Quantum error correction via quantum convolutional neural networks

ilustraciones, diagramas

Autores:
Falla León, José Luis
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86209
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86209
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Quantum error correction
Quantum convolutional neural network
Quantum computing
Quantum algorithms
Corrección de error cuántico
Redes neuronales convolucionales cuánticas
Computación cuántica
Algoritmos cuánticos
redes neuronales convolucionales
corrección de errores cuántica
quantum algorithm
convolutional neural network
quantum error correction
algoritmo cuántico
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_7070d1ece83933b422c77d1fadb2efe5
oai_identifier_str oai:repositorio.unal.edu.co:unal/86209
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Quantum error correction via quantum convolutional neural networks
dc.title.translated.spa.fl_str_mv Corrección de error cuántico mediante redes neuronales convolucionales cuánticas
title Quantum error correction via quantum convolutional neural networks
spellingShingle Quantum error correction via quantum convolutional neural networks
530 - Física::539 - Física moderna
Quantum error correction
Quantum convolutional neural network
Quantum computing
Quantum algorithms
Corrección de error cuántico
Redes neuronales convolucionales cuánticas
Computación cuántica
Algoritmos cuánticos
redes neuronales convolucionales
corrección de errores cuántica
quantum algorithm
convolutional neural network
quantum error correction
algoritmo cuántico
title_short Quantum error correction via quantum convolutional neural networks
title_full Quantum error correction via quantum convolutional neural networks
title_fullStr Quantum error correction via quantum convolutional neural networks
title_full_unstemmed Quantum error correction via quantum convolutional neural networks
title_sort Quantum error correction via quantum convolutional neural networks
dc.creator.fl_str_mv Falla León, José Luis
dc.contributor.advisor.spa.fl_str_mv Viviescas Ramírez, Carlos Leonardo
dc.contributor.author.spa.fl_str_mv Falla León, José Luis
dc.contributor.researchgroup.spa.fl_str_mv Caos y Complejidad
dc.contributor.orcid.spa.fl_str_mv Falla, Jose [0000-0001-9918-2198]
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Quantum error correction
Quantum convolutional neural network
Quantum computing
Quantum algorithms
Corrección de error cuántico
Redes neuronales convolucionales cuánticas
Computación cuántica
Algoritmos cuánticos
redes neuronales convolucionales
corrección de errores cuántica
quantum algorithm
convolutional neural network
quantum error correction
algoritmo cuántico
dc.subject.proposal.eng.fl_str_mv Quantum error correction
Quantum convolutional neural network
Quantum computing
Quantum algorithms
dc.subject.proposal.spa.fl_str_mv Corrección de error cuántico
Redes neuronales convolucionales cuánticas
Computación cuántica
Algoritmos cuánticos
dc.subject.wikidata.spa.fl_str_mv redes neuronales convolucionales
corrección de errores cuántica
quantum algorithm
dc.subject.wikidata.eng.fl_str_mv convolutional neural network
quantum error correction
algoritmo cuántico
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-05T20:53:10Z
dc.date.available.none.fl_str_mv 2024-06-05T20:53:10Z
dc.date.issued.none.fl_str_mv 2024-04-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86209
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86209
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. arXiv: 1801.00862.
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195{202, September 2017.
Arute, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, October 2019.
Xiao Liang, Sheng Liu, Yan Li, and Yong-Sheng Zhang. Generation of Bose-Einstein Condensates' Ground State Through Machine Learning. arXiv:1712.10093 [quant-ph], December 2017.
G. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated. Physical Review Letters, 101(11):110501, September 2008.
Nobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306, June 2019.
Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273-1278, December 2019.
Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Perfect Quantum Error Correcting Code. Physical Review Letters, 77(1):198-201, July 1996.
Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4):R2493-R2496, October 1995.
A. M. Steane. Error Correcting Codes in Quantum Theory. Physical Review Letters, 77(5):793-797, July 1996.
A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098-1105, August 1996.
M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382-385, February 2012.
P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Experimental Repetitive Quantum Error Correction. Science, 332(6033):1059-1061, May 2011.
Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. A surface code quantum computer in silicon. Science Advances, 1(9):e1500707, October 2015.
Wright, et al. Benchmarking an 11-qubit quantum computer. Nature Communications, 10(1):5464, November 2019.
Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto. Tracking quantum error correction. Physical Review A, 98(2):022326, August 2018.
Kjaergaard et al. Superconducting Qubits: Current State of Play. arXiv:1905.13641, May 2019.
Bharti et al. Noisy intermediate-scale quantum (NISQ) algorithms. Reviews of Modern Physics, 94(1):015004, February 2022. arXiv:2101.08448 [cond-mat, physics:quant-ph].
F. Vatan, V. P. Roychowdhury, and M. P. Anantram. Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes. arXiv:quant-ph/9704019, April 1997.
Chi-Kwong Li, Mikio Nakahara, Yiu-Tung Poon, Nung-Sing Sze, and Hiroyuki Tomita. Efficient Quantum Error Correction for Fully Correlated Noise. Physics Letters A, 375(37):3255-3258, August 2011.
Emanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of Quantum Error Correction for General Noise. arXiv:quant-ph/9908066, August 1999.
M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625{644, August 2021.
Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
Ramamurti Shankar. Principles of quantum mechanics. Plenum, New York, NY, 1980.
Simon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76(7):076001, July 2013.
T. Brun, I. Devetak, and M.-H. Hsieh. Correcting Quantum Errors with Entanglement. Science, 314(5798):436{439, October 2006.
P.G. Kwiat and D.F.V. James. Quantum optics -- entanglement and quantum information. In Robert D. Guenther, editor, Encyclopedia of Modern Optics, pages 256-264. Elsevier, Oxford, 2005.
J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432(7017):602-605, December 2004.
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Error Correction and Orthogonal Geometry. Physical Review Letters, 78(3):405-408, January 1997.
Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052, May 1997.
H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43(5):2097, 2002.
Philipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban, A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, and Rainer Blatt. Undoing a Quantum Measurement. Physical Review Letters, 110(7):070403, February 2013.
D. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nature Communications, 6(1):6983, November 2015.
Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119(18):180509, November 2017.
Ying Li and Simon C. Benjamin. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Physical Review X, 7(2):021050, June 2017.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014.
Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical quantum variational algorithms. Physical Review A, 92(4):042303, October 2015.
Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, February 2016.
David Fumo. Types of machine learning algorithms you should know [blog]. https://www.scientificstyleandformat.org/Tools/SSF-Citation-Quick-Guide.html. Accessed: 2021-11-22.
Ashish Sukhadeve. Understanding neural networks: A beginner's guide [blog]. https://www.datasciencecentral.com/profiles/blogs/understanding-neural-network-a-beginner-s-guide. Accessed: 2021-11-22.
Denny Novikov. Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data Mining. Independently Published, 2019.
G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz. An effective algorithm for hyperparameter optimization of neural networks. IBM Journal of Research and Development, 61(4/5):9:1-9:11, 2017.
Kevin Gurney. Introduction to Neural Networks. Taylor & Francis, Oxford, 1997. OCLC: 892785047.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436{444, May 2015.
Alexandra Nagy and Vincenzo Savona. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters, 122(25):250501, June 2019.
Michael J. Hartmann and Giuseppe Carleo. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. Physical Review Letters, 122(25):250502, June 2019.
Filippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. Physical Review Letters, 122(25):250503, June 2019.
Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, page 22, 1982.
Roman Orus. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics, 349:117-158, October 2014.
Peter D. Johnson, Jonathan Romero, Jonathan Olson, Yudong Cao, and Alan Aspuru-Guzik. QVECTOR: an algorithm for device-tailored quantum error correction, November 2017. arXiv:1711.02249 [quant-ph].
Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, September 2012.
G. Vidal. Entanglement Renormalization. Physical Review Letters, 99(22):220405, November 2007.
Geoffrey Hinton. Lecture Notes for CSC2515: Lecture 6, 2007.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 52 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86209/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86209/2/1127215778.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86209/3/1127215778.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b360dcc51d47b3ee9200420bce7f6f8a
b2933fde6c75b6c8718d991674d26a13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089582934753280
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Viviescas Ramírez, Carlos Leonardo5b30aa603ec28676fe215dfba86e3d61Falla León, José Luisf9899ad4b60afef07309d718db6e74c4Caos y ComplejidadFalla, Jose [0000-0001-9918-2198]2024-06-05T20:53:10Z2024-06-05T20:53:10Z2024-04-05https://repositorio.unal.edu.co/handle/unal/86209Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasA sub-class of variational quantum algorithms (VQAs), the quantum convolutional neural network (QCNN), has emerged as an efficient quantum error correction (QEC) algorithm and full quantum error-correcting code. Through hybrid quantum-classical optimization of a QCNN architecture for a particular error model, it is possible to "train" a neural network to decrease the logical error rates for specific error models. Going into the noisy intermediate-scale quantum (NISQ) technology era, effective quantum error correction is necessary for accurate quantum computing with noisy qubits, and VQAs can bring about near-term, intermediate-scale, reliable quantum computing.Como una subclase de algoritmos cuánticos variacionales (VQAs), la red neuronal convolucional cuántica (QCNN), ha surgido como un algoritmo eficiente de corrección de errores cuánticos (QEC) y un código de corrección de errores cuánticos completo. A través de la optimización híbrida cuántico-clásica de una arquitectura QCNN para un modelo de error particular, es posible "entrenar" una red neuronal para reducir las tasas de error lógico para modelos de errores específicos. Entrando en la era de la tecnología cuántica de escala intermedia ruidosa (NISQ), la corrección de errores cuánticos efectiva es necesaria para la computación cuántica precisa con qubits ruidosos, y los VQAs pueden propiciar una computación cuántica confiable a corto plazo y a escala intermedia. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - FísicaComputación cuántica52 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaQuantum error correctionQuantum convolutional neural networkQuantum computingQuantum algorithmsCorrección de error cuánticoRedes neuronales convolucionales cuánticasComputación cuánticaAlgoritmos cuánticosredes neuronales convolucionalescorrección de errores cuánticaquantum algorithmconvolutional neural networkquantum error correctionalgoritmo cuánticoQuantum error correction via quantum convolutional neural networksCorrección de error cuántico mediante redes neuronales convolucionales cuánticasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJohn Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. arXiv: 1801.00862.Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195{202, September 2017.Arute, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, October 2019.Xiao Liang, Sheng Liu, Yan Li, and Yong-Sheng Zhang. Generation of Bose-Einstein Condensates' Ground State Through Machine Learning. arXiv:1712.10093 [quant-ph], December 2017.G. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated. Physical Review Letters, 101(11):110501, September 2008.Nobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306, June 2019.Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273-1278, December 2019.Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Perfect Quantum Error Correcting Code. Physical Review Letters, 77(1):198-201, July 1996.Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4):R2493-R2496, October 1995.A. M. Steane. Error Correcting Codes in Quantum Theory. Physical Review Letters, 77(5):793-797, July 1996.A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098-1105, August 1996.M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382-385, February 2012.P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Experimental Repetitive Quantum Error Correction. Science, 332(6033):1059-1061, May 2011.Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. A surface code quantum computer in silicon. Science Advances, 1(9):e1500707, October 2015.Wright, et al. Benchmarking an 11-qubit quantum computer. Nature Communications, 10(1):5464, November 2019.Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto. Tracking quantum error correction. Physical Review A, 98(2):022326, August 2018.Kjaergaard et al. Superconducting Qubits: Current State of Play. arXiv:1905.13641, May 2019.Bharti et al. Noisy intermediate-scale quantum (NISQ) algorithms. Reviews of Modern Physics, 94(1):015004, February 2022. arXiv:2101.08448 [cond-mat, physics:quant-ph].F. Vatan, V. P. Roychowdhury, and M. P. Anantram. Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes. arXiv:quant-ph/9704019, April 1997.Chi-Kwong Li, Mikio Nakahara, Yiu-Tung Poon, Nung-Sing Sze, and Hiroyuki Tomita. Efficient Quantum Error Correction for Fully Correlated Noise. Physics Letters A, 375(37):3255-3258, August 2011.Emanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of Quantum Error Correction for General Noise. arXiv:quant-ph/9908066, August 1999.M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625{644, August 2021.Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.Ramamurti Shankar. Principles of quantum mechanics. Plenum, New York, NY, 1980.Simon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76(7):076001, July 2013.T. Brun, I. Devetak, and M.-H. Hsieh. Correcting Quantum Errors with Entanglement. Science, 314(5798):436{439, October 2006.P.G. Kwiat and D.F.V. James. Quantum optics -- entanglement and quantum information. In Robert D. Guenther, editor, Encyclopedia of Modern Optics, pages 256-264. Elsevier, Oxford, 2005.J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432(7017):602-605, December 2004.A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Error Correction and Orthogonal Geometry. Physical Review Letters, 78(3):405-408, January 1997.Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052, May 1997.H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43(5):2097, 2002.Philipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban, A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, and Rainer Blatt. Undoing a Quantum Measurement. Physical Review Letters, 110(7):070403, February 2013.D. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nature Communications, 6(1):6983, November 2015.Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119(18):180509, November 2017.Ying Li and Simon C. Benjamin. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Physical Review X, 7(2):021050, June 2017.Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014.Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical quantum variational algorithms. Physical Review A, 92(4):042303, October 2015.Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, February 2016.David Fumo. Types of machine learning algorithms you should know [blog]. https://www.scientificstyleandformat.org/Tools/SSF-Citation-Quick-Guide.html. Accessed: 2021-11-22.Ashish Sukhadeve. Understanding neural networks: A beginner's guide [blog]. https://www.datasciencecentral.com/profiles/blogs/understanding-neural-network-a-beginner-s-guide. Accessed: 2021-11-22.Denny Novikov. Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data Mining. Independently Published, 2019.G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz. An effective algorithm for hyperparameter optimization of neural networks. IBM Journal of Research and Development, 61(4/5):9:1-9:11, 2017.Kevin Gurney. Introduction to Neural Networks. Taylor & Francis, Oxford, 1997. OCLC: 892785047.Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436{444, May 2015.Alexandra Nagy and Vincenzo Savona. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters, 122(25):250501, June 2019.Michael J. Hartmann and Giuseppe Carleo. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. Physical Review Letters, 122(25):250502, June 2019.Filippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. Physical Review Letters, 122(25):250503, June 2019.Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, page 22, 1982.Roman Orus. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics, 349:117-158, October 2014.Peter D. Johnson, Jonathan Romero, Jonathan Olson, Yudong Cao, and Alan Aspuru-Guzik. QVECTOR: an algorithm for device-tailored quantum error correction, November 2017. arXiv:1711.02249 [quant-ph].Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, September 2012.G. Vidal. Entanglement Renormalization. Physical Review Letters, 99(22):220405, November 2007.Geoffrey Hinton. Lecture Notes for CSC2515: Lecture 6, 2007.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86209/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1127215778.2024.pdf1127215778.2024.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1807491https://repositorio.unal.edu.co/bitstream/unal/86209/2/1127215778.2024.pdfb360dcc51d47b3ee9200420bce7f6f8aMD52THUMBNAIL1127215778.2024.pdf.jpg1127215778.2024.pdf.jpgGenerated Thumbnailimage/jpeg4007https://repositorio.unal.edu.co/bitstream/unal/86209/3/1127215778.2024.pdf.jpgb2933fde6c75b6c8718d991674d26a13MD53unal/86209oai:repositorio.unal.edu.co:unal/862092024-06-05 23:04:20.371Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=