Some non-maximal arithmetic groups

Let k be a non-finite Dedekind domain, and σ be the ring of its integers. We shall assume that the ring R = σ/ (2) is finite. Let us denote by Mn (k) (resp. Mn(σ) ) the ring of all n by n matrices with entries in k (resp. in σ), and Gln (k) its group of units.We denote by sln (k) the subgroup of Gln...

Full description

Autores:
Allan, Nelo
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42019
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42019
http://bdigital.unal.edu.co/32116/
Palabra clave:
5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Teoría de los números
grupos discontinuos
grupos aritméticos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_703a154d0a2eaf7f838532d8de20aa5b
oai_identifier_str oai:repositorio.unal.edu.co:unal/42019
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Allan, Nelo481c6c34-8c37-402a-98c9-16fd4407f5773002019-06-28T10:27:19Z2019-06-28T10:27:19Z1968https://repositorio.unal.edu.co/handle/unal/42019http://bdigital.unal.edu.co/32116/Let k be a non-finite Dedekind domain, and σ be the ring of its integers. We shall assume that the ring R = σ/ (2) is finite. Let us denote by Mn (k) (resp. Mn(σ) ) the ring of all n by n matrices with entries in k (resp. in σ), and Gln (k) its group of units.We denote by sln (k) the subgroup of Gln (k) whose elements g  have determinant, det g, equal to one. Let  H ε Mn  (σ) be a symmetric matrix, i.e., H = tH where tH denotes the transpose matrix of H. We let G = SO (H) = { g ε Sln (k) l tgHg = H }, and we let Gσ = G∩Mn (σ). We want to exhibit certain H for which Gσ is not maxinal in G, in the sense that there exist a subgroup Δ contains Gσ properly and [Δ : Gσ] is finite.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/31464Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 21-28 0034-7426Allan, Nelo (1968) Some non-maximal arithmetic groups. Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 21-28 0034-7426 .5 Ciencias naturales y matemáticas / Science51 Matemáticas / MathematicsTeoría de los númerosgrupos discontinuosgrupos aritméticosSome non-maximal arithmetic groupsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL31464-114063-1-PB.pdfapplication/pdf2377800https://repositorio.unal.edu.co/bitstream/unal/42019/1/31464-114063-1-PB.pdf6498c96b7391b4384f6aeadb74efcd00MD51THUMBNAIL31464-114063-1-PB.pdf.jpg31464-114063-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7650https://repositorio.unal.edu.co/bitstream/unal/42019/2/31464-114063-1-PB.pdf.jpg947586e009b0bbe22ce54721c72394eaMD52unal/42019oai:repositorio.unal.edu.co:unal/420192023-02-05 23:05:12.765Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Some non-maximal arithmetic groups
title Some non-maximal arithmetic groups
spellingShingle Some non-maximal arithmetic groups
5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Teoría de los números
grupos discontinuos
grupos aritméticos
title_short Some non-maximal arithmetic groups
title_full Some non-maximal arithmetic groups
title_fullStr Some non-maximal arithmetic groups
title_full_unstemmed Some non-maximal arithmetic groups
title_sort Some non-maximal arithmetic groups
dc.creator.fl_str_mv Allan, Nelo
dc.contributor.author.spa.fl_str_mv Allan, Nelo
dc.subject.ddc.spa.fl_str_mv 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
topic 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Teoría de los números
grupos discontinuos
grupos aritméticos
dc.subject.proposal.spa.fl_str_mv Teoría de los números
grupos discontinuos
grupos aritméticos
description Let k be a non-finite Dedekind domain, and σ be the ring of its integers. We shall assume that the ring R = σ/ (2) is finite. Let us denote by Mn (k) (resp. Mn(σ) ) the ring of all n by n matrices with entries in k (resp. in σ), and Gln (k) its group of units.We denote by sln (k) the subgroup of Gln (k) whose elements g  have determinant, det g, equal to one. Let  H ε Mn  (σ) be a symmetric matrix, i.e., H = tH where tH denotes the transpose matrix of H. We let G = SO (H) = { g ε Sln (k) l tgHg = H }, and we let Gσ = G∩Mn (σ). We want to exhibit certain H for which Gσ is not maxinal in G, in the sense that there exist a subgroup Δ contains Gσ properly and [Δ : Gσ] is finite.
publishDate 1968
dc.date.issued.spa.fl_str_mv 1968
dc.date.accessioned.spa.fl_str_mv 2019-06-28T10:27:19Z
dc.date.available.spa.fl_str_mv 2019-06-28T10:27:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42019
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32116/
url https://repositorio.unal.edu.co/handle/unal/42019
http://bdigital.unal.edu.co/32116/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/31464
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 21-28 0034-7426
dc.relation.references.spa.fl_str_mv Allan, Nelo (1968) Some non-maximal arithmetic groups. Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 21-28 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42019/1/31464-114063-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42019/2/31464-114063-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 6498c96b7391b4384f6aeadb74efcd00
947586e009b0bbe22ce54721c72394ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089968789749760