriculture - Status and perspectives. J. Plant Physiol. 171, 656–669. https://doi.org/10.1016/j.jplph.2013.08.008
Zornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M., Faz, A., 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practicesand human health. Soil 1, 173–185. https://doi.org/10.5194/soil-1-173-2015
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 228 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79401/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79401/1/80221019.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79401/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79401/4/80221019.2021.pdf.jpg
bitstream.checksum.fl_str_mv 24013099e9e6abb1575dc6ce0855efd5
8a6b9eeaeeab25f135e723b0e9253ff8
cccfe52f796b7c63423298c2d3365fc6
6985bc9db04c61dc2417b2e6dc4d64ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089864278179840
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Henao Toro, Martha Ceciliaf2e223dbab0bfc49408ba16c2a4f0c0eMonsalve Camacho, Oscar Ivána5687514d2dd6ba3ed6ee72792f0ca522021-04-14T20:48:09Z2021-04-14T20:48:09Z2021-02https://repositorio.unal.edu.co/handle/unal/79401Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasA escala finca, región, país o planeta, existe un considerable número de instrumentos que evalúan cualitativa o cuantitativamente el nivel de sostenibilidad de los sistemas de producción agrícola. Las opciones se reducen si la evaluación se quiere realizar a nivel ultra detallado, donde el sistema productivo está a escala de parcela o unidad experimental; es decir, en investigación agrícola aplicada. En este contexto, es común que los mejores tratamientos sean identificados a través de las diferencias significativas que resulten del análisis estadístico de variables como rendimiento, pero no se definen desde la sostenibilidad del sistema de producción agrícola, conectando al ambiente, la sociedad y la economía como un todo. Por otra parte, muchos de los estudios de sostenibilidad agrícola se realizan sin tener en cuenta las características del suelo. Esto contrasta con el efecto directo y determinante que este recurso tiene sobre la agricultura. Además de la restricción de detalle geográfico y la escasa importancia que se le da al suelo, las actuales herramientas no abordan cuantitativamente la sostenibilidad a largo plazo. Teniendo en cuenta estas tres limitaciones, se diseñó, construyó y evaluó MSEAS (Metodología de Evaluación de la Sostenibilidad Orientada a Experimentos Agrícolas Asociados al Suelo), una herramienta de análisis de la sostenibilidad agrícola basada en indicadores, que reúne las tres dimensiones de la sostenibilidad: ambiental, social y económica, y a través de un índice cuantitativo mide el nivel actual o futuro de la sostenibilidad de los tratamientos evaluados en experimentos sobre manejo del suelo. MSEAS se construyó con cuatro características importantes: 1) adaptable a experimentos asociados a actividades de manejo del suelo con diversas características espaciales, temporales y de medición. 2) modulable: dependiendo de la cantidad y calidad de los datos, se tiene la opción de evaluar solo la sostenibilidad actual o la sostenibilidad actual y futura. 3) cuantificable: el nivel de sostenibilidad de los tratamientos se determina a través de un índice cuantitativo. 4) inferencial: es posible estimar un importante número de indicadores mediante herramientas de modelación y simulación, como LCA (Life Cicle Assessment) y DSSAT (Decision Support System for Agrotechnology Transfer). Antes de construir MSEAS, se plantearon cuatro documentos de línea base: 1) Revisión sobre indicadores de sostenibilidad agrícola asociados a propiedades, procesos y manejo del suelo 2) Evaluación de indicadores de calidad del suelo con posibilidad de uso a escala de parcela o unidad experimental 3) Esfuerzo de labor. Indicador para estimar la magnitud del esfuerzo físico en las labores agrícolas 4) Marco de selección del conjunto mínimo de indicadores para evaluaciones de sostenibilidad agrícola a escala de parcela. Estos trabajos sirvieron de línea base y sustento técnico para la puesta a punto de MSEAS, la cual se desarrolló a través de tres procesos: diseño, construcción y evaluación con datos simulados, uso en condiciones actuales y uso en escenarios futuros. Se utilizaron datos de experimentos reales (estudios de caso) para evaluar la metodología. La principal conclusión que se desprende de esta evaluación es que es viable el uso de MSEAS con experimentos agrícolas orientados al suelo, ya que se evidenció su capacidad para identificar los tratamientos ambiental, social y económicamente más sostenibles en los experimentos evaluados. (Texto tomado de la fuente).At the farm, region, country, or global scale, there are many instruments that qualitatively or quantitatively assess the level agricultural production systems sustainability. The options are reduced if the evaluation is to be carried out at the ultra-detailed level, where the production system is at the plot or experimental unit scale, i.e., in applied agricultural research. In this context, it is common for the best treatments to be identified through the significant differences resulting from the statistical analysis of variables such as yield. However, they are not defined from the sustainability of the agricultural production system, connecting the environment, society, and the economy. On the other hand, many agricultural sustainability studies are conducted without considering soil characteristics. This contrasts with the direct and determining effect that this resource has on agriculture. In addition to the restriction of geographic detail and the low importance given to soil, current tools do not quantitatively address long-term sustainability. With these three limitations in mind, MSEAS (Methodology for Sustainability Evaluation oriented to Soil Associated Agricultural Experiments), an indicator-based agricultural sustainability analysis tool, was designed, constructed, and evaluated. It brings together the three dimensions of sustainability: environmental, social, and economical, and through a quantitative index measures the current or future level of sustainability of the treatments evaluated in soil management experiments. MSEAS was constructed with four essential characteristics: 1) Adaptable to experiments associated with soil management activities with diverse spatial, temporal, and measurement characteristics. 2) Modular, since depending on the quantity and quality of the data, there is the option of evaluating only current sustainability or current and future sustainability. 3) Quantifiable: the level of sustainability of treatments is determined through a quantitative index. 4) Inferential, since it is possible to estimate many indicators using modeling and simulation tools, such as LCA (Life Cycle Assessment) and DSSAT (Decision Support System for Agrotechnology Transfer). Before building MSEAS, four baseline documents were proposed: 1) Review of agricultural sustainability indicators associated with soil properties, processes, and management 2) Evaluation of soil quality indicators with the possibility of use at plot or experimental unit scale 3) Labour effort. Indicator to estimate the magnitude of physical effort in agricultural work. 4) Framework for the selection of the minimum set of indicators for agricultural sustainability evaluations at the plot scale. These works served as a baseline and technical support for the development of MSEAS, which was developed through three processes: design, construction and evaluation with simulated data, use in current conditions, and future scenarios. Data from real experiments (case studies) were used to evaluate the methodology. The main conclusion drawn from this evaluation is that the use of MSEAS with soil-oriented agricultural experiments is feasible. Its ability to identify the most environmentally, socially, and economically sustainable treatments in the evaluated experiments was evidenced.Incluye anexosDoctoradoDoctor en Ciencias AgrariasSe realizó una revisión preliminar en Google Scholar y posteriormente se consultaron y descargaron las publicaciones de webs científicas. La búsqueda se realizó tratando de ligar los términos “suelo”, “agricultura” y “sostenibilidad”Suelos y aguasCiencias Agronómicasxxii, 228 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Doctorado en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesFactores edáficosRelaciones planta sueloRelaciones planta aguaCalidad del sueloEdaphic factorsPlant soil relationsPlant water relationsSoil qualityMSEASIndicador de sostenibilidadCalidad del sueloRelación suelo-plantaRelación suelo-aguaRelación suelo-atmósferaDSSATLCASustainability indicatorSoil qualitySoil-plant relationshipSoil-water relationshipSoil-athmosphere relationshipEvaluación de la sostenibilidad orientada a experimentos agrícolas asociados al sueloTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbbona, E.A., Sarandón, S.J., Marasas, M.E., Astier, M., 2007. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 119, 335–445. https://doi.org/10.1016/j.agee.2006.08.001Acar, M., Celik, I., Günal, H., 2018. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Eurasian J Soil Sci. 7 (1) 51 - 58, http://doi.org/10.18393/ejss.335329Acton, D.F., L.J. Gregorich., 1995. The health of our soils: Toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa. Publication 1906/E, 138 p.Acuña, G. A. C. 2009. Formulación y evaluación financiera de proyectos de inversión con aplicaciones en Excel. Bogotá, Colombia: Universidad Nacional de Colombia. Facultad de Ciencias Económicas.Adavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Sci. Hortic. (Amsterdam). 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services - A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009Agronet - Colombian Ministry of Agriculture and Rural Development, 2017. Statistics for the Agricultural Sector. Available at: http://www.agronet.gov.co (accessed 20.02.20). Agronet- Colombian Ministry of Agriculture and Rural Development., 2019. Reporte: Área, Producción y Rendimiento Nacional por Cultivo (Papa). Ministerio de Agricultura y Desarrollo Rural, Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Accessed 19 Sept 2019Aharonov-Nadborny, R., Tsechansky, L., Raviv, M., Graber, E.R., 2018. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Sci. Total Environ. 630, 1115–1123. https://doi.org/10.1016/j.scitotenv.2018.02.270Allahyari, M.S., Daghighi Masouleh, Z., Koundinya, V., 2016. Implementing Minkowski fuzzy screening, entropy, and aggregation methods for selecting agricultural sustainability indicators. Agroecol. Sustain. Food Syst. 40, 277–294. https://doi.org/10.1080/21683565.2015.1133467Altieri, M y Nicholls, C. 2008. Los impactos del cambio climático sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Agroecología. 3: 7–28. http://revistas.um.es/agroecologia/article/view/95471Altieri, M.A., 2018. Agroecology. The science of sustainable agriculture, 2nd ed. Taylor y Francis Group, United Kingdom.Amacher, M. C., O’Neil, K. P., Perry, C. H., 2007. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p. https://doi.org/10.2737/RMRS-RP-65Andrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 68, 1945. https://doi.org/10.2136/sssaj2004.1945Andrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8Antón, A., 2004. Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Barcelona. Universitat Politècnica de Catalunya. PhD Thesis. http://tdx.cat/handle/10803/6827.Añez, B., Espinoza, W., 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agric. Andin. 11, 28–38.Arias, M.E., Gonzáles- Pérez, J.A., González-Vila, F.J., Ball, A.S., 2005. Soil health — a new challenge for microbiologists and. Int. Microbiol. 8, 13–21. https://doi.org/http://hdl.handle.net/10261/2130Arizpe, N., Giampietro, M., Ramos-Martin, J., 2011. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). CRC. Crit. Rev. Plant Sci. 30, 45–63. https://doi.org/10.1080/07352689.2011.554352Astier, M., Speelman, E.N., López-Ridaura, S., Masera, O.R., Gonzalez-Esquivel, C.E., 2011. Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. Int. J. Agric. Sustain. 9, 409–422. https://doi.org/10.1080/14735903.2011.583481Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliett, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., Van Zeijts, H., 2003. Harmonisation of environmental life cycle assessment for agriculture, European Commission DG VI Agriculture. Retrieved from http://jurcom5.juris.de/bundesrecht/bbodschg/Baggs, E.M., 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3, 321–327. https://doi.org/10.1016/j.cosust.2011.08.011Bai, Z., Caspari, T., Gonzalez, M.R., Batjes, N.H., Mäder, P., Bünemann, E.K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C.S.S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., Tóth, Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. https://doi.org/10.1016/j.agee.2018.05.028Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K. E.O., Wallenstein, M. D., 2018. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 24(3), 895–905. http://doi.org/10.1111/gcb.13926Balaguera-López, H., Álvarez-Herrera, J., Martínez-Arévalo, G., Balaguera, W., 2011. El contenido de arcilla del suelo influye en el rendimiento de un cultivo de tomate (Solanum lycopersicum L.). Rev. Colomb. Cienc. Hortic, 3(2), 199-209. https://doi.org/10.17584/rcch.2009v3i2.1213Barrera, L. 1998. Fertilización del cultivo de la papa en los departamentos de Cundinamarca y Boyacá. in: Guerrero, R (Ed), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos S.A.Barto, E.K., Alt, F., Oelmann, Y., Wilcke, W., Rillig, M.C., 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 42, 2316–2324. https://doi.org/10.1016/j.soilbio.2010.09.008Battilani, A., Plauborg, F.L., Hansen, S., Dolezal, F., Mazurczyk, W., Bizik, J., 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Hortic. 792, 61–67. https://doi.org/http://dx.doi.org/10.17660/ActaHortic.2008.792.4 10Baush, J.C., Bojórquez, L.T., Eakin, H., 2014. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainable Science. 1–17. https://doi.org/10.1007/s11625-014-0243-yBélanger, V., Vanasse, A., Parent, D., Allard, G., y Pellerin, D., 2012. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421-430. http://doi.org/10.1016/j.ecolind.2012.04.027Bell, S., Morse, S., 2008. Sustainability Indicators: Measuring the Immeasurable?, second ed. Earthscan.London.Sterling,VA. https://doi.org/10.1016/S0743-0167(99)00036-4Benoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: Just in time! Int. J. Life Cycle Assess. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8Bentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5 (6): 349e357. https://doi.org/10.1007/BF02978670Bergström, L. F., y Kirchmann, H. 2010. Leaching of Total Nitrogen from Nitrogen-15-Labeled Poultry Manure and Inorganic Nitrogen Fertilizer. Journal of Environment Quality, 28(4), 1283. https://doi.org/10.2134/jeq1999.00472425002800040032xBernard, E., Larkin, R.P., Tavantzis, S., Erich, M.S., Alyokhin, A., Sewell, G., Lannan, A., Gross, S.D., 2012. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl. Soil Ecol. 52, 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002Bernard, F., Van Noordwijk, M., Luedeling, E., Villamor, G. B., Sileshi, G. W., Namirembe, S., 2014. Social actors and unsustainability of agriculture. Curr. Opin. Environ. Sustain. 6, 155–161, http://doi.org/10.1016/j.cosust.2014.01.002Beyer, L., Sieling, K., Pingpank, K., 1999. The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol. Fertil. Soils 28, 156–161. https://doi.org/10.1007/s003740050478Binder, C.R., Feola, G., Steinberger, J.K., 2010. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 30, 71–81. https://doi.org/10.1016/j.eiar.2009.06.002Blanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. CRC. Crit. Rev. Plant Sci. 23, 481–504. https://doi.org/10.1080/07352680490886842Blum, W., 2005. Soils and climate change. Soils y Sediments. 5 (2): 67 – 68. https://doi.org/10.1065/jss2005.02.006Bockstaller, C., Feschet, P., y Angevin, F., 2015. Issues in evaluating sustainability of farming systems with indicators. Oilseeds y Fats Crops and Lipids, 22(1), D102. http://doi.org/10.1051/ocl/2014052Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., y Gaillard, G. 2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235. http://doi.org/10.1051/agro:2008058Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5. https://doi.org/10.1038/ncomms4858Boeckx, P., Van Cleemput, O., 2001. Estimates of N2Oand CH4 fluxes fromagricultural lands in various regions in Europe. Nutr. Cycl. agroecosystems 60, 35–47.Bogotá trade chamber (CCB)., 2019. Steps to create company. In: www.ccb.org.co; (accessed 25.06.19).Bojacá, C.R., A. Cooman y H. Ubaque. 2009. Ecofisiología del cultivo y manejo del clima. pp. 65–83. En: Escobar, H y Lee, R (Ed). Manual de producción de tomate bajo invernadero. Fundación Universidad Jorge Tadeo Lozano.Bojacá, C.R., Wyckhuys, K.A.G., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69, 26–33. https://doi.org/10.1016/j.jclepro.2014.01.078Bone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., Voulvoulis, N., 2010. Soil quality assessment under emerging regulatory requirements. Environ. Int. 36, 609–622. https://doi.org/10.1016/j.envint.2010.04.010Borg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment y Health, 16, 55-58. Recuperado de www.jstor.org/stable/40965845Borg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine y Science in Sports y Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012Boshell, J. F., 2008. Elementos de análisis para el manejo de las amenazas del cambio climáticas en la agricultura colombiana. Revista de Innovación y Cambio tecnológico. 7: 38-50. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=24511yshelfbrowse_itemnumber=25693Bouma, J., Montanarella, L., Evanylo, G., 2019. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 35, 538–546. https://doi.org/10.1111/sum.12518Bouwman, A.F., Van Der Hoek, K.W., Olivier, J.G.J., 1995. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. 100, 2785–2800. https://doi.org/10.1029/94JD02946Brentrup, F., Kusters, J., Lammel, J., Kuhlmann, H., 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5, 349–357. https://doi.org/10.1006/bbrc.2000.4000Brouder, S. M., y Volenec, J. J., 2008. Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant. 133: 705–724. https://doi.org/10.1111/j.1399-3054.2008.01136.xBrunett Pérez, L., González Esquivel, C., García Hernández, L.A., 2005. Evaluación de la sustentabilidad de dos agroecosistemas campesinos de producción de maíz y leche, utilizando indicadores. Livest. Res. Rural Dev. 17.Burger, J.A., Kelting, D.L., 1999. Using soil quality indicators to assess forest stand management. For. Ecol. Manage. 122, 155–166. https://doi.org/https://doi.org/10.1016/S0378-1127(99)00039-0Burton, D.L., Zebarth, B.J., Gillam, K.M., Macleod, J.A., 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes.Can. J. Soil Sci. 99, 117–125. https://doi.org/10.1139/cjss-2018-0150 Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. https://doi.org/10.1016/j.envint.2006.05.002Campbell, B.M., Thornton, P., Zougmoré, R., van Asten, P., Lipper, L., 2014. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002Cano-Betancur, S, M., Gallego-Becerra, M., Chavarriaga-Montoya, W., 2011. Efecto de la aplicación de calcio y fósforo en un suelo ácido y la respuesta en el cultivo de tomate chonto (Solanum lycopersicum L. Mill). Agronomía 19 (1): 77-87. Retrieved of: http://agronomia.ucaldas.edu.co/downloads/Agronomia%2019(1)%20Completa.pdf#page=77Castellini, C., Boggia, A., Cortina, C., Dal Bosco, A., Paolotti, L., Novelli, E., y Mugnai, C., 2012. A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, 37, 192-201. http://doi.org/10.1016/j.jclepro.2012.07.006Cellura, M., Longo, S., Mistretta, M., 2012. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 28, 56–62. https://doi.org/10.1016/j.jclepro.2011.10.021Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., Cayuela, M.L., 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosystems 111, 103–125. https://doi.org/10.1007/s10705-017-9903-5Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., Cerri, C.C., 2016a. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS One 11, 1–26. https://doi.org/10.1371/journal.pone.0150860Cherubin, M.R., Karlen, D.L., Franco, A.L.C., Cerri, C.E.P., Tormena, C.A., Cerri, C.C., 2016b. A soil management assessment framework (SMAF) evaluation of brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226. https://doi.org/10.2136/sssaj2015.09.0328Chong, I.G., Jun, C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B, Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles, in: Stocker, T.F., Qin. D., Plattner, G-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 6. Cambridge University Press, pp 465–570.Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R., 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological y Environmental Research, Washington, 7 DC., USA, 154 pp.Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19, 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009Daccache, A., Keay, C., Jones, R.J.A., Waterhead, E.K., Stalhman, M.A., Knox, J.W., 2012. Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J. Agric. Sci. 150, 161–177. https://doi.org/10.1017/S0021859611000839Dane, J.H., Hopmans, J.H., 2002. Water retention and storage. In: Dane, J.H., Topp, G.C (Editors). Methods of soil analysis Part 4, SSSA Book Ser 5. Madison, WI.: SSSA. pp. 671–717.Dantsis, T., Douma, C., Giourga, C., Loumou, A., Polychronaki, E.A., 2010. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 10, 256–263. https://doi.org/10.1016/j.ecolind.2009.05.007Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. Reviews. 440 (9): 165-173. https://doi.org/10.1038/nature04514De Jager, a., Onduru, D., van Wijk, M.S., Vlaming, J., Gachini, G.N., 2001. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agric. Syst. 69, 99–118. https://doi.org/10.1016/S0308-521X(01)00020-8De Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263. https://doi.org/10.1016/0169-7439(93)85002-XDe La Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., 2004. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With Special reference to the Mediterranean region. Environmental Modelling y Software. 19(10): 929-942De Luca, A.I., Falcone, G., Stillitano, T., Iofrida, N., Strano, A., Gulisano, G., 2018. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 171, 1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119De Luca, A.I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., Gulisano, G., 2017. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 595, 352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284De Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environ. Eng. Manag. J. 14 (7):1–11 Retrieved from: http://omicron.ch.tuiasi.ro/EEMJ/pdfs/vol14/no7/11_1052_De_Luca_14.pdf.De Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems: the Mimesmas Project. Environ. Eng. Manag. J. 14, 1571–1581.De Olde, E. M., Oudshoorn, F., Bokkers, E., Stubsgaard, A., Sørensen, C., y de Boer, I., 2016a. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability, 8(9), 957. http://doi.org/10.3390/su8090957De Olde, E., Moller, H., Marchand, F., McDowell, R.W., MacLeod, C.J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E.A.M., De Boer, I.J.M., Legun, K.A., Le Quellec, I., Merfield, C., Oudshoorn, F.W., Reid, J., Shader, C., Szymanski, E., Sorensen, C.A.G., Whitehead, J., Manhire, J., 2016b. When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 1–16. https://doi.org/10.1007/s10668-016-9803-xDe Olde, E.M., Oudshoorn, F.W., Sørensen, C.A.G., Bokkers, E.A.M., De Boer, I.J.M., 2016c. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 66, 391–404. https://doi.org/10.1016/j.ecolind.2016.01.047De Paul Obade, V., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096Dempster, D.N., Jones, D.L., Murphy, D. V., 2012. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221. https://doi.org/10.1071/SR11316Departamento Administrativo Nacional de Estadística (DANE)., 2017. El cultivo de la papa (Solanum tuberosum L.) y un estudio de caso de los costos de producción de papa Pastusa Suprema. Insumos y factores asociados a la producción agropecuaria. Boletín mensual No 15. Recuperado de https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ene_2017.pdfDeytieux, V., Munier-Jolain, N., Caneill, J., 2016. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. http://doi.org/10.1016/j.eja.2015.10.005 Dirección de Impuestos y Aduanas Nacionales (DIAN)., 2019. Estatuto tributario. www.dian.gov.co; consulta: junio de 2019.Dizdaroglu, D., y Yigitcanlar, T., 2014. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecological Indicators, 41, 115-130. http://doi.org/10.1016/j.ecolind.2014.01.037Dong, F., Mitchell, P. D., y Colquhoun, J. 2015. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. Journal of Environmental Management, 147, 175–183. http://doi.org/10.1016/j.jenvman.2014.08.025Doran, J. W., Zeiss, M. R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Life Sci. 62(16), 1433–1441. https://doi.org/10.1016/S0024-3205(98)00082-4Doran, J.W., Parkin, T.B., 1994. Defining an assesing soil quality, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, USA, pp. 3–21.Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Singh, H., Wichelns, D., 2015. Managing water and nutrients to ensure global food security, while sustaining ecosystem services, in: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D (Eds), Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). First edition, Paris, France, pp 1-8Dzotsi, K.A., Jones, J.W., Adiku, S.G.K., Naab, J.B., Singh, U., Porter, C.H., Gijsman, A.J., 2010. Modeling soil and plant phosphorus within DSSAT. Ecol. Modell. 221, 2839–2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023Ecoinvent Centre. 2017. Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available from: http://www.ecoinvent.org.Elkington, J., 1997. Cannibals With Forks. The Triple Bottom Line of 21st Century Business. Capstone Publishing, Oxford.Elkington, J., 1998. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 8, 37–51. https://doi.org/10.1002/tqem.3310080106Engels, C., Kirkby, E., White, P., 2012. Mineral nutrition, yield and source–sink relationships, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368European Comission., 2001. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development. https://doi.org/10.1021/jacs.6b12944FAO (Food and Agriculture Organization of the United Nations)., 2009. International year of the potato 2008: new light on a hidden treasure. http://www.potato2008.org/en/events/book.htmlFAOSTAT., 2019. World potato production quantity, yields and harvested areas for 2017. http://www.fao.org/faostat/en/#data/QC. Accessed 19 Sept 2019Farahani, E., Emami, H., Keller, T., 2018. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 32, 69–80. https://doi.org/10.1515/intag-2016-0092Federación colombiana de productores de papa (Fedepapa); Ministerio de Ambiente, Vivienda y Desarrollo Territorial (Minambiente)., 2004. Guía ambiental para el cultivo de la papa. Federación Colombiana de Productores de PapaFernandes, J. C., Gamero, C. A., Rodrigues, J. G. L., Mirás-Avalos, J, M., 2011. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research 112: 167–174. https://doi.org/10.1016/j.still.2011.01.001 Filzmoser, P y Gschwandtner, M. 2017. Mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.8. https://CRAN.R-project.org/package=mvoutlierFinkbeiner, M., Schau, E. M., Lehmann, A., y Traverso, M., 2010. Towards life cycle sustainability assessment. Sustainability. 2(10), 3309-3322. http://doi.org/10.3390/su2103309Fleisher, D.H., Barnaby, J., Sicher, R., Resop, J.P., Timlin, D.J., Reddy, V.R., 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171–172, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011Fleisher, D.H., Timlin, D.J., Reddy, V.R., 2008. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J. 100, 711–719. https://doi.org/10.2134/agronj2007.0188Foley J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478, 337–342, http://doi.org/10.1038/nature10452Food and Agriculture Organization (FAO)., 2011. The State of the World’s Land and Water Resources for Food and Agriculture. Managing Systems at Risk. Lancet, 2(7929), 285, http://doi.org/10.4324/9780203142837Food and Agriculture Organization (FAO)., 2013. Sustainability Assessment Of Food and Agriculture Systems. Guidelines Version 3.0. Retrieved from http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/Food and Agriculture Organization of the United Nations (FAO). AquaCrop training handbooks. Book I. Anderstanding AquaCrop. FAO. P: 59.Forero, H. D., y Garzón, M. E. 2000. Validación del modelo de simulación del crecimiento “Substor-potato V. 35” para cuatro variedades mejoradas de papa (Solanum tuberosum ssp. andígena) bajo condiciones de cultivo comercial. Tesis de pregrado. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Bogotá., Colombia. https://repository.agrosavia.co/handle/20.500.12324/16894Freudenberg, M., 2003. Composite indicators of country performance: a critical assessment. OECD Sci. Technol. Ind. Work. Pap. 16, 35. https://doi.org/10.1787/405566708255Galloway, J.N., Aer, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The Nitrogen Cascade. Bioscience 53, 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2Garrigues, E., Corson, M.S., Angers, D.A., Van Der Werf, H.M.G., Walter, C., 2012. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecol. Indic. 18, 434–442. https://doi.org/10.1016/j.ecolind.2011.12.014Gasparatos, A., 2010. Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91(8), 1613–1622. https://doi:10.1016/j.jenvman.2010.03.014Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba, N.E.-H., Niggli, U., 2012. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. 109, 18226–18231. https://doi.org/10.1073/pnas.1209429109Gaudino, S., Goia, I., Borreani, G., Tabacco, E., Sacco, D., 2014. Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecol. Indic. 40, 76–89. https://doi.org/10.1016/j.ecolind.2014.01.004Gavrilov, I., Pusev, R., 2014. Normtest: Tests for normality. R package version 1.1. https://CRAN.R-project.org/package=normtestGerdessen, J.C., Pascucci, S., 2013. Data envelopment analysis of sustainability indicators of european agricultural systems at regional level. Agric. Syst. 118, 78–90. https://doi.org/10.1016/j.agsy.2013.03.004Gerik, T., Williams, J., Dagitz, S., Magre, M., Meinardus, A., Steglich, E., Taylor, R., 2015. Environmental Policy Integrated Climate. Texas AyM Agri Life, United States. P: 102Gerrard, C., Smith, L.G., Pearce, B., Padel, S., Hitchings, R., y Measures, M., 2012. Public Goods and Farming. En: Lichtfouse, E. 2012. Farming for Food and Water Security. Sustainable agriculture reviews (Vol. 5). Springer. http://doi.org/10.1016/S1573-4285(04)80400-9Ghisellini, P., Zucaro, A., Viglia, S., Ulgiati, S., 2014. Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecol. Modell. 271, 132–148. https://doi.org/10.1016/j.ecolmodel.2013.02.014Giampietro, M., Aspinall, R. J., Ramos-Martin, J., y Bukkens, S. G. F. 2014. Resource accounting for sustainability assessment. The nexus between energy, food, water and land use (1st ed.). London and New York: Routledge. Taylor and Francis Group. Recuperado de: https://www.routledge.com/Resource-Accounting-for-Sustainability-Assessment-The-Nexus-between-Energy/Giampietro-Aspinall-Ramos-Martin-Bukkens/p/book/9780415720595Giles, J., 2005. Nitrogen study fertilizes fears of pollution. Nature 433, 791. https://doi.org/10.1038/433791aGlobal Strategy (GSARS)., 2014. Handbook on Agricultural Cost of Production Statistics. Technical report series. Improving agricultural y rural statistics. DRAFT Guidelines for Data Collection, Compilation Glover, J.D., Reganold, J.P., Andrews, P.K., 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 80, 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science. 327, 812–818. https://doi.org/10.1126/science.1185383Godwin, D. C., Singh, U., 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuji, G. Y., Hoogenboom, G., Thornton, P. K (Eds), Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. p. 55–78. https://doi.org/10.1007/978-94-017-3624-4_4Gómez, H. L. 1997. Estadística experimental aplicada a las ciencias agrícolas. Universidad Nacional de Colombia.Gómez, L. J. A., y Arriaza, B. M. 2011. La construcción de indicadores sintéticos de sostenibilidad agrícola. En: Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía. Premios agrarios Unicaja.Gómez, L. J. A., y Riesgo, L., 2009. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. Journal of Environmental Management, 90(11), 3345-3362. http://doi.org/10.1016/j.jenvman.2009.05.023Gómez, L. J. A., y Sanchez, F. G., 2010. Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. http://doi.org/10.1016/j.ecolecon.2009.11.027Gómez-Limón, J.A., Arriaza, B.M., 2011. Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía, premios agrarios Unicaja. Gómez-Macpherson, H., Gómez, J.A., Orgaz, F., Villalobos, F.J., Fereres, E. 2016. Soil conservation. In: Villalobos, F.J., Fereres, E (Eds), Principles of agronomy for sustainable agriculture. Springer. p 241-254. Recuperado de: https://link.springer.com/book/10.1007%2F978-3-319-46116-8Gomiero, T., Pimentel, D., Paoletti, M.G., 2011. Is There a Need for a More Sustainable Agriculture? CRC. Crit. Rev. Plant Sci. 30, 6–23. https://doi.org/10.1080/07352689.2011.553515Grabowski, P., Musumba, M., Palm, C., 2018. Sustainable agricultural intensification and measuring the immeasurable: Do we have a choice?, in: Bell, S., Mors, S. (Eds.), Routledge Handbook of Sustainability Indicators. Taylor y Francis Group, p. 568.Grassini, P., van Bussel, L. G.J., Wart, J. V., Wolf, J., Claessens, L., Yanga, H., Boogaard, H., de Groote, H., van Ittersumb, M. K., y Cassman, K. G., 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 177: 49–63. http://dx.doi.org/10.1016/j.fcr.2015.03.004Gu, Y.J., Han, C.L., Fan, J.W., Shi, X.P., Kong, M., Shi, X.Y., Siddique, K.H.M., Zhao, Y.Y., Li, F.M., 2018. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. F. Crop. Res. 215, 94–103. https://doi.org/10.1016/j.fcr.2017.10.010Guerrero, R. 1998. Fertilización de cultivos de clima frío. Segunda edición. Monómeros Colombo-venezolanos, Bogotá. 370 p. Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R., Huijbregts, M.A.J., 2004. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands.Haberern, J., 1992. A soil health index. J. Soil Water Conserv. 47, 6. Recuperado de https://www.jswconline.org/content/47/1/6.full.pdfHaitovsky, Y., 1968. Missing Data in regression analysis. Journal of the Royal Statistical Society: Series B (Methodological). 30, 67–82. https://doi.org/10.1111/j.2517-6161.1968.tb01507.xHäni, F., Braga, F., Stämpfli, A., Keller, T., Fischer, M., y Porsche, H. 2003. RISE, a tool for holistic sustainability assessment at the farm level. International Food and Agribusiness Management Review, 6(4).Havlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. L., 2014. Soil Fertility and Fertilizers, an introduction to nutrient management. 8th ed. Pearson Education, Inc, Upper Saddle River.Hayakawa, A., Akiyama, H., Sudo, S., Yagi, K., 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem. 41, 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011Hayati, D., Ranjbar, Z., Karami, E., 2010. Measuring agricultural sustainability. En Sustainable Agriculture Reviews, 5, 73–100, http://doi.org/10.1007/978-90-481-9513-8He, Z., Honeycutt, W. C., Olanya, M, O., Larkin, R, P., Halloran, J. M., Frantz, J. M.,2012. Comparison of soil phosphorus status and organic matter composition in potato fields with different crop rotation systems, in: He, Z., Larkin, R., Honeycutt, W (Eds). Sustainable potato production: Global case studies, 1st ed, Springer, New York, London. https://doi.org/10.1017/CBO9781107415324.004Heijungs, R., Guinée, J. B. 2012. An overview of the life cycle assessment method - Past, Present, and Future, in: Curran, M. A (Ed), Life cycle assessment handbook. A guide for environmentally sustainable products. Willey. USA. P: 15-42Herrick, J.E., 2000. Soil quality: An indicator of sustainable land management? Appl. Soil Ecol. 15, 75–83. https://doi.org/10.1016/S0929-1393(00)00073-1Higueras, P., Campos, J.A., Esbrí, J.M., García-noguero, E.M., Elmayel, I., 2019. Petrogenesis and Exploration of the Earth’s Interior. Springer International Publishing. https://doi.org/10.1007/978-3-030-01575-6Hirel, B., Tétu, T., Lea, P.J., Dubois, F., 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485. https://doi.org/10.3390/su3091452Hoang, V.N., Alauddin, M., 2010. Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutr. Cycl. Agroecosystems 87, 353–368. https://doi.org/10.1007/s10705-010-9343-yHoogenboom, G., C.H. Porter, V. Shelia, K.J. Boote, U. Singh, J.W. White, L.A. Hunt, R. Ogoshi, J.I. Lizaso, J. Koo, S. Asseng, A. Singels, L.P. Moreno, and J.W. Jones. 2017. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7. DSSAT Foundation, Gainesville, Florida, USA. https://DSSAT.netHoogenboom, G., Jones, J. W., Traore, P. C. S., Boote, K. J., 2012. Experiments and Data for Model Evaluation and Application. En: Kijara, J., Fatondji, D., Jones, J. W., Hoogenboom, G., Tabo, R., Bationo, A. 2012. Inproving soil fertility recomendations in Africa using the Decision Support System for Agrothecnology Transfer (DSSAT). Springer, 9-18Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.Hosiny, E. I., Khafagy, E. E., Mosaad, I. S. M., y Seadh, A. K. 2017. Interaction effect between mineral zinc-nitrogen fertilization mixture and organic fertilization as compost on yield, nutrients uptake of rice and some soil properties. Agric.Eng.Int, 302–309. Recuperado de http://www.cigrjournal.org/index.php/Ejounral/article/view/4647Hubeau, M., Marchand, F., Coteur, I., Mondelaers, K., Debruyne, L., Van Huylenbroeck, G., 2017. A new agri-food systems sustainability approach to identify shared transformation pathways towards sustainability. Ecol. Econ. 131, 52–63. https://doi.org/10.1016/j.ecolecon.2016.08.019Hünnemeyer, A. J., de Camino, R., Müller, S. 1997. Analisis de desarrollo sostenible en Centroamerica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ GTZ.Hussain, I., Olson, K.R., Wander, M.M., Karlen, D.L., 1999. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Till. Res. 50, 237–249. https://doi.org/10.1016/S0167-1987(99)00012-4IDEAM, PNUD, MADS, DNP, CANCILLERÍA., 2015. Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones. Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdfInstituto Geográfico Agustín Codazzi (IGAC). (2014). Códigos para los levantamientos de suelos. Instructivo. Grupo interno de trabajo de levantamientos agrológicos. Recuperado de http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos%20para%20los%20levantamientos%20de%20suelos.pdfInstituto Interamericano de Cooperación para la Agricultura (IICA)., 2015. Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. IICA. www.iica.intIntergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727aInternational Organization for Standardization (ISO). 2006a. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040International Organization for Standardization (ISO). 2006b. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14044Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Bui, E.N., Wilford, J., 2018. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int. J. Appl. Earth Obs. Geoinf. 68, 230–237. https://doi.org/10.1016/j.jag.2018.02.004Jaramillo, J. 2009. The state of research in tomato in Colombia. Acta Hort. 821, 47–52. https://10.17660/ActaHortic.2009.821.3Joice, L.A., 2003. Improving the flow of scientific information across the interface of forest science and policy. Forest Policy Econ. 5, 339–347.Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7Jones, J.W., Jianqiang, H., Boote, K.J., Wilkens, P., Porter, C.H., Hu, Z., 2011. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. In: Ahuja, L.R., Liwang, M. (Eds.), Methods of Introducing SystemModels into Agricultural Research. American Society of Agronomy, CropScience Society of America, Soil Science Society of America Madison, WI, USA.Kachanoski, R.G., Carter, M.R., 1999. Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil Tillage Res. 51, 211–217. https://doi.org/10.1016/S0167-1987(99)00038-0Kanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., Dale, V.H., Havlik, P., Kline, K.L., Scholes, R.J., Thornton, P., Tittonell, P., Andelman, S., 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. In Press. https://doi.org/10.1016/j.agsy.2016.09.010Karaca, S., Gürses, A., Ejder, M., Açikyildiz, M., 2004. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 277, 257–263. https://doi.org/10.1016/j.jcis.2004.04.042Karlen, D.L., Stott, D.E., 1994. A Framework for Evaluating Physical and Chemcial Indicators of Soil Quality. Soil Sci. Soc. Am. 264, 53–72. https://doi.org/10.1126/science.264.5156.281Karlen, D.L., Stott, D.E., Cambardella, C.A., Kremer, R.J., King, K.W., McCarty, G.W., 2014. Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 69:393–401. https://doi:10.2489/jswc.69.5.393Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., Van Der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O., 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2, 111–128. https://doi.org/10.5194/soil-2-111-2016Khakbazan, M., Mohr, R.M., Huang, J., Xie, R., Volkmar, K.M., Tomasiewicz, D.J., Moulin, A.P., Derksen, D.A., Irvine, B.R., Mclaren, D.L., Nelson, A., 2019. Effects of crop rotation on energy use e ffi ciency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 195, 104357. https://doi.org/10.1016/j.still.2019.104357Khodaverdiloo, H., Momtaz, H., Liao, K., 2018. Performance of Soil Cation Exchange Capacity Pedotransfer Function as Affected by the Inputs and Database Size. Clean - Soil, Air, Water 46. https://doi.org/10.1002/clen.201700670Kibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 363, 685–701. https://doi.org/10.1098/rstb.2007.2178Kleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., Asseng, S., 2016. Simulating cultivar variations in potato yields for contrasting environments. Agric. Syst. 145, 51–63. https://doi.org/10.1016/j.agsy.2016.02.011Kucukvar, M., Egilmez, G., Tatari, O., 2014. Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input-output analysis. J. Clean. Prod. 81, 234–243. https://doi.org/10.1016/j.jclepro.2014.06.033Kuisma, P., 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agricultural and food science in Finland. 11: 59–74. https://doi.org/10.23986/afsci.5713Kumar, S.N., Govindakrishnan, P.M., Swarooparani, D.N., Nitin, C., Surabhi, J., Aggarwal, P.K., 2015. Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int. J. Plant Prod. 9, 151–170. https://doi.org/https://dx.doi.org/10.5958/2231-3915.2015.00011.5Kutílek, M., 2011. Soils and climate change. Soil y Tillage Research. 117: 1–7. https://doi.org/10.1016/j.still.2011.08.009Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012Lal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics; Washington D.C.: USDA/SMSS Technical Monograph 21Lal, R., 2009. Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1–184. http://doi.org/10.1126/science.1097396Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustain. 7, 5875–5895. https://doi.org/10.3390/su7055875 Lanfranco, B. C., y Helguera, L. P. 2006. Óptimo técnico y económico. Diversificación, costos ocultos y los estímulos para mejorar los procreos en la ganadería nacional. Revista INIA, 8, 2–5. Retrieved from http://www.ainfo.inia.uy/digital/bitstream/item/846/1/111219220807165946.pdfLarkin, R.P., Honeycutt, C.W., 2006. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96, 68–79. https://doi.org/10.1094/PHYTO-96-0068Larson, W.E., Pierce, F.J., 1994. The dynamics of soil quality as a measure of sustainable management, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, pp. 37–51.Lebacq, T., Baret, P. V, Stilmant, D., 2013. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 33, 311–327. https://doi.org/10.1007/s13593-012-0121-xLemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., Francis, F., 2018. Short-Term Effects of Tillage Practices and Crop Residue Exportation on Soil Organic Matter and Earthworm Communities in Silt Loam Arable Soil, in: Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions. Elsevier Inc., pp. 53–71. https://doi.org/10.1016/B978-0-12-812128-3.00005-7Li, L., Du, S., Wu, L., Liu, G., 2009. An overview of soil loss tolerance. Catena 78, 93–99. https://doi.org/10.1016/j.catena.2009.03.007Liang, K., Jiang, Y., Nyiraneza, J., Fuller, K., Murnaghan, D., Meng, F.-R., 2019. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. F. Crop. Res. 242, 107603. https://doi.org/10.1016/j.fcr.2019.107603Lima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., de Goede, R.G.M., 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64, 194–200. http://dx.doi.org/10.1016/j.apsoil.2012.12.009Lisboaa, I.P., Cherubin, M.R., Satiro, L.S., Siqueira-Neto, M., Lima, R.P., Gmach, M.R., Wienhold, B.J., Schmer, M.R., Jin, V.L., Cerri, C.C., Cerri, C.E.P., 2019. Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops y Products 129, 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004Litke, L., Gaile, Z., y Ruza, A., 2018. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Research Communications, 38(2), 243–249. http://doi.org/10.1556/CRC.38.2010.2.10Liu, E.Y., Li, S., Lantz, V., Olale, E., 2019. Impacts of Crop Rotation and Tillage Practices on Potato Yield and Farm Revenue. Agron. J. 111, 1838. https://doi.org/10.2134/agronj2018.05.0325Liu, H. L., Yang, J. Y., Tan, C. S., Drury, C. F., Reynolds, W. D., Zhang, T. Q., Hoogenboom, G., 2011. Simulating wáter content, crop yield and nitrate‐N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management. 98(6): 1105‐1111.Lizana, X.C., Avila, A., Tolaba, A., Pablo, J., 2017. Agricultural and Forest Meteorology Field responses of potato to increased temperature during tuber bulking : Projection for climate change scenarios , at high-yield environments of Southern Chile. Agric. For. Meteorol. 239, 192–201. https://doi.org/10.1016/j.agrformet.2017.03.012Loaiza, P. V, Pujol, P.E.I., Wittwer, R., van der Heijden, M., Six, J., 2018. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9. https://doi.org/10.1016/j.still.2018.02.007Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS One 12, 1–25. https://doi.org/10.1371/journal.pone.0180442Lutz, A.F., ter Maat, H.W., Biemans, H., Shrestha, A.B., Wester, P., Immerzeel, W.W., 2016. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005. https://doi.org/10.1002/joc.4608Lynch, J., Marschner, P., Z, Rangel., 2012. Effect of internal and external factors on root growth and development, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 331-346Meadows, D. H. 2009. Thinking in Systems. Journal of Chemical Information and Modeling (Vol. 53). http://doi.org/10.1017/CBO9781107415324.004Maltas, A., Dupuis, B., y Sinaj, S., 2018. Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Research, 1–18. http://doi.org/10.1007/s11540-018-9361-8Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., Lauwers, L., 2014. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 19(3), 46–56. https://doi.org/10.5751/ES-06876-190346Marinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6, 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029Marschner, P., 2012. Mineral nutrition of higher plants (Third edit). USA: Academic Press is an imprimint of Elsevier.Marschner, P., Z, Rangel., 2012. Nutrient availability in soils, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 315-328Martinez, R., Martinez, N. R., y Martinez, M. V. M., 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. Tomi I. Fondo Nacional Universitario.Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., Finkbeiner, M., 2014. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J. Clean. Prod. 69, 34–48. https://doi.org/10.1016/j.jclepro.2014.01.044Mascarenhas, A., Coelho, P., Subtil, E., Ramos, T.B., 2010. The role of common local indicators in regional sustainability assessment. Ecol. Indic. 10, 646–656. https://doi.org/10.1016/j.ecolind.2009.11.003Mehmood, T., Liland, K.H., Snipen, L., Saebo, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118, 62–69. https://doi.org/10.1016/j.chemolab.2012.07.010Mehmood, T., Martens, H., Saebo, S.,Warringer, J., Snipen, L., 2011. A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms Mol. Biol. 6. https://doi.org/10.1186/1748-7188-6-27Mendiburu, F. 2017. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-6. https://CRAN.R-project.org/package=agricolae.Meul, M., Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., Hauwermeiren, A., 2008. MOTIFS: a monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 28, 321–332. https://doi.org/10.1051/agro:2008001Mevik, B. H., Wehrens, R., Hovde, L. K., 2019. pls: partial least squares and principal component regression. R package version 2.7-2. https://CRAN.R-project.org/package=plsMilder, J.C., Arbuthnot, M., Blackman, A., Brooks, S.E., Giovannucci, D., Gross, L., Kennedy, E.T., Komives, K., Lambin, E.F., Lee, A., Meyer, D., Newton, P., Phalan, B., Schroth, G., Semroc, B., Van Rikxoort, H., Zrust, M., 2014. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conserv. Biol. 29, 309–320. https://doi.org/10.1111/cobi.12411Monsalve, O.I., Casilimas, H.A. y Bojacá, C.R. 2011. Evaluación técnica y económica del pepino y el pimentón como alternativas al tomate bajo invernadero. Rev. Colomb. Cienc. Hortic, Vol 5. P: 69-82. https://doi.org/10.17584/rcch.2011v5i1.1254Mtengeti, E. J., Brentrup, F., Mtengeti, E., Olav, E. L., Chambuya, R., 2015. Sustainable intensification of maize and rice in smallholder farming systems under climate change in Tanzania, in: Mwaseba, D. L., Kraybill, D., Hansen, D. O., Olav, L., Editors, E. (Eds), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa (1st ed.). Springer. http://doi.org/10.1007/978-3-319-09360-4Muckel, G. B., Mausbach, M. J., 1996. Soil quality information sheets, in: Methods for Assessing Soil Quality, edited by: Doran, J. W., Jones, A. J., Soil Sci. Soc. Am., Special Publication 49, Madison, WI, 393–400. Mukherjee, A., Lal, R., 2014. Comparison of soil quality index using three methods. PLoS One 9. https://doi.org/10.1371/journal.pone.0105981Munda, G. 2005. “Measuring sustainability”: A multi-criterion framework. Environment, Development and Sustainability. 7(1): 117–134. http://doi.org/10.1007/s10668-003-4713-0Muthoni, J., Kabira, J.N., 2010. Effects of crop rotation on soil macronutrient content and pH in potato producing areas in Kenya: Case study of KARI Tigoni station. J. Soil Sci. Environ. Manag. 1, 227–233.Nambiar, K.K.M., Gupta, A.P., Fu, Q., Li, S., 2001. Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agric. Ecosyst. Environ. 87, 209–214. https://doi.org/10.1016/S0167-8809(01)00279-1Nannipieri, P., 1984. Microbial biomass and activity measurement in soils: ecological significance, in: Klug, M.J., Reddy, C.A. (Eds), Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, pp. 512–521Nannipieri, P., Grego, S., Ceccanti, B., 1990. Ecological significance of the biological activity in soils, in: Bollag, J. M., Stotzky, G., Marcel Dekker (Eds), Soil Biochemical, New York, 293–355.Ndiaye, E.L., Sandeno, J.M., McGrath, D., Dick, R.P., 2000. Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15, 26–36. https://doi.org/10.1017/s0889189300008432Nelson, K.L., Lynch, D.H., Boiteau, G., 2009. Assessment of changes in soil health throughout organic potato rotation sequences. Agric. Ecosyst. Environ. 131, 220–228. https://doi.org/10.1016/j.agee.2009.01.014Neugebauer, S., Martinez-Blanco, J., Finkbeiner, M., 2015. Enhancing the practical implementation of life cycle sustainability assessment - proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/j.jclepro.2015.04.053Neumann, G., Römheld, V., 2012. Rhizosphere chemistry in relation to plant nutrition, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368Nieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment. Springer Science, 430 pp. https://doi.org/10.1007/978-1-4020-8433-1Nyiraneza, J., Peters, R.D., Rodd, V.A., Grimmett, M.G., Jiang, Y., 2015. Improving productivity of managed potato cropping systems in Eastern Canada: Crop rotation and nitrogen source effects. Agron. J. 107, 1447–1457. https://doi.org/10.2134/agronj14.0430Obade, V.P., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Science of the Total Environment 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096OECD (Organization for Economic Co-operation and Development) — JRC (Joint Research Centre)., 2008. Handbook on constructing composite indicators. Methodology and user guide. OECD, Paris.Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry 76, 327–352. https://doi.org/10.1016/j.chemer.2016.04.002Ogle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 72: 87–121. https://doi.org/10.1007/s10533-004-0360-2Okalebo, J.R., Gathua, K.W.K.W., Woomer, P.L.P.L., 2002. Laboratory methods of soil and plant analysis: a working manual, second ed. TSBF-CIAT, Africa.Oldeman, L., 1994. The global extent of soil degradation. Soil Resil. Sustain. L. use 19–36. https://doi.org/10.1016/j.apsoil.2013.10.002 Ordoñez, D.N., Bolivar, G.A., 2014. Levantamiento agrológico del Centro Agropecuario (CAM), 1st ed. Instituto Geográfico Agustin Codazzi (IGAC), Bogotá, Colombia.Ortíz, R. 2012. El cambio climático y la producción agrícola. Banco Interamericano de Desarrollo. Notas técnicas. ESG-TN-383. http://asocam.org/biblioteca/files/original/e7a4a8a00d9ba9390d273d6dc1bb5666.pdfPacini, C., Wossink, A., Giesen, G., Vazzana, C., Huirne, R., 2003. Evaluation of sustainability of organic, integrated and conventional farm systems: a farm and field scale analysis. Agriculture, Ecosystems and Environment, 95, 273–288.Panell, D. J., Schilizzi, S., 1993. Sustainable agriculture: a matter of ecology, equity, economic, efficiency or expedience. Journal of Sustainable Agriculture. 13: 57-66Pansau, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic Methods. Springer, Germany, p 995.Papadopoulos, I., 1988. Nitrogen fertigation of trickle-irrigated potato. Fertil. Res. 167, 157–167. https://doi.org/https://doi.org/10.1007/BF01049771Papendick, R. I., Parr. J. F., 1992. Soil quality—The key to a sustainable agriculture. Am. J. Altern. Agric. 7 (1-2): 2–3. https://doi.org/10.1017/S0889189300004343Paracchini, M.L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., De Paola, C., 2015. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 133, 35–53. https://doi.org/10.1016/j.agsy.2014.10.004Parris, T.M., Kates, R.W., 2003. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour. 28, 559–586. https://doi.org/10.1146/annurev.energy.28.050302.105551Parton, W., Schimel, D., Ojima, D., Cole, C., 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pages 147-167 in R.B. Bryant and R.W. Arnold, editors. Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Passam, H.C., Karapanos, I.C., Bebeli, P.J. y Savvas, D. 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The european journal of plant science and biotechnology. Vol 1(1). P: 1-21. file:///D:/descargas/A_Review_of_Recent_Research_on_Tomato_Nu%20(2).pdfPeano, C., Migliorini, P., y Sottile, F., 2014. A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecology and Society, 19(4), 24. http://doi.org/10.5751/ES-06972-190424Peltre, C., Christensen, B.T., Dragon, S., Icard, C., Katterer, T., Houot, S. 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol. Biochem. 52, 49–60. http://dx.doi.org/10.1016/j.soilbio.2012.03.023Peña, M. Y., CAsierra-Posada, F., Monsalve, O. I., 2013. Producción hidropónica de tomate (Solanum lycopersicum L.) en cascarilla de arroz mezclada con materiales minerales y orgánicos. Rev. Colomb. Cienc. Hortic., 7 (2), 217-227. https://doi.org/10.17584/rcch.2013v7i2.2236Pérez, L.C., Rodríguez, L.E., Gómez, M.I., 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26, 477–486.Pergola, M., D’Amico, M., Celano, G., Palese, A.M., Scuderi, A., Di Vita, G., Pappalardo, G., Inglese, P., 2013. Sustainability evaluation of Sicily’s lemon and orange production: Anenergy, economic and environmental analysis. J. Environ. Manage. 128, 674–682. https://doi.org/10.1016/j.jenvman.2013.06.007Pintér, L., Hardi, P., Martinuzzi, A., Hall, J., 2012. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 17, 20–28. https://doi.org/10.1016/j.ecolind.2011.07.001Pollesch, N., Dale, V. H., 2015. Applications of aggregation theory to sustainability assessment. Ecological Economics, 114, 117–127. http://doi.org/10.1016/j.ecolecon.2015.03.011Porras, R.P.D., Herrera, H.C.A., 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia, 1st ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.Praneetvatakul, S., Janekarnkij, P., Potchanasin, C., Prayoonwong, K., 2001. Assessing the sustainability of agriculture: A case of Mae Chaem Catchment, northern Thailand. Environ. Int. 27, 103–109. https://doi.org/10.1016/S0160-4120(01)00068-XPretty, J., Bharucha, Z.P., 2014. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596. https://doi.org/10.1093/aob/mcu205Qadir, M., Oster, J.D., 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 323, 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Rao, N.H., Rogers, P.P., 2006. Assessment of agricultural sustainability. Curr. Sci. 91, 439–448. www.jstor.org/stable/24093944Rawashdeh, R.A., Maxwell, P., 2014. Analysing the world potash industry. Resour. Policy 41, 143–151. https://doi.org/10.1016/j.resourpol.2014.05.004Rawashdeh, R.A., Xavier-Oliveira, E., Maxwell, P., 2016. The potash market and its future prospects. Resour. Policy 47, 154–163. https://doi.org/10.1016/j.resourpol.2016.01.011Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J.E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., Porter, C., 2017. Field Crops Research Performance of the SUBSTOR-potato model across contrasting growing conditions. F. Crop. Res. 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008Reed, M.S., Fraser, E.D.G., Dougill, A.J., 2006. An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol. Econ. 59, 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008Rees, H.W., Chow, T.L., Zebarth, B.J., Xing, Z., Toner, P., Lavoie, J., Daigle, J.L., 2011. Effects of supplemental poultry manure applications on soil erosion and runoff water quality from a loam soil under potato production in northwestern New Brunswick. Can. J. Soil Sci. 91, 595–613. https://doi.org/10.4141/cjss10093Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J., Papen, H., 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology. 11 (Suppl. 1): 4–23. https://doi.org/10.1111/j.1438-8677.2009.00241.xRepar, N., Jan, P., Dux, D., Nemecek, T., Doluschitz, R., 2017. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 140, 692–704. https://doi.org/10.1016/j.jclepro.2016.07.022Riahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74, 7, 887-935.Rigby, D., Howlett, D., Woodhouse, P., 2000. A Review of Indicators of Agricultural and Rural Livelihood Sustainability. FAO. AGRIS.Rinne, J., Lyytimäki, J., Kautto, P., 2013. From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecol. Indic. 35, 35–42. https://doi.org/10.1016/j.ecolind.2012.09.023Ripley, B., Venables, B., Douglas, M. B., Hornik, K., Gebhardt, A., Firth, D. 2017. MASS: Support functions and datasets. R package version 7.3-47. https://CRAN.R-project.org/package=MASSRitchie, J. T., 1981. Water dynamics in the Soil-Plant-athmosphere system. In Plant and Soil (Vol. 96, pp. 81–96). ICARDA. https://doi.org/https://doi.org/10.1007/BF02180050Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J., 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6Rodrigues, G.S., Rodrigues, I.A., Buschinelli, C.C. de A., de Barros, I., 2010. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 30, 229–239. https://doi.org/10.1016/j.eiar.2009.10.002Rodríguez, A., 2012. Evaluación de las simulaciones de precipitación y temperatura de los modelos climáticos globales del proyecto CMIP5 con el clima presente en Colombia. Ideam-Meteo 34.Rojas, B.E.O., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias. http://www.bdigital.unal.edu.co/5242/Rojas, E. O. B., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interaunal y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias, Departamento de Geociencias. Bogotá., Colombia. http://www.bdigital.unal.edu.co/5242/Römheld, V., Kirkby, E.A., 2010. Research on potassium in agriculture: Needs and prospects. Plant Soil 335, 155–180. https://doi.org/10.1007/s11104-010-0520-1Rosegrant, M.W., Cline, S.A., 2003. Global Food Security: Challenges and Policies. Science 302, 1917–1919. https://doi.org/10.1126/science.1092958Rossi, J. P., Franc, A., y Rousseau, G. X. 2009. Indicating soil quality and the GISQ. Soil Biology and Biochemistry, 41(2), 444–445. https://doi.org/10.1016/j.soilbio.2008.10.004Roy, R., Chan, N.W., 2012. An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. Environmentalist 32, 99–110. https://doi.org/10.1007/s10669-011-9364-3Ruser, R., Flessa, H., Schilling, R., Steindl, H., Beese, F., 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci. Soc. Am. J. 62, 1587–1595. https://doi.org/10.2136/sssaj1998.03615995006200060016xRyan, M., Hennessy, T., Buckley, C., Dillon, E. J., Donnellan, T., Hanrahan, K., y Moran, B., 2016. Developing farm-level sustainability indicators for Ireland using the Teagasc National Farm Survey. Irish Journal of Agricultural and Food Research, 55(2), 112-125. http://doi.org/10.1515/ijafr-2016-0011Sadok, W., Angevin, F., Bergez, J.E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., Messéan, A., Doré, T., 2009. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 29, 447–461. https://doi.org/10.1051/agro/2009006Sarkar, D., Haldar, A., 2005. Physical and chemical methods in soil analysis. Fundamental concepts of analytical chemistry and instrumental thecniques, vol 1. New Age International Publishers, New Delhi. http://doi.org/10.1017/CBO9781107415324.004Schader, C., Baumgart, L., Landert, J., Muller, A., Ssebunya, B., Blockeel, J., Weisshaidinger, R., Petrasek, R., Mészáros, D., Padel, S., Gerrard, C., Smith, L., Lindenthal, T., Niggli, U., y Stolze, M., 2016. Using the Sustainability Monitoring and Assessment Routine (SMART) for the systematic analysis of trade-offs and synergies between sustainability dimensions and themes at farm level. Sustainability, 8(3), 1-20. http://doi.org/10.3390/su8030274Schader, C., Grenz, J., Meier, M. S., Stolze, M., 2014. Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), 42–57. http://doi.org/10.5751/ES-06866-190342Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.xScheffer, F., Schachtschabel, P., 2016. Soil Science. Springer. 16th edition. Germany. http://doi.org/10.1007/978-3-642-30942-7Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S. Painter, T.H., Parton, W.J., Townsend, A.R., 2007. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global biogeochemical cycles. 8(3): 279-293. https://doi.org/10.1029/94GB00993Schindler, J., Graef, F., König, H. J., 2015). Methods to assess farming sustainability in developing countries. A review. Agronomy for Sustainable Development, 35, 1043-1057. http://doi.org/10.1007/s13593-015-0305-2Schmitz, A., Moss, C.B. (2015). Mechanized agriculture: Machine adoption, farm size, and labor displacement. AgBioForum 18, 278–296. Recuperado de https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/48143/MechanizedAgriculture.pdf?sequence=1Shahbazi, F., y Jafarzadeh, A. 2010. Integrated assessment of rural land for sustainable development using MicroLEIS DSS in west Azerbaijan, Iran. Geoderma, 157(3): 175‐184.Sharifi, M., Lynch, D.H., Hammermeister, A., Burton, D.L., Messiga, A.J., 2014. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in Eastern Canada. Nutr. Cycl. Agroecosystems 100, 135–146. https://doi.org/10.1007/s10705-014-9633-xShayler, H., McBride, M., Harrison, E., 2009. Sources and Impacts of Contaminants in Soils. Soil Sciences, CornelL Waste Management Institute. p: 1–6. http://cwmi.css.cornell.edu/sourcesandimpacts.pdfShibabaw, A., Alemayehu, G., Adgo, E., Asch, F., Freyer, B., 2018. Effects of organic manure and crop rotation system on potato (Solanum tuberosum L.) tuber yield in the highlands of Awi Zone. Ethiop. J. Sci. Technol. 11, 1. https://doi.org/10.4314/ejst.v11i1.1Shukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil Tillage Res. 87, 194–204. https://doi.org/10.1016/j.still.2005.03.011Shukla, S. K., Yadav, R. L., Gupta, R., Singh, A. K., Awasthi, S. K., Gaur, A., 2018. Deep Tillage, Soil Moisture Regime, and Optimizing N Nutrition for Sustaining Soil Health and Sugarcane Yield in Subtropical India. Communications in Soil Science and Plant Analysis, 49(4), 444–462. http://doi.org/10.1080/00103624.2018.1431263Singh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K., 2012. An overview of sustainability assessment methodologies. Ecological Indicators, 15, 281–299. http://doi.org/10.1016/j.ecolind.2011.01.007Smith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., Glover, J., 2017. Measuring sustainable intensification in smallholder agroecosystems: A review. Global Food Security, 12, 127–138, http://doi.org/10.1016/j.gfs.2016.11.002Smith, A.J., Dumanski, J. 1994. FESLM: An international framework for evaluating sustainable land management. World Soil Resources Report No 73. FAO. Roma.Smith, P., 2012. Soils and climate change. Current Opinion in Environmental Sustainability. 4: 539–544. http://dx.doi.org/10.1016/j.cosust.2012.06.005Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 789–813. https://doi.org/10.1098/rstb.2007.2184Smith, P., Smith, J.U., Powlson, D.S., Mcgill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E.J., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P., 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153–225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00087-6Smith, S.J., Wigley, T.M.L., 2006. Multi-Gas Forcing Stabilization with the MiniCAM. Energy Journal (Special Issue #3) pp 373-391. Soussana, J.F., 2014. Research priorities for sustainable agri-food systems and life cycle assessment. J. Clean. Prod. 73, 19–23. https://doi.org/10.1016/j.jclepro.2014.02.061Sparks, A.H., Forbes, G.A., Hijmans, R.J., Garrett, K.A., 2014. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 20, 3621–3631. https://doi.org/10.1111/gcb.12587Sparrow, L.A., 2015. Six years of results from a potato rotation and green manure trial in Tasmania, Australia. Acta Hortic. 1076, 29–36. Spiertz, J.H.J., 2010. Nitrogen , sustainable agriculture and food security . A review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064St. Clair, S.B. y Lynch, J.P. 2010. The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil. 335: 101–115. https://doi.org/10.1007/s11104-010-0328-zStackhouse, P.W., Kusterer, J.M., 2019. NASA -POWER Data Access Viewer. NASA Langley ASDC User Serv. 1. https://power.larc.nasa.gov/ Stavi, I., Lal, R., 2013. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 33, 275–289. https://doi.org/10.1007/s13593-012-0110-0Swart, R.J., Raskin, P., Robinson, J., 2004. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 14, 137–146. https://doi.org/10.1016/j.gloenvcha.2003.10.002Tan, G., Shibasaki, R., 2003. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling. 168(3): 357-370.Therond, O., Duru, M., Roger-Estrade, J., Richard, G., 2017. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 37. https://doi.org/10.1007/s13593-017-0429-7Thoumazeau, A., Bessou, C., Renevier, M.S., Panklang, P., Puttaso, P., Peerawat, M., Heepngoen, P., Polwong, P., Koonklang, N., Sdoodee, S., Chantuma, P., Lawongsa, P., Nimkingrat, P., Thaler, P., Gay, F., Brauman, A., 2019. Biofunctool®: a new framework to assess the impact of land management on soil quality. Part B: investigating the impact of land management of rubber plantations on soil quality with the Biofunctool® index. Ecol. Indic. 97, 429–437. https://doi.org/10.1016/j.ecolind.2018.10.028Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., y Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. http://doi.org/10.1038/nature01014Timsina, J., Godwin, D., Humphreys, E., Kukal, S. S., Smith, D., 2008. Evaluation of options for increasing yield and wáter productivity of wheat in Punjab, India Using the DSSAT‐CSM-CERES-Wheat model. Agricultural Wáter management. 95(9): 1099‐1110.Tittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61. http://doi.org/10.1016/j.cosust.2014.08.006Torrellas, M., Antón, A., Montero, J.I. 2013. An environmental calculator for greenhouse production systems. J. Environ. Manag. 118, 186e195. https://doi.org/10.1016/j.jenvman.2013.01.011Tóth, G., Hermann, T., da Silva, M.R., Montanarella, L., 2018. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 190. https://doi.org/10.1007/s10661-017-6415-3Tricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., Lo Giudice, A., 2018. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 172, 3747–3759. https://doi.org/10.1016/j.jclepro.2017.07.008Triste, L., Marchand, F., Debruyne, L., Meul, M., Lauwers, L., 2014. Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Eclogy Soc. 19, 47–57. https://doi.org/10.5751/ES-06789-190347Ulén, B., Larsbo, M., Koestel, J., Hellner, Q., Blomberg, M., Geranmayeh, P., 2018. Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio 47, 114–123. https://doi.org/10.1007/s13280-017-0991-xUmar A. S., Iqbal, M., 2007. Nitrate accumulation in plants, factors affecting the process and human health implications. A review. Agron Sustain Dev, 27, 45–57, http://doi.org/10.1051/agro:2006021USEPA., 1972. Quality of life indicators: A review of state-of-the-art and guidelines derived to assist in developing environmental indicators. USEPA Environmental Studies Division, Office of Research and Monitoring. Washington, DC.Usman, M., Ibrahim, F., Oyetola, S.O., 2018. Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. Int. J. Res. Agric. Food Sci. 4, 1–17.Vakhnyi, S., Khakhula, V., Fedoruk, Y., Panchenko, T., Herasymenko, L., 2018. The efficiency increase of the nutrition element uptake by various potato cultivars grown in one-crop system and in crop rotation. EurAsian J. Biosci. 12, 1–7.Van Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Efert, F., Van Wagenberg, C. P. A., 2014. A protocol for evaluating the sustainability of agri-food production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315–321. http://doi.org/10.1016/j.ecolind.2014.02.027Van Capelle, C., Schrader, S., Brunotte, J., 2012. Tillage-induced changes in the functional diversity of soil biota - A review with a focus on German data. Eur. J. Soil Biol. 50, 165–181. https://doi.org/10.1016/j.ejsobi.2012.02.005Van Passel, S., y Meul, M. (2012). Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 32, 170-180. http://doi.org/10.1016/j.eiar.2011.08.005Vargas, C. Z. R., 2009. La investigación aplicada: una forma de conocer las realidades con evidencia científica. Revista Educación, 33(1), 155–165. http://doi.org/0379-7082Velasquez, E., Lavelle, P., Andrade, M., 2007. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 39, 3066–3080. https://doi.org/10.1016/j.soilbio.2007.06.013Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Rev. 94, 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003Verhulst, N., François, I., Govaerts, B., 2010. Conservation agriculture, improving soil quality for sustainable production systems?, in: Rattan, L., Stewart, B.A. (Eds.), Food Security and Soil Quality. Taylor y Francis Group, London and New York, p. 418.Xing, Y., Niu, X., Wang, N., Jiang, W., Gao, Y., Wang, X. 2020. The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR. Sustainability. 12, 1588. https://doi.org/10.3390/su12041588Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., Verbruggen, A., 2014. Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability 6, 5512–5534. https://doi.org/10.3390/su6095512Walkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. https://doi.org/10.1097/00010694-193401000-00003Walraevens, K., Tewolde, T.G., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., Kebede, S., Van Hulle, L., Deckers, J., Martens, K., Van Camp, M., 2015. Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the mendae plain (Tigray, Ethiopia). L. Degrad. Dev. 26, 725–736. https://doi.org/10.1002/ldr.2377Wang, L., Palta, J. A., Chen, W., Chen, Y., Deng, X., 2018. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 197, 41–53. http://doi.org/10.1016/j.agwat.2017.11.010Wang, Y., Fan, J., Cao, L., Zheng, X., Ren, P., Zhao, S., 2018. The influence of tillage practices on soil detachment in the red soil region of China. Catena 165, 272–278. https://doi.org/10.1016/j.catena.2018.02.011Wayne, W. D. 2002., Bioestatistics: A foundation for analysis in the health sciences. John Wiley and Sons, Inc. New York.WCED (World Comission on Environment and Develpment). 1987. Our common future. Oxford University PressWeidema, B. P., 2000. Agricultural data for life Cycle Assessments, Vol 2. Agricultural Economics Research Institute (LEI). La Haya.Weldeslassie, T., Naz, H., Singh, S., Oves, M., 2018. Chemical contaminants for soil, air and aquatic ecosystem, in: Oves, M., Khan, M. Z., Ismail, I. M. I. (Eds), Modern age environmental problems and their remediation. Springer (1st ed.). http://doi.org/10.1007/978-3-319-64501-8West, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-XWise, MA., Calvin, K.V., Thomson, A.M., Clarke, L.E., Bond-Lamberty, B., Sands, R.D., Smith, S.J., Janetos, A.C., Edmonds, J.A., 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science. 324:1183-1186. May 29, 2009World Comission on Environment and Development WCED., 1987. Our common future. Oxford University PressWszelaczyńska, E., Pobereżny, J., Spychaj-Fabisiak, E., Janowiak, J., 2012. Effect of organic and nitrogen fertilization on selected components in potato tubers grown in a simplified crop rotation. J. Elemntology 1153–1165. https://doi.org/10.5601/jelem.2014.19.3.381Yang, J.M., Yang, J.Y., Dou, S., Yang, X.M., Hoogenboom, G., 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr. Cycl. Agroecosystems 95, 287–303. https://doi.org/10.1007/s10705-013-9563-zYang, Q., Meng, F.R., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P.A., 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric. Ecosyst. Environ. 132, 23–31. https://doi.org/10.1016/j.agee.2009.02.012Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002Yli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749Yli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749Youker, R. E., McGuinness, J. L., 1957. A short method of obtaining mean weightdiameter values of aggregate analyses of soils. Soil Science 83(4), 291–294. Recuperado de https://journals.lww.com/soilsci/Citation/1957/04000/A_SHORT_METHOD_OF_OBTAINING_MEAN_WEIGHT_DIAMETER.4.aspxZahm, F., Viaux, P., Vilain, L., Girardin, P., y Mouchet, C. 2008. Assessing farm sustainability with the IDEA method - From the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. http://doi.org/10.1002/sd.380Zegada-lizarazu, W., Monti, A., 2010. Energy crops in rotation. A review. Biomass and Bioenergy 35, 12–25. https://doi.org/10.1016/j.biombioe.2010.08.001Zhang, T.Q., Zheng, Z.M., Lal, R., Lin, Z.Q., Sharpley, A.N., Shober, A.L., Smith, D., Tan, C.S., Van Cappellen, P., 2018. Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators. J. Environ. Qual. 47, 191. https://doi.org/10.2134/jeq2017.10.0398Zhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., Wu, L., 2016. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 265, 176–186. https://doi.org/10.1016/j.geoderma.2015.11.027Zörb, C., Senbayram, M., 0|Peiter, E., 2014. Potassium in agriculture - Status and perspectives. J. Plant Physiol. 171, 656–669. https://doi.org/10.1016/j.jplph.2013.08.008Zornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M., Faz, A., 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practicesand human health. Soil 1, 173–185. https://doi.org/10.5194/soil-1-173-2015EstudiantesInvestigadoresPúblico generalCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unal.edu.co/bitstream/unal/79401/3/license_rdf24013099e9e6abb1575dc6ce0855efd5MD53ORIGINAL80221019.2021.pdf80221019.2021.pdfTesis de Doctorado en Ciencias Agrariasapplication/pdf4144892https://repositorio.unal.edu.co/bitstream/unal/79401/1/80221019.2021.pdf8a6b9eeaeeab25f135e723b0e9253ff8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79401/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL80221019.2021.pdf.jpg80221019.2021.pdf.jpgGenerated Thumbnailimage/jpeg4632https://repositorio.unal.edu.co/bitstream/unal/79401/4/80221019.2021.pdf.jpg6985bc9db04c61dc2417b2e6dc4d64abMD54unal/79401oai:repositorio.unal.edu.co:unal/794012024-07-18 23:11:07.368Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==