Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá
ilustraciones, fotografías, gráficas, mapas, tablas
- Autores:
-
Díaz Fonseca, Oscar David
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79955
- Palabra clave:
- 610 - Medicina y salud::613 - Salud y seguridad personal
Calidad del aire
Air quality
Gases de escape en automóviles
Automobiles - motors - exhaust gas
Contaminación del aire
Contaminantes atmosféricos
Biciusuarios
Dosis inhalada
Exposición a contaminantes
Biomarcador
Función Pulmonar
Air pollutants
Air pollution
Bicyclists
Inhaled dose
Exposure to pollutants
Biomarker
Pulmonary function
Contaminación atmosférica
Air pollution
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6fbc3c7add41bb394e1a1ebfe5ecf950 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79955 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
dc.title.translated.eng.fl_str_mv |
Impact of vehicular pollution on carboxyhemoglobin levels and respiratory response in urban cyclists of the Universidad Nacional de Colombia-Bogotá |
title |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
spellingShingle |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá 610 - Medicina y salud::613 - Salud y seguridad personal Calidad del aire Air quality Gases de escape en automóviles Automobiles - motors - exhaust gas Contaminación del aire Contaminantes atmosféricos Biciusuarios Dosis inhalada Exposición a contaminantes Biomarcador Función Pulmonar Air pollutants Air pollution Bicyclists Inhaled dose Exposure to pollutants Biomarker Pulmonary function Contaminación atmosférica Air pollution |
title_short |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
title_full |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
title_fullStr |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
title_full_unstemmed |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
title_sort |
Impacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede Bogotá |
dc.creator.fl_str_mv |
Díaz Fonseca, Oscar David |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Pulido, Alba Isabel Rojas Roa, Nestor Yezid |
dc.contributor.author.none.fl_str_mv |
Díaz Fonseca, Oscar David |
dc.contributor.researchgroup.spa.fl_str_mv |
Toxicología Ambiental y Ocupacional - TOXICAO |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::613 - Salud y seguridad personal |
topic |
610 - Medicina y salud::613 - Salud y seguridad personal Calidad del aire Air quality Gases de escape en automóviles Automobiles - motors - exhaust gas Contaminación del aire Contaminantes atmosféricos Biciusuarios Dosis inhalada Exposición a contaminantes Biomarcador Función Pulmonar Air pollutants Air pollution Bicyclists Inhaled dose Exposure to pollutants Biomarker Pulmonary function Contaminación atmosférica Air pollution |
dc.subject.lemb.none.fl_str_mv |
Calidad del aire Air quality Gases de escape en automóviles Automobiles - motors - exhaust gas |
dc.subject.proposal.spa.fl_str_mv |
Contaminación del aire Contaminantes atmosféricos Biciusuarios Dosis inhalada Exposición a contaminantes Biomarcador Función Pulmonar |
dc.subject.proposal.eng.fl_str_mv |
Air pollutants Air pollution Bicyclists Inhaled dose Exposure to pollutants Biomarker Pulmonary function |
dc.subject.unesco.none.fl_str_mv |
Contaminación atmosférica Air pollution |
description |
ilustraciones, fotografías, gráficas, mapas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-17T15:31:01Z |
dc.date.available.none.fl_str_mv |
2021-08-17T15:31:01Z |
dc.date.issued.none.fl_str_mv |
2021-08-14 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79955 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79955 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Descubre las ciudades más preparadas para la bicicleta en Europa [Internet]. [cited 2021 May 20]. Available from: http://www.e-park.es/es/blog/las-ciudades-con-mas-bicicletas-en-europa 2. La bicicleta se impone como mejor opción de transporte en más de 100 ciudades [Internet]. [cited 2020 Nov 28]. Available from: https://www.larepublica.co/ocio/la-bicicleta-se-impone-como-mejor-opcion-de-transporte-en-mas-de-100-ciudades-2997736 3. Administración Distrital revela resultados de la Encuesta de Movilidad 2019 para Bogotá y 18 municipios vecinos | Secretaría Distrital de Movilidad [Internet]. [cited 2021 Jun 8]. Available from: https://www.movilidadbogota.gov.co/web/Noticia/administracion_distrital_revela_resultados_de_la_encuesta_de_movilidad_2019_para_bogota_y_18 4. El protagonismo de la bicicleta - Bogotá Cómo Vamos [Internet]. [cited 2021 May 31]. Available from: https://bogotacomovamos.org/el-protagonismo-de-la-bicicleta/ 5. Muévete en Bici por Bogotá | Secretaría Distrital de Movilidad [Internet]. [cited 2021 Jun 8]. Available from: https://www.movilidadbogota.gov.co/web/muevete-en-bici-por-bogota 6. World Air Quality Index (AQI) Ranking | AirVisual [Internet]. [cited 2021 Jun 8]. Available from: https://www.iqair.com/world-air-quality-ranking 7. Giraldo LA, Behrentz E. Estimación del inventario de emisiones de fuentes móviles para la ciudad de Bogotá e identificación de variables pertinentes. 2005;(1):1–16. 8. Rojas NY. Material particulado atmosferico y salud. Bogotá: Ediciones Uniandes, Facultad de ingerieria.; 2005. 9. Nicholson JP, Case DB. Carboxyhemoglobin Levels in New York City Runners. Phys Sportsmed. 1983;11:3(August):134–8. 10. de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, et al. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos Environ [Internet]. 2012;59:151–9. Available from: http://dx.doi.org/10.1016/j.atmosenv.2012.05.013 11. McCafferty WB. Air Pollution and Athletic Performance. 1981. 12. Rubio Barbón S, García Fernández ML. Intoxicación por monóxido de carbono. Med Clin (Barc). 1997;108(20):776–8. 13. Dinero. Bogotá, ejemplo mundial de las dos ruedas [Internet]. 2015 [cited 2017 Nov 16]. Available from: http://www.dinero.com/pais/articulo/uso-bicicletas-colombia/208797 14. Palacios Rozo M, de Greiff A, Antorveza Triana A, Rodríguez A, Pérez-Almonacid R. Vida universitaria y bienestar. Estudios y reflexiones. 2005;139. 15. Planeación O de. Estadisticas e indicadores de la Universidad Nacional de Colombia. Rev la Of Nac Planeación [Internet]. 2013;19:147. Available from: http://www.onp.unal.edu.co/ADMON_ONP/ADJUNTOS/20141211_112012_2013 Revista Indicadores y estadisticas 2014dic11.pdf 16. Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int [Internet]. 2016;97:45–55. Available from: http://dx.doi.org/10.1016/j.envint.2016.10.011 17. Rabl A, de Nazelle A. Benefits of shift from car to active transport. Transp Policy [Internet]. 2012;19(1):121–31. Available from: http://dx.doi.org/10.1016/j.tranpol.2011.09.008 18. Monóxido de carbono. Cuidado con el asesino silencioso | Centro Nacional de Prevención de Desastres | Gobierno | gob.mx [Internet]. [cited 2021 May 21]. Available from: https://www.gob.mx/cenapred/es/articulos/monoxido-de-carbono-cuidado-con-el-asesino-silencioso?idiom=es 19. Mu L, Deng F, Tian L, Li Y, Swanson M, Ying J, et al. Peak expiratory flow, breath rate and blood pressure in adults with changes in particulate matter air pollution during the Beijing Olympics: A panel study. Environ Res [Internet]. 2014;133:4–11. Available from: http://dx.doi.org/10.1016/j.envres.2014.05.006 20. Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Heal A Glob Access Sci Source [Internet]. 2017;16(1):1–7. Available from: http://dx.doi.org/10.1186/s12940-017-0212-x 21. Morales Betancourt R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, et al. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ [Internet]. 2017;157(1):135–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1352231017301309 22. Carlisle AJ, Sharp NCC. Exercise and outdoor ambient air pollution. 2001;214–22. 23. MacNaughton P, Melly S, Vallarino J, Adamkiewicz G, Spengler JD. Impact of bicycle route type on exposure to traffic-related air pollution. Sci Total Environ [Internet]. 2014;490(2):37–43. Available from: http://dx.doi.org/10.1016/j.scitotenv.2014.04.111 24. Terashima P, Andrés R, Jaimes P, Rocío L, Yupanqui R, Antonio M, et al. Variación del nivel de carboxihemoglobina en corredores aficionados en ambientes con tránsito de vehículos motorizados en el distrito de San. Ann Intern Med. 2005;16(4):266–72. 25. Wu S, Deng F, Hao Y, Shima M, Wang X, Zheng C, et al. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study. J Hazard Mater [Internet]. 2013;260:183–91. Available from: http://dx.doi.org/10.1016/j.jhazmat.2013.05.018 26. Wu S, Deng F, Hao Y, Wang X, Zheng C, Lv H, et al. Fine particulate matter, temperature, and lung function in healthy adults: Findings from the HVNR study. Chemosphere [Internet]. 2014;108:168–74. Available from: http://dx.doi.org/10.1016/j.chemosphere.2014.01.032 27. Rundell KW, Slee JB, Caviston R, Hollenbach AM. Decreased lung function after inhalation of ultrafine and fine particulate matter during exercise is related to decreased total nitrate in exhaled breath condensate. Inhal Toxicol. 2008;20(1):1–9. 28. Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24. 29. Fajardo OA, Rojas NY. Particulate matter exposure of bicycle path users in a high-altitude city. Atmos Environ. 2012;46:675–9. 30. Franco JF, Segura JF, Mura I. Air Pollution alongside Bike-Paths in Bogotá-Colombia. Front Environ Sci [Internet]. 2016;4(November):1–10. Available from: http://journal.frontiersin.org/article/10.3389/fenvs.2016.00077/full 31. Carnicer J. Contaminación Atmósferica. Contam Atmosférica [Internet]. 2007;1:320. Available from: http://books.google.com/books?id=86oL_Ybnwn8C&pgis=1 32. Monóxido de Carbono. [cited 2017 Nov 11]; Available from: http://www.siafa.com.ar/notisiafa/13/monoxidodecarbono.pdf 33. US EPA O. Basic Information about Carbon Monoxide (CO) Outdoor Air Pollution. [cited 2017 Nov 11]; Available from: https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#What is CO 34. Agency for Toxic Substances and Disease Registry (ATSDR). ATSDR - Public Health Statement: Carbon Monoxide [Internet]. [cited 2021 Jan 10]. Available from: https://www.atsdr.cdc.gov/phs/phs.asp?id=1146&tid=253 35. (CDC) C for DC and P. CDC - NIOSH Pocket Guide to Chemical Hazards - Carbon monoxide [Internet]. [cited 2021 Jan 10]. Available from: https://www.cdc.gov/niosh/npg/npgd0105.html 36. Rodríguez NYRJAEGCCDAIR. EVALUACIÓN TOXICOLÓGICA OCUPACIONAL DE LA EXPOSICIÓN A CONTAMINANTES DEL AIRE. Centro Edi. 2018. 77–87 p. 37. AMDUR M.O., DOULL J. KC. Casarett & Doull’s Toxicology. 1992. 523, 530, 857–859 p. 38. Guzman JA. Carbon Monoxide Poisoning. Crit Care Clin [Internet]. 2012;28(4):537–48. Available from: http://dx.doi.org/10.1016/j.ccc.2012.07.007 39. Arango S e. Biomarcadores para la evaluación de riesgo en la salud humana. Rev Fac Nac Salud Pública. 2012;30:75–82. 40. Martín-Olmedo P, Carroquino Saltó M, Ordóñez Iriarte J, Moya J. La Evaluación de riesgos en salud. Guía metodológica. Aplicaciones prácticas de la metodolo- gía de Evaluación de riesgos en salud por exposición a químicos. [Internet]. Sociedad Española de sanidad ambiental; 2016. 250 p. Available from: https://www.diba.cat/documents/467843/96195101/Evaluacion_riesgos_salud_Guia_metodologica.pdf/37481f80-8641-4a42-a647-eb7f24808d33 41. Diaz DSR. Validación Del Método Para Determinación De Carboxihemoglobina En Sangre Total Por Técnica Espectrofotométrica Con Reducción Con Ditionito De Sodio. 2011;63. 42. OMS. Calidad del aire ambiente (exterior) y salud. Calidad del aire ambiente (exterior) y salud. 2016. 43. Kingham S, Longley I, Salmond J, Pattinson W, Shrestha K. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ Pollut [Internet]. 2013;181:211–8. Available from: http://dx.doi.org/10.1016/j.envpol.2013.06.030 44. Pant P, Harrison RM. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos Environ [Internet]. 2013;77:78–97. Available from: http://dx.doi.org/10.1016/j.atmosenv.2013.04.028 45. Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J, et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int [Internet]. 2014;70:32–49. Available from: http://dx.doi.org/10.1016/j.envint.2014.05.013 46. Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit [Internet]. 2018;16(1):12–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1728869X17302459 47. Jeong CH, Traub A, Evans GJ. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos Environ [Internet]. 2017 [cited 2021 Jan 10];155:46–52. Available from: http://dx.doi.org/10.1016/j.atmosenv.2017.02.015 48. Ma N, Birmili W. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci Total Environ [Internet]. 2015 Apr 5 [cited 2021 Jan 10];512–513:154–66. Available from: http://dx.doi.org/10.1016/j.scitotenv.2015.01.009 49. Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, et al. Ultrafine particles in cities [Internet]. Vol. 66, Environment International. Elsevier Ltd; 2014 [cited 2021 Jan 10]. p. 1–10. Available from: http://dx.doi.org/10.1016/j.envint.2014.01.013 50. DiSC M. Instruction Manual Rev 1.1, July 15, 2010. 2010 [cited 2018 Apr 4]; Available from: http://fierz.ch/minidisc/pdf/miniDiSC_manual.pdf 51. Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 2017;188:32–48. 52. Agency for Toxic Substances and Disease Registry (ATSDR). Óxidos de nitrógeno (monóxido de nitrógeno, dióxido de nitrógeno, etc.) (Nitrogen Oxides) | ToxFAQ | ATSDR [Internet]. 2016 [cited 2020 Oct 27]. Available from: https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts175.html 53. ICSC 0930 - DIÓXIDO DE NITRÓGENO [Internet]. [cited 2021 Jan 10]. Available from: https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0930&p_version=2 54. Valladolid R de C de la CA del A de. Óxidos de Nitrógeno NO/NO2 | Portal Web del Ayuntamiento de Valladolid [Internet]. [cited 2021 Jan 10]. Available from: https://www.valladolid.es/es/rccava/contaminantes/oxidos-nitrogeno-no2 55. Rom W. Medicina ambiental y ocupacional. 2nd ed. Boston, MA: Little B and C, editor. 1992. 504 p. 56. Scientifique II national de la recherche. Oxydes d’azote (FT 133). Pathologie - Toxicologie - Fiche toxicologique - INRS [Internet]. [cited 2020 Nov 12]. Available from: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_133§ion=pathologieToxicologie#tab_toxiHomme 57. Lewis Goldfrank. Toxicologic Emergencies Goldfrank’s. 8th ed. McGraw-Hill Professional; 2002. 58. Instituto nacional de seguridad e higiene en el trabajo. Documentación toxicológica para el Establecimiento del Límite de Exposición Profesional del Dióxido de Azufre. Doc límites Expo Prof [Internet]. 2014;1–5. Available from: http://www.insht.es/InshtWeb/Contenidos/Documentacion/LEP _VALORES LIMITE/Doc_Toxicologica/Capitulos 83 _90/Ficheros 2014/DLEP 86 DIOXIDO DE AZUFRE.pdf 59. PRTR-España. SOx (Óxidos de azufre) | PRTR España [Internet]. [cited 2021 Jan 10]. Available from: http://www.prtr-es.es/SOx-oxidos-de-azufre,15598,11,2007.html 60. ICSC 0074 - DIÓXIDO DE AZUFRE [Internet]. [cited 2021 Jan 10]. Available from: https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=74&p_version=1&p_lang=es 61. LAUWERYS R. Gaz et vapeurs irritants et asphyxiants. Toxicologie industrielle et intoxications professionnelles. 1990. 388-391. p. 62. Organización Mundial de la Salud (OMS). Oxydes de soufre et particules en suspension. Critères d’hygiène de l’environnement n° 8. Genève. 1979. 123 p. 63. Lyon C international de recherche sur le cancer. IARC Monographs on the evaluation of the carcinogenic risks of chemicals to humans - Sulfur dioxide and some sulfites, bisulfites and metabisulfites. 1992. 131–188 p. 64. INRS: Institut national de la recherche scientifique. Dioxyde de soufre (FT 41). Pathologie - Toxicologie - Fiche toxicologique - INRS [Internet]. [cited 2020 Nov 11]. Available from: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_41§ion=pathologieToxicologie 65. JAPPINEN P. TS. Cardiovascular mortality among pulp mill workers. Br J Ind Med. 1990;47:259–62. 66. Solaun K, Sopelana A, Arraibi E, Pérez M. Series CO2: Black Carbon y sus efectos en el clima. Factor CO2 [Internet]. 2014;52. Available from: https://www.factorco2.com/comun/docs/131-Series CO2_Black Carbon_Factor CO2_20140613.pdf 67. Smart Freight Centre. BLACK CARBON METHODOLOGY FOR THE LOGISTICS SECTOR [Internet]. 2017 [cited 2021 Jan 10]. Available from: www.smartfreightcentre.org 68. En M, Abraham Ortínez C. Diseño y operación de la Red Nacional de Carbono Negro [Internet]. Ciudad de Mexico; 2015 [cited 2021 Jan 10]. Available from: http://aire.nl.gob.mx/docs/reportes/seminario/04_Carbono_Negro-Abraham_Ortinez.pdf 69. Dalin J, Kouteli E WR. Espirometrie en Matriser les épreuves fonctionnelles respiratoires. De la théorie à la clinique. Elsevier M. 2007. 70. Crapo RO, Hankinson JL, Irvin C, MacIntyre NR, Voter KZ, Wise RA, et al. Standardization of spirometry: 1994 Update. Am J Respir Crit Care Med. 1995;152(3):1107–36. 71. Centers for Disease Control and Prevention. Unidad 5: Cálculos Espirométricos Básicos. 2004; Available from: https://www.cdc.gov/spanish/niosh/docs/2004-154c_sp/pdfs/2004-154c-ch5.pdf 72. Agustin F L V. Pico flujo espiratorio maximo. Soc Española Alergol e Inmunol Clin. 2013;17. 73. Ignacio Carvajal. Esprometria forzada. 2005;201–16. Available from: www.aepap.org 74. Tobı A, Carracedo-martı E, Taracido M. Diseño de casos cruzados Fundamentos y aplicaciones del disen y Adolfo Figueiras. 2009;23(2):161–5. 75. García-García JA, Reding-Bernal A, López-Alvarenga JC. Cálculo del tamaño de la muestra en investigación en educación médica. Investig en Educ Médica [Internet]. 2013;2(8):217–24. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2007505713727157 76. microAeth® / AE51 | AethLabs [Internet]. [cited 2020 Nov 3]. Available from: https://aethlabs.com/microaeth/ae51/tech-specs 77. Hagler GSW, Yelverton TLB, Vedantham R, Hansen ADA, Turner JR. Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data. 2011;539–46. 78. ACTUALIZACIÓN ATS/ERS 2019 DE LA ESTANDARIZACIÓN DE LA ESPIROMETRÍA – SENP – Sociedad Española de Neumología Pediátrica [Internet]. [cited 2021 Jan 29]. Available from: https://neumoped.org/actualizacion-ats-ers-2019-de-la-estandarizacion-de-la-espirometria/ 79. Polar H10 | Banda pectoral pulsómetro | Polar Colombia [Internet]. [cited 2020 Oct 30]. Available from: https://www.polar.com/co-es/productos/accesorios/sensor_de_frecuencia_cardiaca_h10 80. Coelho-ravagnani CDF. ESTIMATION OF THE METABOLIC EQUIVALENT ( MET ) OF AN EXERCISE PROTOCOL BASED ON. 2013;19(1975):1–5. 81. U.S. Environmental Protection Agency (US EPA). Exposure Factors Handbook : 2011 Edition. 2011;(September). 82. IVEM. Field Data Collection Activities. 83. Thai A, McKendry I, Brauer M. Particulate matter exposure along designated bicycle routes in Vancouver, British Columbia. Sci Total Environ. 2008;405(1–3):26–35. 84. Kaur S, Nieuwenhuijsen M, Colvile R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK. Atmos Environ. 2005;39(20):3629–41. 85. Carlos Orduz García. Pruebas de Función Pulmonar. En Asma Ocupacional. Universidad Pontificia Bolivariana. Facultad de Medicina.Medicina. 2000. 86. Gidney JT, Twigg M V., Kittelson DB. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car. Environ Sci Technol. 2010;44(7):2562–9. 87. da Silva Junior CR, Lemos BRL, Pinto JP, Amador IR, Solci MC. Black carbon associated to PM1.0 and PM2.5: Mass variation due to combustion of biodiesel/diesel blends (B5, B6, B7 and B8). J Braz Chem Soc. 2019;30(4):786–92. 88. Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Mart�nez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int [Internet]. 2016;97:45–55. Available from: http://dx.doi.org/10.1016/j.envint.2016.10.011 89. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373–8. 90. Cole CA, Carlsten C, Koehle M, Brauer M. Particulate matter exposure and health impacts of urban cyclists: A randomized crossover study. Environ Heal A Glob Access Sci Source. 2018;17(1):1–14. 91. Aronow WS, Cassidy J. Effect of carbon monoxide on maximal treadmill exercise. A study in normal persons. Ann Intern Med [Internet]. 1975 Oct [cited 2017 Nov 10];83(4):496–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1101762 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
168 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Toxicología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Toxicología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79955/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79955/3/DOCUMENTOFINAL.pdf https://repositorio.unal.edu.co/bitstream/unal/79955/4/DOCUMENTOFINAL.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 60cb4037ffb3f3136925aff2fd1928ed 71a807f4de197f77c8548bcb93d224a8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090213819940864 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Pulido, Alba Isabelc75ae712b76d896423e998f734086bb8Rojas Roa, Nestor Yezid827f8ba58948271b39915a46415778edDíaz Fonseca, Oscar David0c6a875500938798729bae74bc22b7e3Toxicología Ambiental y Ocupacional - TOXICAO2021-08-17T15:31:01Z2021-08-17T15:31:01Z2021-08-14https://repositorio.unal.edu.co/handle/unal/79955Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, mapas, tablasLa contaminación del aire es considerada una temática de interés a nivel mundial con importantes repercusiones en toxicología y salud pública, dado que existe un alto riesgo de incrementar la carga de intoxicaciones y de morbilidad en diversas poblaciones por la exposición a corto, mediano y largo plazo. El uso de la bicicleta como medio de transporte ha aumentado en Colombia, al igual que el número de vehículos automotores y con ello la congestión vehicular. Una de las consecuencias negativas de esto, es el aumento en la exposición de los biciusuarios a altas concentraciones de diversos contaminantes del aire. En el presente estudio de casos cruzados realizado en 37 voluntarios, biciusuarios, tanto hombres como mujeres, de la Universidad Nacional de Colombia–sede Bogotá, se evaluaron los cambios en los niveles de carboxihemoglobina (COHb) y la espirometría, en dos escenarios de exposición a contaminantes atmosféricos, condicionados por la presencia de la contaminación producto del tráfico vehicular en una ciclorruta adyacente a la Universidad y paralela a una vía de alto flujo vehicular en la ciudad de Bogotá: la Avenida Carrera 30 o Avenida Norte-Quito-Sur (NQS). Durante cada trayecto, se determinó el aforo y la velocidad vehicular en dos puntos sobre la Avenida NQS, con el fin de explorar las posibles asociaciones entre estas variables y las condiciones de exposición a contaminantes mediante monitoreo personal. Se obtuvieron diferencias significativas entre los recorridos de alta y baja exposición para las concentraciones de Partículas Ultrafinas (PUF), Monóxido de Carbono (CO), Dióxido de Nitrógeno (NO2) y Dióxido de Azufre (SO2), e igualmente entre las Dosis de Exposición Estimadas (DEE) de PUF, CO, y SO2. Por otra parte, se encontró una buena correlación entre la DEE de CO y el porcentaje de cambio de COHb antes y después del recorrido (r=0.7571). Se logró establecer el impacto de las variables de actividad vehicular, meteorológicas y de contaminación de fondo, sobre la exposición a los contaminantes monitoreados. Para las PUF en el escenario de alta exposición, se encontró un mayor peso de la contaminación de fondo, seguido por el de las variables meteorológicas y, por último, el de las fuentes de emisión paralela al recorrido objeto de estudio. Para Black Carbon (BC) en el escenario de baja exposición, se encontró un mayor aporte de las fuentes de emisión paralelo al recorrido, seguido por las variables meteorológicas y las concentraciones de fondo. Para explicar la variabilidad de los parámetros respiratorios, el único modelo estadísticamente significativo fue para el Flujo Respiratorio Máximo entre el 25% y el 75% de la Maniobra de Espiración Forzada (MMEF25-75) teniendo como variables explicativas del modelo la DEE de CO y el tamaño promedio de PUF. En conclusión, en el escenario de alta exposición, los biciusuarios estuvieron expuestos a concentraciones de contaminantes mayores que en el escenario de exposición bajo, a excepción del contaminante BC, para el cual no se encontró diferencia significativa. Los voluntarios inhalaron más contaminantes en el escenario de alta exposición, en promedio 83% más PUF. La DEE de NO2 en promedio fue 1.3 veces mayor y para SO2 fue 3 veces mayor con respecto al recorrido de baja exposición. El cambio en los niveles de COHb, antes y después de recorrido, se correlacionó mejor con la DEE de CO que con la concentración promedio de CO. Los biciusuarios se expusieron a altos niveles de contaminantes del aire en el nivel de exposición alto comparado con el nivel bajo. Del mismo modo, es preocupante los alto niveles COHb con los cuales algunos voluntarios llegaron al campus, los cuales serían los niveles a los cuales los biciusuarios llegan a desarrollar actividades académicas y/ laborales. (Texto tomado de la fuente)Air pollution is considered a topic of global interest with important repercussions on toxicology and public health since there is a high risk of increasing the burden of poisoning and morbidity in various populations, due to short, medium and long exposure term. The use of bicycles as a means of transport has increased in Colombia, as has the number of motor vehicles and with it, traffic congestion. One of the negative consequences of this is the increased exposure of bicycle users to high concentrations of various air pollutants. In the present cross-case study carried out in 37 urban cycling volunteers from the Universidad Nacional de Colombia – Bogotá, the changes in carboxyhemoglobin (COHb) levels and spirometry were evaluated, in two exposure scenarios to atmospheric pollutants, conditioned by the presence of pollution caused by vehicular traffic in a bicycle lane adjacent to the University and parallel to a high traffic flow road in the city of Bogotá: Avenida Carrera 30 or Avenida Norte-Quito-Sur (NQS). During each journey, the vehicle capacity and speed were determined at two points on NQS Avenue, in order to explore the possible associations between these variables and the exposure conditions in real time for each pollutant. Significant differences were obtained between the high and low exposure routes for the concentrations of Ultrafine Particles (PUF), Carbon Monoxide (CO), Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2), and also between the Exposure Doses Estimated (DEE) of PUF, CO, and SO2. A good correlation was found between the CO DEE and the COHb percentage change before and after the run (r = 0.7571It was possible to establish the impact of the vehicle activity, meteorological and pollution variables on the exposure to the monitored pollutants. For the PUF the high exposure scenario, a greater weight of background pollution was found, followed by that of meteorological variables and, lastly, that of emission sources parallel to the route under study. For BC in the low exposure scenario, a greater contribution from emission sources was found parallel to the route, followed by meteorological variables and background concentrations. To explain the variability of the respiratory parameters, the only statistically significant model was for the Maximum Respiratory Flow between 25% and 75% of the Forced Expiration Maneuver (MMEF25-75) having as explanatory variables of the model the DEE of CO and the average size of PUF. It was observed that the cyclists arrived at the university with high levels of COHb. In conclusion, in the high exposure scenario, cyclists were exposed to higher concentrations of pollutants than in the low exposure scenario, except for the pollutant Black Carbon, for which no statistically significant difference was found. The volunteers inhaled more pollutants in the high exposure scenario, on average 83% more PUF. The DEE of NO2 on average was 2 times higher and for SO2 it was 4 times higher with respect to the low exposure path. The change in COHb levels, before and after the run, correlated better with the DEE of CO than with the average concentration of CO. (Text taken from source)Secretaría Distrital de SaludGESOLTEC S.A.S.MaestríaMagíster en ToxicologíaEn el presente estudio de casos cruzados realizado en 37 voluntarios, biciusuarios, tanto hombres como mujeres, de la Universidad Nacional de Colombia–sede Bogotá, se evaluaron los cambios en los niveles de carboxihemoglobina (COHb) y la espirometría, en dos escenarios de exposición a contaminantes atmosféricos, condicionados por la presencia de la contaminación producto del tráfico vehicular en una ciclorruta adyacente a la Universidad y paralela a una vía de alto flujo vehicular en la ciudad de Bogotá: la Avenida Carrera 30 o Avenida Norte-Quito-Sur (NQS). Durante cada trayecto, se determinó el aforo y la velocidad vehicular en dos puntos sobre la Avenida NQS, con el fin de explorar las posibles asociaciones entre estas variables y las condiciones de exposición a contaminantes mediante monitoreo personal.Monóxido de CarbonoContaminación ambiental por material particuladoIdentificación de biomarcadores en población humana expuesta a sustancias químicas168 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en ToxicologíaDepartamento de ToxicologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::613 - Salud y seguridad personalCalidad del aireAir qualityGases de escape en automóvilesAutomobiles - motors - exhaust gasContaminación del aireContaminantes atmosféricosBiciusuariosDosis inhaladaExposición a contaminantesBiomarcadorFunción PulmonarAir pollutantsAir pollutionBicyclistsInhaled doseExposure to pollutantsBiomarkerPulmonary functionContaminación atmosféricaAir pollutionImpacto de la contaminación producto del tráfico vehicular sobre los niveles de carboxihemoglobina y la respuesta respiratoria en ciclistas urbanos de la Universidad Nacional de Colombia–sede BogotáImpact of vehicular pollution on carboxyhemoglobin levels and respiratory response in urban cyclists of the Universidad Nacional de Colombia-BogotáTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Descubre las ciudades más preparadas para la bicicleta en Europa [Internet]. [cited 2021 May 20]. Available from: http://www.e-park.es/es/blog/las-ciudades-con-mas-bicicletas-en-europa2. La bicicleta se impone como mejor opción de transporte en más de 100 ciudades [Internet]. [cited 2020 Nov 28]. Available from: https://www.larepublica.co/ocio/la-bicicleta-se-impone-como-mejor-opcion-de-transporte-en-mas-de-100-ciudades-29977363. Administración Distrital revela resultados de la Encuesta de Movilidad 2019 para Bogotá y 18 municipios vecinos | Secretaría Distrital de Movilidad [Internet]. [cited 2021 Jun 8]. Available from: https://www.movilidadbogota.gov.co/web/Noticia/administracion_distrital_revela_resultados_de_la_encuesta_de_movilidad_2019_para_bogota_y_184. El protagonismo de la bicicleta - Bogotá Cómo Vamos [Internet]. [cited 2021 May 31]. Available from: https://bogotacomovamos.org/el-protagonismo-de-la-bicicleta/5. Muévete en Bici por Bogotá | Secretaría Distrital de Movilidad [Internet]. [cited 2021 Jun 8]. Available from: https://www.movilidadbogota.gov.co/web/muevete-en-bici-por-bogota6. World Air Quality Index (AQI) Ranking | AirVisual [Internet]. [cited 2021 Jun 8]. Available from: https://www.iqair.com/world-air-quality-ranking7. Giraldo LA, Behrentz E. Estimación del inventario de emisiones de fuentes móviles para la ciudad de Bogotá e identificación de variables pertinentes. 2005;(1):1–16.8. Rojas NY. Material particulado atmosferico y salud. Bogotá: Ediciones Uniandes, Facultad de ingerieria.; 2005.9. Nicholson JP, Case DB. Carboxyhemoglobin Levels in New York City Runners. Phys Sportsmed. 1983;11:3(August):134–8.10. de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, et al. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos Environ [Internet]. 2012;59:151–9. Available from: http://dx.doi.org/10.1016/j.atmosenv.2012.05.01311. McCafferty WB. Air Pollution and Athletic Performance. 1981.12. Rubio Barbón S, García Fernández ML. Intoxicación por monóxido de carbono. Med Clin (Barc). 1997;108(20):776–8.13. Dinero. Bogotá, ejemplo mundial de las dos ruedas [Internet]. 2015 [cited 2017 Nov 16]. Available from: http://www.dinero.com/pais/articulo/uso-bicicletas-colombia/20879714. Palacios Rozo M, de Greiff A, Antorveza Triana A, Rodríguez A, Pérez-Almonacid R. Vida universitaria y bienestar. Estudios y reflexiones. 2005;139.15. Planeación O de. Estadisticas e indicadores de la Universidad Nacional de Colombia. Rev la Of Nac Planeación [Internet]. 2013;19:147. Available from: http://www.onp.unal.edu.co/ADMON_ONP/ADJUNTOS/20141211_112012_2013 Revista Indicadores y estadisticas 2014dic11.pdf16. Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int [Internet]. 2016;97:45–55. Available from: http://dx.doi.org/10.1016/j.envint.2016.10.01117. Rabl A, de Nazelle A. Benefits of shift from car to active transport. Transp Policy [Internet]. 2012;19(1):121–31. Available from: http://dx.doi.org/10.1016/j.tranpol.2011.09.00818. Monóxido de carbono. Cuidado con el asesino silencioso | Centro Nacional de Prevención de Desastres | Gobierno | gob.mx [Internet]. [cited 2021 May 21]. Available from: https://www.gob.mx/cenapred/es/articulos/monoxido-de-carbono-cuidado-con-el-asesino-silencioso?idiom=es19. Mu L, Deng F, Tian L, Li Y, Swanson M, Ying J, et al. Peak expiratory flow, breath rate and blood pressure in adults with changes in particulate matter air pollution during the Beijing Olympics: A panel study. Environ Res [Internet]. 2014;133:4–11. Available from: http://dx.doi.org/10.1016/j.envres.2014.05.00620. Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Heal A Glob Access Sci Source [Internet]. 2017;16(1):1–7. Available from: http://dx.doi.org/10.1186/s12940-017-0212-x21. Morales Betancourt R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, et al. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ [Internet]. 2017;157(1):135–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S135223101730130922. Carlisle AJ, Sharp NCC. Exercise and outdoor ambient air pollution. 2001;214–22.23. MacNaughton P, Melly S, Vallarino J, Adamkiewicz G, Spengler JD. Impact of bicycle route type on exposure to traffic-related air pollution. Sci Total Environ [Internet]. 2014;490(2):37–43. Available from: http://dx.doi.org/10.1016/j.scitotenv.2014.04.11124. Terashima P, Andrés R, Jaimes P, Rocío L, Yupanqui R, Antonio M, et al. Variación del nivel de carboxihemoglobina en corredores aficionados en ambientes con tránsito de vehículos motorizados en el distrito de San. Ann Intern Med. 2005;16(4):266–72.25. Wu S, Deng F, Hao Y, Shima M, Wang X, Zheng C, et al. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study. J Hazard Mater [Internet]. 2013;260:183–91. Available from: http://dx.doi.org/10.1016/j.jhazmat.2013.05.01826. Wu S, Deng F, Hao Y, Wang X, Zheng C, Lv H, et al. Fine particulate matter, temperature, and lung function in healthy adults: Findings from the HVNR study. Chemosphere [Internet]. 2014;108:168–74. Available from: http://dx.doi.org/10.1016/j.chemosphere.2014.01.03227. Rundell KW, Slee JB, Caviston R, Hollenbach AM. Decreased lung function after inhalation of ultrafine and fine particulate matter during exercise is related to decreased total nitrate in exhaled breath condensate. Inhal Toxicol. 2008;20(1):1–9.28. Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24.29. Fajardo OA, Rojas NY. Particulate matter exposure of bicycle path users in a high-altitude city. Atmos Environ. 2012;46:675–9.30. Franco JF, Segura JF, Mura I. Air Pollution alongside Bike-Paths in Bogotá-Colombia. Front Environ Sci [Internet]. 2016;4(November):1–10. Available from: http://journal.frontiersin.org/article/10.3389/fenvs.2016.00077/full31. Carnicer J. Contaminación Atmósferica. Contam Atmosférica [Internet]. 2007;1:320. Available from: http://books.google.com/books?id=86oL_Ybnwn8C&pgis=132. Monóxido de Carbono. [cited 2017 Nov 11]; Available from: http://www.siafa.com.ar/notisiafa/13/monoxidodecarbono.pdf33. US EPA O. Basic Information about Carbon Monoxide (CO) Outdoor Air Pollution. [cited 2017 Nov 11]; Available from: https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#What is CO34. Agency for Toxic Substances and Disease Registry (ATSDR). ATSDR - Public Health Statement: Carbon Monoxide [Internet]. [cited 2021 Jan 10]. Available from: https://www.atsdr.cdc.gov/phs/phs.asp?id=1146&tid=25335. (CDC) C for DC and P. CDC - NIOSH Pocket Guide to Chemical Hazards - Carbon monoxide [Internet]. [cited 2021 Jan 10]. Available from: https://www.cdc.gov/niosh/npg/npgd0105.html36. Rodríguez NYRJAEGCCDAIR. EVALUACIÓN TOXICOLÓGICA OCUPACIONAL DE LA EXPOSICIÓN A CONTAMINANTES DEL AIRE. Centro Edi. 2018. 77–87 p.37. AMDUR M.O., DOULL J. KC. Casarett & Doull’s Toxicology. 1992. 523, 530, 857–859 p.38. Guzman JA. Carbon Monoxide Poisoning. Crit Care Clin [Internet]. 2012;28(4):537–48. Available from: http://dx.doi.org/10.1016/j.ccc.2012.07.00739. Arango S e. Biomarcadores para la evaluación de riesgo en la salud humana. Rev Fac Nac Salud Pública. 2012;30:75–82.40. Martín-Olmedo P, Carroquino Saltó M, Ordóñez Iriarte J, Moya J. La Evaluación de riesgos en salud. Guía metodológica. Aplicaciones prácticas de la metodolo- gía de Evaluación de riesgos en salud por exposición a químicos. [Internet]. Sociedad Española de sanidad ambiental; 2016. 250 p. Available from: https://www.diba.cat/documents/467843/96195101/Evaluacion_riesgos_salud_Guia_metodologica.pdf/37481f80-8641-4a42-a647-eb7f24808d3341. Diaz DSR. Validación Del Método Para Determinación De Carboxihemoglobina En Sangre Total Por Técnica Espectrofotométrica Con Reducción Con Ditionito De Sodio. 2011;63.42. OMS. Calidad del aire ambiente (exterior) y salud. Calidad del aire ambiente (exterior) y salud. 2016.43. Kingham S, Longley I, Salmond J, Pattinson W, Shrestha K. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ Pollut [Internet]. 2013;181:211–8. Available from: http://dx.doi.org/10.1016/j.envpol.2013.06.03044. Pant P, Harrison RM. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos Environ [Internet]. 2013;77:78–97. Available from: http://dx.doi.org/10.1016/j.atmosenv.2013.04.02845. Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J, et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int [Internet]. 2014;70:32–49. Available from: http://dx.doi.org/10.1016/j.envint.2014.05.01346. Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit [Internet]. 2018;16(1):12–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1728869X1730245947. Jeong CH, Traub A, Evans GJ. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos Environ [Internet]. 2017 [cited 2021 Jan 10];155:46–52. Available from: http://dx.doi.org/10.1016/j.atmosenv.2017.02.01548. Ma N, Birmili W. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci Total Environ [Internet]. 2015 Apr 5 [cited 2021 Jan 10];512–513:154–66. Available from: http://dx.doi.org/10.1016/j.scitotenv.2015.01.00949. Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, et al. Ultrafine particles in cities [Internet]. Vol. 66, Environment International. Elsevier Ltd; 2014 [cited 2021 Jan 10]. p. 1–10. Available from: http://dx.doi.org/10.1016/j.envint.2014.01.01350. DiSC M. Instruction Manual Rev 1.1, July 15, 2010. 2010 [cited 2018 Apr 4]; Available from: http://fierz.ch/minidisc/pdf/miniDiSC_manual.pdf51. Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 2017;188:32–48.52. Agency for Toxic Substances and Disease Registry (ATSDR). Óxidos de nitrógeno (monóxido de nitrógeno, dióxido de nitrógeno, etc.) (Nitrogen Oxides) | ToxFAQ | ATSDR [Internet]. 2016 [cited 2020 Oct 27]. Available from: https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts175.html53. ICSC 0930 - DIÓXIDO DE NITRÓGENO [Internet]. [cited 2021 Jan 10]. Available from: https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0930&p_version=254. Valladolid R de C de la CA del A de. Óxidos de Nitrógeno NO/NO2 | Portal Web del Ayuntamiento de Valladolid [Internet]. [cited 2021 Jan 10]. Available from: https://www.valladolid.es/es/rccava/contaminantes/oxidos-nitrogeno-no255. Rom W. Medicina ambiental y ocupacional. 2nd ed. Boston, MA: Little B and C, editor. 1992. 504 p.56. Scientifique II national de la recherche. Oxydes d’azote (FT 133). Pathologie - Toxicologie - Fiche toxicologique - INRS [Internet]. [cited 2020 Nov 12]. Available from: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_133§ion=pathologieToxicologie#tab_toxiHomme57. Lewis Goldfrank. Toxicologic Emergencies Goldfrank’s. 8th ed. McGraw-Hill Professional; 2002.58. Instituto nacional de seguridad e higiene en el trabajo. Documentación toxicológica para el Establecimiento del Límite de Exposición Profesional del Dióxido de Azufre. Doc límites Expo Prof [Internet]. 2014;1–5. Available from: http://www.insht.es/InshtWeb/Contenidos/Documentacion/LEP _VALORES LIMITE/Doc_Toxicologica/Capitulos 83 _90/Ficheros 2014/DLEP 86 DIOXIDO DE AZUFRE.pdf59. PRTR-España. SOx (Óxidos de azufre) | PRTR España [Internet]. [cited 2021 Jan 10]. Available from: http://www.prtr-es.es/SOx-oxidos-de-azufre,15598,11,2007.html60. ICSC 0074 - DIÓXIDO DE AZUFRE [Internet]. [cited 2021 Jan 10]. Available from: https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=74&p_version=1&p_lang=es61. LAUWERYS R. Gaz et vapeurs irritants et asphyxiants. Toxicologie industrielle et intoxications professionnelles. 1990. 388-391. p.62. Organización Mundial de la Salud (OMS). Oxydes de soufre et particules en suspension. Critères d’hygiène de l’environnement n° 8. Genève. 1979. 123 p.63. Lyon C international de recherche sur le cancer. IARC Monographs on the evaluation of the carcinogenic risks of chemicals to humans - Sulfur dioxide and some sulfites, bisulfites and metabisulfites. 1992. 131–188 p.64. INRS: Institut national de la recherche scientifique. Dioxyde de soufre (FT 41). Pathologie - Toxicologie - Fiche toxicologique - INRS [Internet]. [cited 2020 Nov 11]. Available from: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_41§ion=pathologieToxicologie65. JAPPINEN P. TS. Cardiovascular mortality among pulp mill workers. Br J Ind Med. 1990;47:259–62.66. Solaun K, Sopelana A, Arraibi E, Pérez M. Series CO2: Black Carbon y sus efectos en el clima. Factor CO2 [Internet]. 2014;52. Available from: https://www.factorco2.com/comun/docs/131-Series CO2_Black Carbon_Factor CO2_20140613.pdf67. Smart Freight Centre. BLACK CARBON METHODOLOGY FOR THE LOGISTICS SECTOR [Internet]. 2017 [cited 2021 Jan 10]. Available from: www.smartfreightcentre.org68. En M, Abraham Ortínez C. Diseño y operación de la Red Nacional de Carbono Negro [Internet]. Ciudad de Mexico; 2015 [cited 2021 Jan 10]. Available from: http://aire.nl.gob.mx/docs/reportes/seminario/04_Carbono_Negro-Abraham_Ortinez.pdf69. Dalin J, Kouteli E WR. Espirometrie en Matriser les épreuves fonctionnelles respiratoires. De la théorie à la clinique. Elsevier M. 2007.70. Crapo RO, Hankinson JL, Irvin C, MacIntyre NR, Voter KZ, Wise RA, et al. Standardization of spirometry: 1994 Update. Am J Respir Crit Care Med. 1995;152(3):1107–36.71. Centers for Disease Control and Prevention. Unidad 5: Cálculos Espirométricos Básicos. 2004; Available from: https://www.cdc.gov/spanish/niosh/docs/2004-154c_sp/pdfs/2004-154c-ch5.pdf72. Agustin F L V. Pico flujo espiratorio maximo. Soc Española Alergol e Inmunol Clin. 2013;17.73. Ignacio Carvajal. Esprometria forzada. 2005;201–16. Available from: www.aepap.org74. Tobı A, Carracedo-martı E, Taracido M. Diseño de casos cruzados Fundamentos y aplicaciones del disen y Adolfo Figueiras. 2009;23(2):161–5.75. García-García JA, Reding-Bernal A, López-Alvarenga JC. Cálculo del tamaño de la muestra en investigación en educación médica. Investig en Educ Médica [Internet]. 2013;2(8):217–24. Available from: http://linkinghub.elsevier.com/retrieve/pii/S200750571372715776. microAeth® / AE51 | AethLabs [Internet]. [cited 2020 Nov 3]. Available from: https://aethlabs.com/microaeth/ae51/tech-specs77. Hagler GSW, Yelverton TLB, Vedantham R, Hansen ADA, Turner JR. Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data. 2011;539–46.78. ACTUALIZACIÓN ATS/ERS 2019 DE LA ESTANDARIZACIÓN DE LA ESPIROMETRÍA – SENP – Sociedad Española de Neumología Pediátrica [Internet]. [cited 2021 Jan 29]. Available from: https://neumoped.org/actualizacion-ats-ers-2019-de-la-estandarizacion-de-la-espirometria/79. Polar H10 | Banda pectoral pulsómetro | Polar Colombia [Internet]. [cited 2020 Oct 30]. Available from: https://www.polar.com/co-es/productos/accesorios/sensor_de_frecuencia_cardiaca_h1080. Coelho-ravagnani CDF. ESTIMATION OF THE METABOLIC EQUIVALENT ( MET ) OF AN EXERCISE PROTOCOL BASED ON. 2013;19(1975):1–5.81. U.S. Environmental Protection Agency (US EPA). Exposure Factors Handbook : 2011 Edition. 2011;(September).82. IVEM. Field Data Collection Activities.83. Thai A, McKendry I, Brauer M. Particulate matter exposure along designated bicycle routes in Vancouver, British Columbia. Sci Total Environ. 2008;405(1–3):26–35.84. Kaur S, Nieuwenhuijsen M, Colvile R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK. Atmos Environ. 2005;39(20):3629–41.85. Carlos Orduz García. Pruebas de Función Pulmonar. En Asma Ocupacional. Universidad Pontificia Bolivariana. Facultad de Medicina.Medicina. 2000.86. Gidney JT, Twigg M V., Kittelson DB. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car. Environ Sci Technol. 2010;44(7):2562–9.87. da Silva Junior CR, Lemos BRL, Pinto JP, Amador IR, Solci MC. Black carbon associated to PM1.0 and PM2.5: Mass variation due to combustion of biodiesel/diesel blends (B5, B6, B7 and B8). J Braz Chem Soc. 2019;30(4):786–92.88. Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Mart�nez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int [Internet]. 2016;97:45–55. Available from: http://dx.doi.org/10.1016/j.envint.2016.10.01189. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373–8.90. Cole CA, Carlsten C, Koehle M, Brauer M. Particulate matter exposure and health impacts of urban cyclists: A randomized crossover study. Environ Heal A Glob Access Sci Source. 2018;17(1):1–14.91. Aronow WS, Cassidy J. Effect of carbon monoxide on maximal treadmill exercise. A study in normal persons. Ann Intern Med [Internet]. 1975 Oct [cited 2017 Nov 10];83(4):496–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1101762IMPACTO DE LA CONTAMINACIÓN PRODUCTO DEL TRÁFICO VEHICULAR SOBRE LOS NIVELES DE CARBOXIHEMOGLOBINA Y LA RESPUESTA RESPIRATORIA EN CICLISTAS URBANOS DE LA UNIVERSIDAD NACIONAL DE COLOMBIA–SEDE BOGOTÁUniversidad Nacional de ColombiaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79955/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALDOCUMENTOFINAL.pdfDOCUMENTOFINAL.pdfTesis de Maestría en Toxicologíaapplication/pdf3856261https://repositorio.unal.edu.co/bitstream/unal/79955/3/DOCUMENTOFINAL.pdf60cb4037ffb3f3136925aff2fd1928edMD53THUMBNAILDOCUMENTOFINAL.pdf.jpgDOCUMENTOFINAL.pdf.jpgGenerated Thumbnailimage/jpeg4602https://repositorio.unal.edu.co/bitstream/unal/79955/4/DOCUMENTOFINAL.pdf.jpg71a807f4de197f77c8548bcb93d224a8MD54unal/79955oai:repositorio.unal.edu.co:unal/799552023-07-25 23:04:36.306Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |