Some non-maximal arithmetic groups

Let k be a non-finite Dedekind domain, and σ be the ring of its integers. We shall assume that the ring R = σ/ (2) is finite. Let us denote by Mn (k) (resp. Mn(σ) ) the ring of all n by n matrices with entries in k (resp. in σ), and Gln (k) its group of units.We denote by sln (k) the subgroup of Gln...

Full description

Autores:
Allan, Nelo
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42019
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42019
http://bdigital.unal.edu.co/32116/
Palabra clave:
5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Teoría de los números
grupos discontinuos
grupos aritméticos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let k be a non-finite Dedekind domain, and σ be the ring of its integers. We shall assume that the ring R = σ/ (2) is finite. Let us denote by Mn (k) (resp. Mn(σ) ) the ring of all n by n matrices with entries in k (resp. in σ), and Gln (k) its group of units.We denote by sln (k) the subgroup of Gln (k) whose elements g  have determinant, det g, equal to one. Let  H ε Mn  (σ) be a symmetric matrix, i.e., H = tH where tH denotes the transpose matrix of H. We let G = SO (H) = { g ε Sln (k) l tgHg = H }, and we let Gσ = G∩Mn (σ). We want to exhibit certain H for which Gσ is not maxinal in G, in the sense that there exist a subgroup Δ contains Gσ properly and [Δ : Gσ] is finite.