Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos

ilustraciones, graficas

Autores:
Jaramillo Berrio, Sara Isabel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81779
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81779
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
Peptide antibiotics
Fourier transform infrared spectroscopy
ANTIBIOTICOS PEPTIDOS
ESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIER
Péptido antimicrobiano
Fosfolípido
Saturación/Insaturación
Laurdan
Antimicrobial peptide
Phospholipids
Saturation/Unsaturation
Laurdan
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6f5b60e23050b02bb2d350cab38697c3
oai_identifier_str oai:repositorio.unal.edu.co:unal/81779
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
dc.title.translated.eng.fl_str_mv Unsaturation content of the lipid membrane as a modulator of the activity of antimicrobial peptides
title Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
spellingShingle Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
540 - Química y ciencias afines::541 - Química física
Peptide antibiotics
Fourier transform infrared spectroscopy
ANTIBIOTICOS PEPTIDOS
ESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIER
Péptido antimicrobiano
Fosfolípido
Saturación/Insaturación
Laurdan
Antimicrobial peptide
Phospholipids
Saturation/Unsaturation
Laurdan
title_short Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
title_full Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
title_fullStr Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
title_full_unstemmed Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
title_sort Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos
dc.creator.fl_str_mv Jaramillo Berrio, Sara Isabel
dc.contributor.advisor.none.fl_str_mv Sanchez Mendoza, Yuly Edith
Leidy, Chad
dc.contributor.author.none.fl_str_mv Jaramillo Berrio, Sara Isabel
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
topic 540 - Química y ciencias afines::541 - Química física
Peptide antibiotics
Fourier transform infrared spectroscopy
ANTIBIOTICOS PEPTIDOS
ESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIER
Péptido antimicrobiano
Fosfolípido
Saturación/Insaturación
Laurdan
Antimicrobial peptide
Phospholipids
Saturation/Unsaturation
Laurdan
dc.subject.lemb.eng.fl_str_mv Peptide antibiotics
Fourier transform infrared spectroscopy
dc.subject.lemb.spa.fl_str_mv ANTIBIOTICOS PEPTIDOS
ESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIER
dc.subject.proposal.spa.fl_str_mv Péptido antimicrobiano
Fosfolípido
Saturación/Insaturación
Laurdan
dc.subject.proposal.eng.fl_str_mv Antimicrobial peptide
Phospholipids
Saturation/Unsaturation
Laurdan
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-21
dc.date.accessioned.none.fl_str_mv 2022-08-04T14:59:45Z
dc.date.available.none.fl_str_mv 2022-08-04T14:59:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81779
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81779
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Almeida, P. F., & Pokorny, A. (2009). Mechanisms of antimicrobial, cytolytic, and cell- penetrating peptides: from kinetics to thermodynamics. Biochemistry, 8083-8093.
Bagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Bagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophysical journal, 331-341.
Bagatolli, L. A., Maggio, B., Aguilar, F., Sotomayor, C. P., & Fidelo, G. D. (1997). Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochimica et Biophysica Acta (BBA)-Biomembranes, 80-90.
Bagatolli, L. A., Parasassi, T., Fidelo, G. D., & Gratton, E. (1999). A model for the interaction of 6‐lauroyl‐2‐(N, N‐dimethylamino) naphthalene with lipid environments: implications for spectral properties. Photochemistry and photobiology, 557-564.
Bayer, A. S., Prasad, R., Chandra, J., Koul, A., Smriti, M., Varma, A., & Yeaman, M. R. (2000). In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infection and immunity, 3548-3553.
Boparai, J. K., & Sharma, P. K. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and Peptide Letters, 4-16.
Chow, S. (2018). Mecanismos de acción de la Penicilina. https://www.news-medical.net. Obtenido de https://www.news-medical.net/health/Penicillin-Mechanism- (Spanish).aspx#:~:text=El%20mecanismo%20de%20la%20penicilina%20de%20la%2 0acci%C3%B3n&text=La%20penicilina%20mata%20a%20bacterias,formaci%C3%B3 n%20de%20la%20pared%20celular.
Clark, K. S., Svetlovics, J., McKeown, A. N., Huskins, L., & Almeida, P. F. (2011). What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 7919-7932.
Dean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC microbiology, 1-13.
Dumas, F., Sperotto, M. M., Lebrun, M. C., Tocanne, J. F., & Mouritsen, O. G. (1997). Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophysical journal, 1940-1953.
Dürr, U. H., Sudheendra, U. S., & Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1408-1425.
Epand, R. M., & Epand, R. F. (2011). Bacterial membrane lipids in the action of antimicrobial agents. Journal of Peptide Science, 298-305.
Gan, B. H., Gaynord, J., Rowe, S. M., Deingruber, T., & Spring, D. R. (2021). The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chemical Society Reviews, 7820-7880.
Gregory, S. M., Pokorny, A., & Almeida, P. F. (2009). Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophysical journal, 116-131.
Harmouche, N., & Bechinger, B. (2018). Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophysical journal, 1033- 1044.
Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L., & Huang, H. W. (1999). Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophysical journal, 937-945.
Hasan, M., Karal, M. S., Levadnyy, V., & Yamazaki, M. (2018). Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir, 3349-3362.
Heimburg, T. (2007). Thermal Biophysics of Membranes. Copenhague: Wiley-VCH.
Huang, H. (2020). DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes.
Huang, H. W. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1292-1302.
Huang, W. H. (2009). Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophysical journal, 3263-3272.
Jenssen, H., Hamill , P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 491-511.
Kahya, N., Wiersma, D. A., Poolman, B., & Hoekstra, D. (2002). Spatial organization of bacteriorhodopsin in model membranes: Light-induced mobility changes. Journal of Biological Chemistry, 39304-39311.
Khandelia, H., Ipsen, J. H., & Mouritsen, O. G. (2008). The impact of peptides on lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1528-1536.
Koo, H. B., & Seo, J. (2019). Antimicrobial peptides under clinical investigation. Peptide Science, e24122.
Kučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophysical journal, L83-L85.
Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules.
Leidy, C., Celis, A., Carazzone, C., Manrique, M., Cossio, P., & Aponte, C. (2017). Desarrollo de nuevos péptidos derivados de la Crotalicidina como potenciales agentes antimicrobianos para el tratamiento de aislados clínicos de Staphylococcus Aureus resistente a antibióticos. Bogotá, Colombia: Universidad de Los Andes.
Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 48-56.
Longo, M. L., Waring, A. J., Gordon, L. M., & Hammer, D. A. (1998). Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir, 2385-2395.
Lundbæk, J. A., Birn, P., Hansen, A. J., Søgaard, R., Nielsen, C., Girshman, J., & Anderson, O. S. (2004). Regulation of Sodium Channel Function by Bilayer Elasticity The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol. Journal of General Physiology, 599-621.
Lundbæk, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R., & Andersen, O. S. (2010). Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of The Royal Society Interface, 373-395.
Lundbæk, J. A., Koeppe, R. E., & Anderson, O. S. (2010). Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proceedings of the National Academy of Sciences, 15427-15430.
Marín-Medina, N., Ramírez, D. A., Trier, S., & Leidy, C. (2016). Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied microbiology and biotechnology, 10251-10263.
Matsuzaki, K., Murase, O., & Mijayima, K. (1995). Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry, 12553- 12559.
Mazzuca, C., Orioni, B., Coletta, M., Formaggio, F., Toniolo, C., Maulucci, G., & Stella, L. (2010). Fluctuations and the rate-limiting step of peptide-induced membrane leakage. Biophysical journal, 1791-1800.
Nielsen, S. B., & Otzen, D. E. (2010). Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. Journal of colloid and interface science, 248-256.
Nishida, K., Anada, T., Kobayashi, S., Ueda, T., & Tanaka, M. (2021). Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 313-324.
Ogata, K., Linzer, B. A., Zuberi, R. I., Ganz, T., Lehrer, R. I., & Catanzaro, A. (1992). Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium- Mycobacterium intracellulare. Infection and immunity, 4720-4725.
Oñate-Garzón, J., Manrique-Moreno, M., Trier, S., Leidy, C., Torres, R., & Patiño, E. (2017). Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. The Journal of antibiotics, 238-245.
Pan, J., Tristram-Nagle, S., Kučerka, N., & Nagle, J. F. (2008). Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophysical journal, 117-124.
Rijnaarts, H. H., Norde, W., Lyklema, J., & Zehnder, A. J. (1999). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerface, 179-195.
Schujman, G. E., & de Mendoza, D. (2005). Transcriptional control of membrane lipid synthesis in bacteria. Current opinion in microbiology, 149-153.
Seemann, H., & Winter, R. (2003). Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Zeitschrift für Physikalische Chemie, 831-846.
Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: a review. Molecules, 12276-12286.
Separovic, F., Gehman, J. D., Lee, T. H., Bowie, J. H., & Aguilar, M. I. (2009). Effect of Antimicrobial Peptides from Australian Tree Frogs on Anionic Phospholipid Membranes. Biophysical Journal, 156.
Shai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 55-70.
Soni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassal, S. R. (2009). Soni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassall, S. R. (2009). Effect of trans unsaturation on molecular organization in a phospholipid membrane. Biochemistry, 11097-11107.
Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 27-55.
Zakany, F., Kovacs, T., Panyi, G., & Varga, Z. (2020). Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids.
Zhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 222-233.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81779/3/1088330442.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81779/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81779/5/1088330442.2022.pdf.jpg
bitstream.checksum.fl_str_mv 4588cca6cd70c716beb842ccc06a5f4e
8153f7789df02f0a4c9e079953658ab2
73b4e2177c5d14a81330d83a68cba5c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886584456314880
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sanchez Mendoza, Yuly Edith5131b5039b0998b420d6f6ccb2a13f9aLeidy, Chad0b07cbf0fd1c8c044bfddf251418b74aJaramillo Berrio, Sara Isabel05136335ade46db7bec3a59e7a1042ad2022-08-04T14:59:45Z2022-08-04T14:59:45Z2021-10-21https://repositorio.unal.edu.co/handle/unal/81779Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLa población bacteriana ha desarrollado la capacidad de modular sus componentes celulares, tales como la bicapa lipídica, sistemas de generación de energía, síntesis de proteínas, enzimas biodegradativas y absorción de nutrientes debido a los cambios de pH, temperatura, presión, disponibilidad de nutrientes o salinidad que se presentan en los diferentes ambientes del planeta. Estos cambios en la expresión génica de la bacteria le han permitido sobrevivir y evadir la detección del sistema inmune del huésped. La alteración composicional de la membrana, es decir, la modulación de ácidos grasos saturados e insaturados, también tiene efectos en la permeabilidad, susceptibilidad a sustancias bactericidas y a los antibióticos. En este trabajo se propone cómo los cambios de distribución en el orden de los ácidos grasos y los cambios en la elasticidad de la membrana lideran la inhibición de formación de poros mediada por los péptidos antimicrobianos (PAM’s). La acción de los péptidos antimicrobianos en la formación de poros se puede explicar en tres fases (Figura 1). La primera, es la interacción superficial entre el péptido catiónico y la membrana bacteriana aniónica. En esta fase los péptidos forman estructuras helicoidales y su interacción con la membrana se hace de tal forma que los aminoácidos con carga positiva quedan ubicados de forma paralela horizontal a los aminoácidos hidrofóbicos de la hélice (Huang H. , 2020). La segunda fase es la permeabilización de la membrana, en otras palabras, es la inserción de los péptidos antimicrobianos al interior de la membrana celular. Antes de la inserción se genera una concentración crítica de péptidos en la superficie de la membrana, la cual depende de la tensión lateral de la misma. Dicha tensión está ligada a las propiedades de la bicapa, y se propone que los cambios en la tensión lateral están influenciados por la distribución de los ácidos grasos que la componen. Este proceso de inserción es netamente mecánico debido a las interacciones electrostáticas entre los péptidos catiónicos y las membranas aniónicas con condiciones energéticas favorables (Jenssen, Hamill , & Hancock, 2006), generando áreas de inestabilidad en ella y así inducir la formación de poros. Sin embargo, se han planteado diferentes mecanismos de acción tales como promover la captación de lípidos o como una acción detergente sobre la membrana para promover la formación de poros. La tercera y última fase, se lleva a cabo la lisis celular ya que después de la formación de poros en la membrana, se genera un estrés osmótico donde se ve alterado el intercambio de moléculas del interior celular al exterior (Ogata, y otros, 1992) y por lo tanto hay una pérdida en el gradiente electroquímico de la bacteria. Específicamente, se quiere determinar cómo los cambios porcentuales de ácidos grasos monoinsaturados presentes en la membrana emulan una respuesta adaptativa a la resistencia bacteriana y disminuyen la actividad de los péptidos antimicrobianos. Primero, se va a evaluar la actividad de los péptidos antimicrobianos LL-37 y Atra-1 en vesículas grandes unilamelares (por sus siglas en inglés LUV’s) con composiciones lipídicas de DMPG (14:0/14:0), DPPG (16:0/16:0) y POPG (16:0/18:1), emulando diferentes niveles de insaturación presentes en las membranas bacterianas, sugiriendo cómo la presencia de insaturaciones en la bicapa lipídica inhibe la actividad peptídica. Mediante el análisis cinético de porcentaje de fuga de calceína, estimar la energía de activación para la formación de poros en mezclas de lípidos sintéticos saturados (DMPG y DPPG) con pequeñas cantidades porcentuales de lípido monoinsaturado (POPG). Y segundo, se sugiere que los lípidos insaturados disminuyen la actividad de los péptidos antimicrobianos debido a la flexibilidad que le otorgan a la membrana dificultando poder alcanzar la concentración crítica en la superficie para inducir la translocación del péptido al interior de la membrana. Mediante la polarización generalizada (GP) en medidas de Laurdan con lípidos en una fase líquida-cristalina, mostrar como los diferentes porcentajes de insaturaciones van incrementando el nivel de espaciamiento de las cabezas polares en comparación con membranas completamente saturadas, lo cual indicaría como la flexibilidad inducida en la membrana puede estar relacionada con los valores de GP y el espaciamiento de cabezas hidrofóbicas en los lípidos. (Texto tomado de la fuente)The bacterial population has developed the ability to modulate its cellular components, such as the lipid bilayer, energy generation systems, protein synthesis, biodegradative enzymes and nutrient absorption due to changes in pH, temperature, pressure, availability of nutrients or salinity that occur in the different environments of the planet. These changes in the gene expression of the bacterium have allowed it to survive and evade detection by the host's immune system. The compositional alteration of the membrane, mean, the modulation of saturated and unsaturated fatty acids, also has effects on permeability, susceptibility to bactericidal substances and antibiotics. In this work, it is proposed how the changes in the distribution in the order of the fatty acids and the changes in the elasticity of the membrane lead the inhibition of pore formation mediated by antimicrobial peptides (AMP’s). The action of antimicrobial peptides on pore formation (Figure 2) can be explained in three phases. The first is the surface interaction between the cationic peptide and the anionic bacterial membrane. In this phase, the peptides form helical structures and their interaction with the membrane is done in such a way that the positively charged amino acids are located horizontally parallel to the hydrophobic amino acids of the helix (Huang H. , 2020). The second phase is the permeabilization of the membrane, in other words, it is the insertion of antimicrobial peptides into the cell membrane. Before insertion, a critical concentration of peptides is generated on the membrane surface, which depends on the lateral tension of the membrane. This tension is linked to the properties of the bilayer, and it is proposed that changes in lateral tension are influenced by the distribution of the fatty acids that compose it. This insertion process is purely mechanical due to the electrostatic interactions between the cationic peptides and the anionic membranes with favorable energetic conditions (Jenssen, Hamill , & Hancock, 2006), generating areas of instability in it and thus inducing the formation of pores. However, different mechanisms of action have been proposed, such as promoting lipid uptake or as a detergent action on the membrane to promote pore formation. The third and last phase, cell lysis is carried out since after the formation of pores in the membrane, an osmotic stress is generated where the exchange of molecules from the inside of the cell to the outside is altered (Ogata, y otros, 1992) and therefore there is a loss in the electrochemical gradient of the bacteria. Specifically, we want to determine how the percentage changes of monounsaturated fatty acids present in the membrane emulate an adaptive response to bacterial resistance and decrease the activity of antimicrobial peptides. First, the activity of the antimicrobial peptides LL-37 and Atra-1 in large unilamellar vesicles (LUV's) with lipid compositions of DMPG (14:0/14:0), DPPG (16:0/16:0) and POPG (16:0/18:1), emulating different levels of unsaturation present in bacterial membranes, suggesting how the presence of membrane unsaturation’s inhibits activity peptide. Using calcein leakage percentage kinetic analysis, estimate the activation energy for pore formation in mixtures of saturated synthetic lipids (DMPG and DPPG) with small percentage amounts of monounsaturated lipid (POPG). Second, it is suggested that unsaturated lipids decrease the activity of antimicrobial peptides due to the flexibility they give to the membrane, making it difficult to reach the critical concentration on the surface to induce the translocation of the peptide to the interior of the membrane. Through generalized polarization (GP) in Laurdan measurements with lipids in a liquid-crystalline phase, show how the different percentages of unsaturation’s increase the level of spacing of the polar heads compared to fully saturated membranes, which would indicate how flexibility induced in the membrane may be related to GP values and hydrophobic head spacing in lipids.MaestríaMagíster en Ciencias - FísicaBiofísica Molecular66 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaPeptide antibioticsFourier transform infrared spectroscopyANTIBIOTICOS PEPTIDOSESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIERPéptido antimicrobianoFosfolípidoSaturación/InsaturaciónLaurdanAntimicrobial peptidePhospholipidsSaturation/UnsaturationLaurdanContenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianosUnsaturation content of the lipid membrane as a modulator of the activity of antimicrobial peptidesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAlmeida, P. F., & Pokorny, A. (2009). Mechanisms of antimicrobial, cytolytic, and cell- penetrating peptides: from kinetics to thermodynamics. Biochemistry, 8083-8093.Bagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Bagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophysical journal, 331-341.Bagatolli, L. A., Maggio, B., Aguilar, F., Sotomayor, C. P., & Fidelo, G. D. (1997). Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochimica et Biophysica Acta (BBA)-Biomembranes, 80-90.Bagatolli, L. A., Parasassi, T., Fidelo, G. D., & Gratton, E. (1999). A model for the interaction of 6‐lauroyl‐2‐(N, N‐dimethylamino) naphthalene with lipid environments: implications for spectral properties. Photochemistry and photobiology, 557-564.Bayer, A. S., Prasad, R., Chandra, J., Koul, A., Smriti, M., Varma, A., & Yeaman, M. R. (2000). In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infection and immunity, 3548-3553.Boparai, J. K., & Sharma, P. K. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and Peptide Letters, 4-16.Chow, S. (2018). Mecanismos de acción de la Penicilina. https://www.news-medical.net. Obtenido de https://www.news-medical.net/health/Penicillin-Mechanism- (Spanish).aspx#:~:text=El%20mecanismo%20de%20la%20penicilina%20de%20la%2 0acci%C3%B3n&text=La%20penicilina%20mata%20a%20bacterias,formaci%C3%B3 n%20de%20la%20pared%20celular.Clark, K. S., Svetlovics, J., McKeown, A. N., Huskins, L., & Almeida, P. F. (2011). What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 7919-7932.Dean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC microbiology, 1-13.Dumas, F., Sperotto, M. M., Lebrun, M. C., Tocanne, J. F., & Mouritsen, O. G. (1997). Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophysical journal, 1940-1953.Dürr, U. H., Sudheendra, U. S., & Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1408-1425.Epand, R. M., & Epand, R. F. (2011). Bacterial membrane lipids in the action of antimicrobial agents. Journal of Peptide Science, 298-305.Gan, B. H., Gaynord, J., Rowe, S. M., Deingruber, T., & Spring, D. R. (2021). The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chemical Society Reviews, 7820-7880.Gregory, S. M., Pokorny, A., & Almeida, P. F. (2009). Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophysical journal, 116-131.Harmouche, N., & Bechinger, B. (2018). Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophysical journal, 1033- 1044.Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L., & Huang, H. W. (1999). Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophysical journal, 937-945.Hasan, M., Karal, M. S., Levadnyy, V., & Yamazaki, M. (2018). Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir, 3349-3362.Heimburg, T. (2007). Thermal Biophysics of Membranes. Copenhague: Wiley-VCH.Huang, H. (2020). DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes.Huang, H. W. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1292-1302.Huang, W. H. (2009). Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophysical journal, 3263-3272.Jenssen, H., Hamill , P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 491-511.Kahya, N., Wiersma, D. A., Poolman, B., & Hoekstra, D. (2002). Spatial organization of bacteriorhodopsin in model membranes: Light-induced mobility changes. Journal of Biological Chemistry, 39304-39311.Khandelia, H., Ipsen, J. H., & Mouritsen, O. G. (2008). The impact of peptides on lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1528-1536.Koo, H. B., & Seo, J. (2019). Antimicrobial peptides under clinical investigation. Peptide Science, e24122.Kučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophysical journal, L83-L85.Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules.Leidy, C., Celis, A., Carazzone, C., Manrique, M., Cossio, P., & Aponte, C. (2017). Desarrollo de nuevos péptidos derivados de la Crotalicidina como potenciales agentes antimicrobianos para el tratamiento de aislados clínicos de Staphylococcus Aureus resistente a antibióticos. Bogotá, Colombia: Universidad de Los Andes.Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 48-56.Longo, M. L., Waring, A. J., Gordon, L. M., & Hammer, D. A. (1998). Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir, 2385-2395.Lundbæk, J. A., Birn, P., Hansen, A. J., Søgaard, R., Nielsen, C., Girshman, J., & Anderson, O. S. (2004). Regulation of Sodium Channel Function by Bilayer Elasticity The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol. Journal of General Physiology, 599-621.Lundbæk, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R., & Andersen, O. S. (2010). Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of The Royal Society Interface, 373-395.Lundbæk, J. A., Koeppe, R. E., & Anderson, O. S. (2010). Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proceedings of the National Academy of Sciences, 15427-15430.Marín-Medina, N., Ramírez, D. A., Trier, S., & Leidy, C. (2016). Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied microbiology and biotechnology, 10251-10263.Matsuzaki, K., Murase, O., & Mijayima, K. (1995). Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry, 12553- 12559.Mazzuca, C., Orioni, B., Coletta, M., Formaggio, F., Toniolo, C., Maulucci, G., & Stella, L. (2010). Fluctuations and the rate-limiting step of peptide-induced membrane leakage. Biophysical journal, 1791-1800.Nielsen, S. B., & Otzen, D. E. (2010). Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. Journal of colloid and interface science, 248-256.Nishida, K., Anada, T., Kobayashi, S., Ueda, T., & Tanaka, M. (2021). Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 313-324.Ogata, K., Linzer, B. A., Zuberi, R. I., Ganz, T., Lehrer, R. I., & Catanzaro, A. (1992). Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium- Mycobacterium intracellulare. Infection and immunity, 4720-4725.Oñate-Garzón, J., Manrique-Moreno, M., Trier, S., Leidy, C., Torres, R., & Patiño, E. (2017). Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. The Journal of antibiotics, 238-245.Pan, J., Tristram-Nagle, S., Kučerka, N., & Nagle, J. F. (2008). Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophysical journal, 117-124.Rijnaarts, H. H., Norde, W., Lyklema, J., & Zehnder, A. J. (1999). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerface, 179-195.Schujman, G. E., & de Mendoza, D. (2005). Transcriptional control of membrane lipid synthesis in bacteria. Current opinion in microbiology, 149-153.Seemann, H., & Winter, R. (2003). Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Zeitschrift für Physikalische Chemie, 831-846.Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: a review. Molecules, 12276-12286.Separovic, F., Gehman, J. D., Lee, T. H., Bowie, J. H., & Aguilar, M. I. (2009). Effect of Antimicrobial Peptides from Australian Tree Frogs on Anionic Phospholipid Membranes. Biophysical Journal, 156.Shai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 55-70.Soni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassal, S. R. (2009). Soni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassall, S. R. (2009). Effect of trans unsaturation on molecular organization in a phospholipid membrane. Biochemistry, 11097-11107.Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 27-55.Zakany, F., Kovacs, T., Panyi, G., & Varga, Z. (2020). Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids.Zhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 222-233.EstudiantesInvestigadoresPúblico generalORIGINAL1088330442.2022.pdf1088330442.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf2285323https://repositorio.unal.edu.co/bitstream/unal/81779/3/1088330442.2022.pdf4588cca6cd70c716beb842ccc06a5f4eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81779/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1088330442.2022.pdf.jpg1088330442.2022.pdf.jpgGenerated Thumbnailimage/jpeg4696https://repositorio.unal.edu.co/bitstream/unal/81779/5/1088330442.2022.pdf.jpg73b4e2177c5d14a81330d83a68cba5c4MD55unal/81779oai:repositorio.unal.edu.co:unal/817792024-08-07 23:10:58.098Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK