Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.

ilustraciones, diagramas, tablas

Autores:
Tabares Cardona, Sara
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80356
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80356
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Biological Monitoring Working Party (BMWP)
Aquatic invertebrates
Aquatic ecology
Animales invertebrados
Ecología acuática
SSD
LC50
BMWP
Copper
Organic matter
Cobre
Materia Orgánica
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_709b9ce31905966e2b72512888b86da1
oai_identifier_str oai:repositorio.unal.edu.co:unal/80356
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
dc.title.translated.eng.fl_str_mv Relationship between the BMWP method and copper sensitivity in aquatic macroinvertebrates of continental water.
title Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
spellingShingle Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
570 - Biología::577 - Ecología
Biological Monitoring Working Party (BMWP)
Aquatic invertebrates
Aquatic ecology
Animales invertebrados
Ecología acuática
SSD
LC50
BMWP
Copper
Organic matter
Cobre
Materia Orgánica
title_short Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
title_full Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
title_fullStr Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
title_full_unstemmed Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
title_sort Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.
dc.creator.fl_str_mv Tabares Cardona, Sara
dc.contributor.advisor.none.fl_str_mv Reynaldi, Sebastián
dc.contributor.author.none.fl_str_mv Tabares Cardona, Sara
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Biological Monitoring Working Party (BMWP)
Aquatic invertebrates
Aquatic ecology
Animales invertebrados
Ecología acuática
SSD
LC50
BMWP
Copper
Organic matter
Cobre
Materia Orgánica
dc.subject.other.eng.fl_str_mv Biological Monitoring Working Party (BMWP)
dc.subject.lemb.eng.fl_str_mv Aquatic invertebrates
Aquatic ecology
dc.subject.lemb.spa.fl_str_mv Animales invertebrados
Ecología acuática
dc.subject.proposal.eng.fl_str_mv SSD
LC50
BMWP
Copper
Organic matter
dc.subject.proposal.spa.fl_str_mv Cobre
Materia Orgánica
description ilustraciones, diagramas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-05-14
dc.date.accessioned.none.fl_str_mv 2021-10-02T16:43:59Z
dc.date.available.none.fl_str_mv 2021-10-02T16:43:59Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80356
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80356
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558
Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2008). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.p df/bb902be7-a503-4ab7-9036-d866b8ddce69
Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance (ECHA-17-G-18-EN). https://doi.org/http://dx.doi.org/10.2823/337352
Bazzanti, Marcello, Mastrantuono, L., & Pilotto, F. (2017). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of the Total Environment, 579, 456– 465. https://doi.org/10.1016/j.scitotenv.2016.11.073
Bazzanti, Marcelo, Mastrantuono, L., & Solimini, A. G. (2012). Selecting macroinvertebrate taxa and metrics to assess eutrophication in different depth zones of Mediterranean lakes. Fundam. Appl. Limnol, 180/2, 133–143. https://doi.org/10.1127/1863- 9135/2012/0200
Bossuyt, B. T. A., & Janssen, C. R. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136(1), 145–154. https://doi.org/10.1016/j.envpol.2004.11.023
Bossuyt, B. T. A., Muyssen, B. T. A., & Janssen, C. R. (2005). Relevance of generic and site‐specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environmental Toxicology and Chemistry: An International Journal, 24(2), 470. https://doi.org/10.1897/03-067r.1
Carew, M. E., Miller, A. D., & Hoffmann, A. A. (2011). Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 20(3), 595–606. https://doi.org/10.1007/s10646-011-0615-3
Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.F1000Research, 2, 2. https://doi.org/10.12688/f1000research.2-191.v2
Chapman, P. M., Farrell, M. A., & Brinkhurst, R. O. (1982). Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology, 2, 47–67. https://doi.org/http://dx.doi.org/10.1016/0166-445X(82)90005-4
Comber, S. D. W., Merrington, G., Sturdy, L., Delbeke, K., & van Assche, F. (2008). Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the levels of failure. Science of The Total Environment, 403(1-3), 12–22.
Environmental Protection Agency (EPA). (2005). Washington, DC, EPA/600/X-05/027. Ewell, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A., & Spiegel, R. C. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5(9), 831–840. https://doi.org/10.1002/etc.5620050908
Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P., & Ackerman, J. D. (2010). The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environmental Toxicology and Chemistry, 29(11), 2519–2528. https://doi.org/10.1002/etc.299
Kooijman, S. A. L. M. (1987). A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research, 21(3), 269–276. https://doi.org/10.1016/0043-1354(87)90205-3
Metcalfe-Smith, J (1994). Biological water‐quality assessment of rivers: use of macroinvertebrate communities. The Rivers Handbook: Hydrological and Ecological Principles, 144–170. https://doi.org/https://doi.org/10.1002/9781444313871.ch8
Paisley, M. ., Trigg, D. ., & Walley, W (2014). ). Revision of the biological monitoring working party (BMWP) score system: derivation of present‐only and abundance‐ related scores from field data. River Res. Applic, 30(7), 887–904. https://doi.org/http://dx.doi.org/10.1002/rra.2686
Posthuma, L., Suter, G. W., & Traas, T. P. (2001). Species Sensitivity Distributions in Ecotoxicology. Boca Raton: CRC press. https://doi.org/https://doi.org/10.1201/9781420032314
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R.PLOS ONE, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021
Rodriguez, P., & Reynoldson, T. B. (2011). Appendices. In The Pollution Biology of Aquatic Oligochaetes (pp. 225–261). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1718-3_7
Rogevich, E. C., Hoang, T. C., & Rand, G. M. (2008). The Effects of Water Quality and Age on the Acute Toxicity of Copper to the Florida Apple Snail, Pomacea paludosa. Archives of Environmental Contamination and Toxicology, 54(4), 690–696. https://doi.org/10.1007/s00244-007-9106-1
Ryan, A. C., Tomasso, J. R., & Klaine, S. J. (2009). Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. Environmental Toxicology and Chemistry, 28(8), 1663. https://doi.org/10.1897/08-361.1
Schutten, G., Hong, C. C., & Leeper, T. (2016). ReadODS: read and write ODS files.Retrieved from https://cran.r-project.org/package=readODS
Technical Guidance for Deriving Environmental Quality Standards (TGD). (2011). Common Implementation Strategy for the Water Framework Directive (2000/60/EC). https://doi.org/10.2779/43816
Thorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit Species Sensitivity Distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082
United States Environmental Protection Agency (USEPA). (2020). ecotox knowledgebase.Retrieved from https://cfpub.epa.gov/ecotox/
Wickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., & Woo, K. (2018). Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Retrieved from https://cran.r-project.org/web/packages/ggplot2/
Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package versión 0.7.6. Retrieved from https://cran.r- project.org/package=dplyr
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 27 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80356/2/1053823272.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80356/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80356/4/1053823272.2021.pdf.jpg
bitstream.checksum.fl_str_mv f13112c293596ab400ed97aaba4109b1
cccfe52f796b7c63423298c2d3365fc6
c218c53bb4237028daebe8f34b5a4c63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886166842048512
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reynaldi, Sebastián0c4b055f46b1e02bb45a322e10177c19600Tabares Cardona, Sarafda09a0f30266642a0a1d1e57e1ef37a2021-10-02T16:43:59Z2021-10-02T16:43:59Z2020-05-14https://repositorio.unal.edu.co/handle/unal/80356Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl método “Biological Monitoring Working Party” (BMWP) identifica taxones de macroinvertebrados acuáticos con un puntaje del uno al diez, excluyendo el nueve. El puntaje diez corresponde a los taxones más sensibles a la materia orgánica (MO). Sin embargo, la MO disminuye las concentraciones medianas letales (LC50) para el cobre (Cu), puesto que la MO forma complejos con los iones, impidiendo de esta manera la entrada de Cu a los organismos acuáticos. Lo anterior, sugiere tolerancia al Cu en taxones con alta puntuación del BMWP. Mediante curvas de distribución de sensibilidad (SSD) se compararon las LC50 para CuSO4 descargadas de ECOTOX (https://cfpub.epa.gov/ecotox/). Rutinas en lenguaje R combinaron los paquetes “dplyr”, “ssdtools” y “ggplot2” para seleccionar las LC50 determinadas en especies de taxones incluidos en el BMWP bajo condiciones comparables y finalmente, construir mediante ellas, curvas SSD. El taxón más tolerante fue Perlidae con puntaje diez. Pero, Ephemerellidae, igualmente con puntaje diez, resultó afectado a una concentración poco mayor a la que afectó el 50% de los taxones (HC50). El taxón más sensible fue Unionidae con puntaje seis. Sin embargo, Gammaridae, igualmente con puntaje seis, resultó afectado a una concentración mayor que HC50. La especie más tolerante fue Asellus aquaticus con puntaje tres. Pero, Biomphalaria glabrata, igualmente con puntaje tres, resultó afectada a una concentración menor a la que afectó al 25% de las especies. La especie más sensible fue Lampsilis siliquoidea con puntaje seis. Pero, Gammarus lacustris, también con puntaje seis, resultó afectada a una concentración mayor de la que afectó el 75% de las especies. Además, la sensibilidad de las especies fue diferente dentro de un mismo taxón. Estos resultados sugieren que no existe relación entre el puntaje BMWP y la tolerancia al Cu, la cual varia de especie a especie. (Texto tomado de la fuente)The Biological Monitoring Working Group (BMWP) method ranks aquatic macroinvertebrate taxa with a score of one to ten, excluding nine. Score ten corresponds to the taxa most sensitive to organic matter (OM). However, OM forms complexes with metal ions, preventing their entry into aquatic organisms. OM decreased lethal median concentrations (LC50) for copper. This effect suggests tolerance to copper in taxa with high BMWP scores. Sensitivity distribution curves (SSD) compared LC50s para CuSO4 of downloaded from ECOTOX (https://cfpub.epa.gov/ecotox/). Routines in R language combined the packages "dplyr", "ssdtools" and "ggplot2" to select LC50s determined in species of BMWP taxa under comparable conditions, and build the SSD curves with them. The most tolerant taxon was Perlidae, scored with ten. However, Ephemerellidae, also scored with ten, resulted affected for a concentration slightly higher than that which affected 50% of the taxa (HC50). The most sensitive taxon was Unionidae scored with six. However, Gammaridae, also scored with six, was affected at a concentration higher than HC50. The most tolerant species was Asellus aquaticus, scored with three. However, Biomphalaria glabrata, also scored with three, resulted affected for a concentration lower than which affected 25% of the species. The most sensitive species was Lampsilis siliquoidea, scored with six. However, Gammarus lacustris, also scored with six, was affected for a concentration higher than which affected 75% of the species. Furthermore, the sensitivity of the species was different within the same taxon. These results suggest that there is no relationship between the BMWP score and copper tolerance, and the copper sensitivity varies from specie to specie.MaestríaMagíster en Medio Ambiente y Desarrolloxii, 27 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaBiological Monitoring Working Party (BMWP)Aquatic invertebratesAquatic ecologyAnimales invertebradosEcología acuáticaSSDLC50BMWPCopperOrganic matterCobreMateria OrgánicaRelación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.Relationship between the BMWP method and copper sensitivity in aquatic macroinvertebrates of continental water.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2008). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.p df/bb902be7-a503-4ab7-9036-d866b8ddce69Agencia Europea de Sustancias y Mezclas Químicas (ECHA). (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance (ECHA-17-G-18-EN). https://doi.org/http://dx.doi.org/10.2823/337352Bazzanti, Marcello, Mastrantuono, L., & Pilotto, F. (2017). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of the Total Environment, 579, 456– 465. https://doi.org/10.1016/j.scitotenv.2016.11.073Bazzanti, Marcelo, Mastrantuono, L., & Solimini, A. G. (2012). Selecting macroinvertebrate taxa and metrics to assess eutrophication in different depth zones of Mediterranean lakes. Fundam. Appl. Limnol, 180/2, 133–143. https://doi.org/10.1127/1863- 9135/2012/0200Bossuyt, B. T. A., & Janssen, C. R. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136(1), 145–154. https://doi.org/10.1016/j.envpol.2004.11.023Bossuyt, B. T. A., Muyssen, B. T. A., & Janssen, C. R. (2005). Relevance of generic and site‐specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environmental Toxicology and Chemistry: An International Journal, 24(2), 470. https://doi.org/10.1897/03-067r.1Carew, M. E., Miller, A. D., & Hoffmann, A. A. (2011). Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 20(3), 595–606. https://doi.org/10.1007/s10646-011-0615-3Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.F1000Research, 2, 2. https://doi.org/10.12688/f1000research.2-191.v2Chapman, P. M., Farrell, M. A., & Brinkhurst, R. O. (1982). Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology, 2, 47–67. https://doi.org/http://dx.doi.org/10.1016/0166-445X(82)90005-4Comber, S. D. W., Merrington, G., Sturdy, L., Delbeke, K., & van Assche, F. (2008). Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the levels of failure. Science of The Total Environment, 403(1-3), 12–22.Environmental Protection Agency (EPA). (2005). Washington, DC, EPA/600/X-05/027. Ewell, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A., & Spiegel, R. C. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5(9), 831–840. https://doi.org/10.1002/etc.5620050908Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P., & Ackerman, J. D. (2010). The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environmental Toxicology and Chemistry, 29(11), 2519–2528. https://doi.org/10.1002/etc.299Kooijman, S. A. L. M. (1987). A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research, 21(3), 269–276. https://doi.org/10.1016/0043-1354(87)90205-3Metcalfe-Smith, J (1994). Biological water‐quality assessment of rivers: use of macroinvertebrate communities. The Rivers Handbook: Hydrological and Ecological Principles, 144–170. https://doi.org/https://doi.org/10.1002/9781444313871.ch8Paisley, M. ., Trigg, D. ., & Walley, W (2014). ). Revision of the biological monitoring working party (BMWP) score system: derivation of present‐only and abundance‐ related scores from field data. River Res. Applic, 30(7), 887–904. https://doi.org/http://dx.doi.org/10.1002/rra.2686Posthuma, L., Suter, G. W., & Traas, T. P. (2001). Species Sensitivity Distributions in Ecotoxicology. Boca Raton: CRC press. https://doi.org/https://doi.org/10.1201/9781420032314Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R.PLOS ONE, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021Rodriguez, P., & Reynoldson, T. B. (2011). Appendices. In The Pollution Biology of Aquatic Oligochaetes (pp. 225–261). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1718-3_7Rogevich, E. C., Hoang, T. C., & Rand, G. M. (2008). The Effects of Water Quality and Age on the Acute Toxicity of Copper to the Florida Apple Snail, Pomacea paludosa. Archives of Environmental Contamination and Toxicology, 54(4), 690–696. https://doi.org/10.1007/s00244-007-9106-1Ryan, A. C., Tomasso, J. R., & Klaine, S. J. (2009). Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. Environmental Toxicology and Chemistry, 28(8), 1663. https://doi.org/10.1897/08-361.1Schutten, G., Hong, C. C., & Leeper, T. (2016). ReadODS: read and write ODS files.Retrieved from https://cran.r-project.org/package=readODSTechnical Guidance for Deriving Environmental Quality Standards (TGD). (2011). Common Implementation Strategy for the Water Framework Directive (2000/60/EC). https://doi.org/10.2779/43816Thorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit Species Sensitivity Distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082United States Environmental Protection Agency (USEPA). (2020). ecotox knowledgebase.Retrieved from https://cfpub.epa.gov/ecotox/Wickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., & Woo, K. (2018). Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Retrieved from https://cran.r-project.org/web/packages/ggplot2/Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package versión 0.7.6. Retrieved from https://cran.r- project.org/package=dplyrInvestigadoresORIGINAL1053823272.2021.pdf1053823272.2021.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf1272202https://repositorio.unal.edu.co/bitstream/unal/80356/2/1053823272.2021.pdff13112c293596ab400ed97aaba4109b1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80356/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1053823272.2021.pdf.jpg1053823272.2021.pdf.jpgGenerated Thumbnailimage/jpeg5030https://repositorio.unal.edu.co/bitstream/unal/80356/4/1053823272.2021.pdf.jpgc218c53bb4237028daebe8f34b5a4c63MD54unal/80356oai:repositorio.unal.edu.co:unal/803562024-07-30 23:11:16.069Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==