Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
ilustraciones, diagramas, tablas
- Autores:
-
Tabares Cardona, Sara
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80356
- Palabra clave:
- 570 - Biología::577 - Ecología
Biological Monitoring Working Party (BMWP)
Aquatic invertebrates
Aquatic ecology
Animales invertebrados
Ecología acuática
SSD
LC50
BMWP
Copper
Organic matter
Cobre
Materia Orgánica
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_709b9ce31905966e2b72512888b86da1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80356 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
dc.title.translated.eng.fl_str_mv |
Relationship between the BMWP method and copper sensitivity in aquatic macroinvertebrates of continental water. |
title |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
spellingShingle |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. 570 - Biología::577 - Ecología Biological Monitoring Working Party (BMWP) Aquatic invertebrates Aquatic ecology Animales invertebrados Ecología acuática SSD LC50 BMWP Copper Organic matter Cobre Materia Orgánica |
title_short |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
title_full |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
title_fullStr |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
title_full_unstemmed |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
title_sort |
Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales. |
dc.creator.fl_str_mv |
Tabares Cardona, Sara |
dc.contributor.advisor.none.fl_str_mv |
Reynaldi, Sebastián |
dc.contributor.author.none.fl_str_mv |
Tabares Cardona, Sara |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::577 - Ecología |
topic |
570 - Biología::577 - Ecología Biological Monitoring Working Party (BMWP) Aquatic invertebrates Aquatic ecology Animales invertebrados Ecología acuática SSD LC50 BMWP Copper Organic matter Cobre Materia Orgánica |
dc.subject.other.eng.fl_str_mv |
Biological Monitoring Working Party (BMWP) |
dc.subject.lemb.eng.fl_str_mv |
Aquatic invertebrates Aquatic ecology |
dc.subject.lemb.spa.fl_str_mv |
Animales invertebrados Ecología acuática |
dc.subject.proposal.eng.fl_str_mv |
SSD LC50 BMWP Copper Organic matter |
dc.subject.proposal.spa.fl_str_mv |
Cobre Materia Orgánica |
description |
ilustraciones, diagramas, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-05-14 |
dc.date.accessioned.none.fl_str_mv |
2021-10-02T16:43:59Z |
dc.date.available.none.fl_str_mv |
2021-10-02T16:43:59Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80356 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80356 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558 Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2008). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.p df/bb902be7-a503-4ab7-9036-d866b8ddce69 Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance (ECHA-17-G-18-EN). https://doi.org/http://dx.doi.org/10.2823/337352 Bazzanti, Marcello, Mastrantuono, L., & Pilotto, F. (2017). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of the Total Environment, 579, 456– 465. https://doi.org/10.1016/j.scitotenv.2016.11.073 Bazzanti, Marcelo, Mastrantuono, L., & Solimini, A. G. (2012). Selecting macroinvertebrate taxa and metrics to assess eutrophication in different depth zones of Mediterranean lakes. Fundam. Appl. Limnol, 180/2, 133–143. https://doi.org/10.1127/1863- 9135/2012/0200 Bossuyt, B. T. A., & Janssen, C. R. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136(1), 145–154. https://doi.org/10.1016/j.envpol.2004.11.023 Bossuyt, B. T. A., Muyssen, B. T. A., & Janssen, C. R. (2005). Relevance of generic and site‐specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environmental Toxicology and Chemistry: An International Journal, 24(2), 470. https://doi.org/10.1897/03-067r.1 Carew, M. E., Miller, A. D., & Hoffmann, A. A. (2011). Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 20(3), 595–606. https://doi.org/10.1007/s10646-011-0615-3 Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.F1000Research, 2, 2. https://doi.org/10.12688/f1000research.2-191.v2 Chapman, P. M., Farrell, M. A., & Brinkhurst, R. O. (1982). Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology, 2, 47–67. https://doi.org/http://dx.doi.org/10.1016/0166-445X(82)90005-4 Comber, S. D. W., Merrington, G., Sturdy, L., Delbeke, K., & van Assche, F. (2008). Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the levels of failure. Science of The Total Environment, 403(1-3), 12–22. Environmental Protection Agency (EPA). (2005). Washington, DC, EPA/600/X-05/027. Ewell, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A., & Spiegel, R. C. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5(9), 831–840. https://doi.org/10.1002/etc.5620050908 Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P., & Ackerman, J. D. (2010). The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environmental Toxicology and Chemistry, 29(11), 2519–2528. https://doi.org/10.1002/etc.299 Kooijman, S. A. L. M. (1987). A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research, 21(3), 269–276. https://doi.org/10.1016/0043-1354(87)90205-3 Metcalfe-Smith, J (1994). Biological water‐quality assessment of rivers: use of macroinvertebrate communities. The Rivers Handbook: Hydrological and Ecological Principles, 144–170. https://doi.org/https://doi.org/10.1002/9781444313871.ch8 Paisley, M. ., Trigg, D. ., & Walley, W (2014). ). Revision of the biological monitoring working party (BMWP) score system: derivation of present‐only and abundance‐ related scores from field data. River Res. Applic, 30(7), 887–904. https://doi.org/http://dx.doi.org/10.1002/rra.2686 Posthuma, L., Suter, G. W., & Traas, T. P. (2001). Species Sensitivity Distributions in Ecotoxicology. Boca Raton: CRC press. https://doi.org/https://doi.org/10.1201/9781420032314 Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R.PLOS ONE, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021 Rodriguez, P., & Reynoldson, T. B. (2011). Appendices. In The Pollution Biology of Aquatic Oligochaetes (pp. 225–261). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1718-3_7 Rogevich, E. C., Hoang, T. C., & Rand, G. M. (2008). The Effects of Water Quality and Age on the Acute Toxicity of Copper to the Florida Apple Snail, Pomacea paludosa. Archives of Environmental Contamination and Toxicology, 54(4), 690–696. https://doi.org/10.1007/s00244-007-9106-1 Ryan, A. C., Tomasso, J. R., & Klaine, S. J. (2009). Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. Environmental Toxicology and Chemistry, 28(8), 1663. https://doi.org/10.1897/08-361.1 Schutten, G., Hong, C. C., & Leeper, T. (2016). ReadODS: read and write ODS files.Retrieved from https://cran.r-project.org/package=readODS Technical Guidance for Deriving Environmental Quality Standards (TGD). (2011). Common Implementation Strategy for the Water Framework Directive (2000/60/EC). https://doi.org/10.2779/43816 Thorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit Species Sensitivity Distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082 United States Environmental Protection Agency (USEPA). (2020). ecotox knowledgebase.Retrieved from https://cfpub.epa.gov/ecotox/ Wickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., & Woo, K. (2018). Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Retrieved from https://cran.r-project.org/web/packages/ggplot2/ Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package versión 0.7.6. Retrieved from https://cran.r- project.org/package=dplyr |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 27 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Medio Ambiente y Desarrollo |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias y Medo Ambiente |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80356/2/1053823272.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80356/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80356/4/1053823272.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
f13112c293596ab400ed97aaba4109b1 cccfe52f796b7c63423298c2d3365fc6 c218c53bb4237028daebe8f34b5a4c63 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089486759362560 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reynaldi, Sebastián0c4b055f46b1e02bb45a322e10177c19600Tabares Cardona, Sarafda09a0f30266642a0a1d1e57e1ef37a2021-10-02T16:43:59Z2021-10-02T16:43:59Z2020-05-14https://repositorio.unal.edu.co/handle/unal/80356Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl método “Biological Monitoring Working Party” (BMWP) identifica taxones de macroinvertebrados acuáticos con un puntaje del uno al diez, excluyendo el nueve. El puntaje diez corresponde a los taxones más sensibles a la materia orgánica (MO). Sin embargo, la MO disminuye las concentraciones medianas letales (LC50) para el cobre (Cu), puesto que la MO forma complejos con los iones, impidiendo de esta manera la entrada de Cu a los organismos acuáticos. Lo anterior, sugiere tolerancia al Cu en taxones con alta puntuación del BMWP. Mediante curvas de distribución de sensibilidad (SSD) se compararon las LC50 para CuSO4 descargadas de ECOTOX (https://cfpub.epa.gov/ecotox/). Rutinas en lenguaje R combinaron los paquetes “dplyr”, “ssdtools” y “ggplot2” para seleccionar las LC50 determinadas en especies de taxones incluidos en el BMWP bajo condiciones comparables y finalmente, construir mediante ellas, curvas SSD. El taxón más tolerante fue Perlidae con puntaje diez. Pero, Ephemerellidae, igualmente con puntaje diez, resultó afectado a una concentración poco mayor a la que afectó el 50% de los taxones (HC50). El taxón más sensible fue Unionidae con puntaje seis. Sin embargo, Gammaridae, igualmente con puntaje seis, resultó afectado a una concentración mayor que HC50. La especie más tolerante fue Asellus aquaticus con puntaje tres. Pero, Biomphalaria glabrata, igualmente con puntaje tres, resultó afectada a una concentración menor a la que afectó al 25% de las especies. La especie más sensible fue Lampsilis siliquoidea con puntaje seis. Pero, Gammarus lacustris, también con puntaje seis, resultó afectada a una concentración mayor de la que afectó el 75% de las especies. Además, la sensibilidad de las especies fue diferente dentro de un mismo taxón. Estos resultados sugieren que no existe relación entre el puntaje BMWP y la tolerancia al Cu, la cual varia de especie a especie. (Texto tomado de la fuente)The Biological Monitoring Working Group (BMWP) method ranks aquatic macroinvertebrate taxa with a score of one to ten, excluding nine. Score ten corresponds to the taxa most sensitive to organic matter (OM). However, OM forms complexes with metal ions, preventing their entry into aquatic organisms. OM decreased lethal median concentrations (LC50) for copper. This effect suggests tolerance to copper in taxa with high BMWP scores. Sensitivity distribution curves (SSD) compared LC50s para CuSO4 of downloaded from ECOTOX (https://cfpub.epa.gov/ecotox/). Routines in R language combined the packages "dplyr", "ssdtools" and "ggplot2" to select LC50s determined in species of BMWP taxa under comparable conditions, and build the SSD curves with them. The most tolerant taxon was Perlidae, scored with ten. However, Ephemerellidae, also scored with ten, resulted affected for a concentration slightly higher than that which affected 50% of the taxa (HC50). The most sensitive taxon was Unionidae scored with six. However, Gammaridae, also scored with six, was affected at a concentration higher than HC50. The most tolerant species was Asellus aquaticus, scored with three. However, Biomphalaria glabrata, also scored with three, resulted affected for a concentration lower than which affected 25% of the species. The most sensitive species was Lampsilis siliquoidea, scored with six. However, Gammarus lacustris, also scored with six, was affected for a concentration higher than which affected 75% of the species. Furthermore, the sensitivity of the species was different within the same taxon. These results suggest that there is no relationship between the BMWP score and copper tolerance, and the copper sensitivity varies from specie to specie.MaestríaMagíster en Medio Ambiente y Desarrolloxii, 27 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaBiological Monitoring Working Party (BMWP)Aquatic invertebratesAquatic ecologyAnimales invertebradosEcología acuáticaSSDLC50BMWPCopperOrganic matterCobreMateria OrgánicaRelación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.Relationship between the BMWP method and copper sensitivity in aquatic macroinvertebrates of continental water.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2008). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.p df/bb902be7-a503-4ab7-9036-d866b8ddce69Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance (ECHA-17-G-18-EN). https://doi.org/http://dx.doi.org/10.2823/337352Bazzanti, Marcello, Mastrantuono, L., & Pilotto, F. (2017). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of the Total Environment, 579, 456– 465. https://doi.org/10.1016/j.scitotenv.2016.11.073Bazzanti, Marcelo, Mastrantuono, L., & Solimini, A. G. (2012). Selecting macroinvertebrate taxa and metrics to assess eutrophication in different depth zones of Mediterranean lakes. Fundam. Appl. Limnol, 180/2, 133–143. https://doi.org/10.1127/1863- 9135/2012/0200Bossuyt, B. T. A., & Janssen, C. R. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136(1), 145–154. https://doi.org/10.1016/j.envpol.2004.11.023Bossuyt, B. T. A., Muyssen, B. T. A., & Janssen, C. R. (2005). Relevance of generic and site‐specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environmental Toxicology and Chemistry: An International Journal, 24(2), 470. https://doi.org/10.1897/03-067r.1Carew, M. E., Miller, A. D., & Hoffmann, A. A. (2011). Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 20(3), 595–606. https://doi.org/10.1007/s10646-011-0615-3Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.F1000Research, 2, 2. https://doi.org/10.12688/f1000research.2-191.v2Chapman, P. M., Farrell, M. A., & Brinkhurst, R. O. (1982). Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology, 2, 47–67. https://doi.org/http://dx.doi.org/10.1016/0166-445X(82)90005-4Comber, S. D. W., Merrington, G., Sturdy, L., Delbeke, K., & van Assche, F. (2008). Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the levels of failure. Science of The Total Environment, 403(1-3), 12–22.Environmental Protection Agency (EPA). (2005). Washington, DC, EPA/600/X-05/027. Ewell, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A., & Spiegel, R. C. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5(9), 831–840. https://doi.org/10.1002/etc.5620050908Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P., & Ackerman, J. D. (2010). The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environmental Toxicology and Chemistry, 29(11), 2519–2528. https://doi.org/10.1002/etc.299Kooijman, S. A. L. M. (1987). A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research, 21(3), 269–276. https://doi.org/10.1016/0043-1354(87)90205-3Metcalfe-Smith, J (1994). Biological water‐quality assessment of rivers: use of macroinvertebrate communities. The Rivers Handbook: Hydrological and Ecological Principles, 144–170. https://doi.org/https://doi.org/10.1002/9781444313871.ch8Paisley, M. ., Trigg, D. ., & Walley, W (2014). ). Revision of the biological monitoring working party (BMWP) score system: derivation of present‐only and abundance‐ related scores from field data. River Res. Applic, 30(7), 887–904. https://doi.org/http://dx.doi.org/10.1002/rra.2686Posthuma, L., Suter, G. W., & Traas, T. P. (2001). Species Sensitivity Distributions in Ecotoxicology. Boca Raton: CRC press. https://doi.org/https://doi.org/10.1201/9781420032314Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R.PLOS ONE, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021Rodriguez, P., & Reynoldson, T. B. (2011). Appendices. In The Pollution Biology of Aquatic Oligochaetes (pp. 225–261). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1718-3_7Rogevich, E. C., Hoang, T. C., & Rand, G. M. (2008). The Effects of Water Quality and Age on the Acute Toxicity of Copper to the Florida Apple Snail, Pomacea paludosa. Archives of Environmental Contamination and Toxicology, 54(4), 690–696. https://doi.org/10.1007/s00244-007-9106-1Ryan, A. C., Tomasso, J. R., & Klaine, S. J. (2009). Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. Environmental Toxicology and Chemistry, 28(8), 1663. https://doi.org/10.1897/08-361.1Schutten, G., Hong, C. C., & Leeper, T. (2016). ReadODS: read and write ODS files.Retrieved from https://cran.r-project.org/package=readODSTechnical Guidance for Deriving Environmental Quality Standards (TGD). (2011). Common Implementation Strategy for the Water Framework Directive (2000/60/EC). https://doi.org/10.2779/43816Thorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit Species Sensitivity Distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082United States Environmental Protection Agency (USEPA). (2020). ecotox knowledgebase.Retrieved from https://cfpub.epa.gov/ecotox/Wickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., & Woo, K. (2018). Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Retrieved from https://cran.r-project.org/web/packages/ggplot2/Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package versión 0.7.6. Retrieved from https://cran.r- project.org/package=dplyrInvestigadoresORIGINAL1053823272.2021.pdf1053823272.2021.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf1272202https://repositorio.unal.edu.co/bitstream/unal/80356/2/1053823272.2021.pdff13112c293596ab400ed97aaba4109b1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80356/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1053823272.2021.pdf.jpg1053823272.2021.pdf.jpgGenerated Thumbnailimage/jpeg5030https://repositorio.unal.edu.co/bitstream/unal/80356/4/1053823272.2021.pdf.jpgc218c53bb4237028daebe8f34b5a4c63MD54unal/80356oai:repositorio.unal.edu.co:unal/803562024-07-30 23:11:16.069Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |