Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte

ilustraciones

Autores:
Moreno Piza, Oscar Javier
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84171
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84171
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
Electroquímica del azufre
Electrocatálisis
Baterías de azufre-litio
Polímeros conductores
Líquidos iónicos
Electrochemistry of sulfur
Electrocatalysis
Sulfur-lithium batteries
conductive polymers
Ionic liquids.
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_6f4fcf029a8822a854d16a87dfe4c0ec
oai_identifier_str oai:repositorio.unal.edu.co:unal/84171
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
dc.title.translated.eng.fl_str_mv Electrochemical study of the redox processes of elemental sulfur in organic solvents using poly (3,4-ethylene-dioxy-thiophene) modified glassy carbon electrodes as working electrodes and ionic liquids as electrolytes
title Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
spellingShingle Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
540 - Química y ciencias afines::541 - Química física
Electroquímica del azufre
Electrocatálisis
Baterías de azufre-litio
Polímeros conductores
Líquidos iónicos
Electrochemistry of sulfur
Electrocatalysis
Sulfur-lithium batteries
conductive polymers
Ionic liquids.
title_short Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
title_full Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
title_fullStr Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
title_full_unstemmed Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
title_sort Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte
dc.creator.fl_str_mv Moreno Piza, Oscar Javier
dc.contributor.advisor.none.fl_str_mv Suarez Herrera, Marco Fidel
dc.contributor.author.none.fl_str_mv Moreno Piza, Oscar Javier
dc.contributor.researchgroup.spa.fl_str_mv Electroquímica y Termodinámica Computacional
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
topic 540 - Química y ciencias afines::541 - Química física
Electroquímica del azufre
Electrocatálisis
Baterías de azufre-litio
Polímeros conductores
Líquidos iónicos
Electrochemistry of sulfur
Electrocatalysis
Sulfur-lithium batteries
conductive polymers
Ionic liquids.
dc.subject.proposal.spa.fl_str_mv Electroquímica del azufre
Electrocatálisis
Baterías de azufre-litio
Polímeros conductores
Líquidos iónicos
dc.subject.proposal.eng.fl_str_mv Electrochemistry of sulfur
Electrocatalysis
Sulfur-lithium batteries
conductive polymers
Ionic liquids.
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-07T21:02:53Z
dc.date.available.none.fl_str_mv 2023-07-07T21:02:53Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84171
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84171
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv C.-E. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, R. Westerholm, Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air., Environ Health Perspect. 110 (2002) 451–488. https://doi.org/10.1289/ehp.110-1241197
M.E. Munawer, Human health and environmental impacts of coal combustion and post-combustion wastes, Journal of Sustainable Mining. 17 (2018) 87–96. https://doi.org/10.1016/j.jsm.2017.12.007
G.P. Peters, R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. le Quéré, G. Marland, M.R. Raupach, C. Wilson, The challenge to keep global warming below 2 °C, Nat Clim Chang. 3 (2013) 4–6. https://doi.org/10.1038/nclimate1783
D. Castelvecchi, Electric cars and batteries: how will the world produce enough?, Nature. 596 (2021) 336–339. https://doi.org/10.1038/d41586-021-02222-1
K. Siczek, Next-generation Batteries with Sulfur Cathodes, 1st Edition, Academic Press, (2019) 44-92. ISBN 9780128163924
K. Siczek, The Toxicity of Secondary Lithium-Sulfur Batteries Components, Batteries. 6 (2020) 45. https://doi.org/10.3390/batteries6030045
X. Gu, L. Hencz, S. Zhang, Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries, Batteries. 2 (2016) 33. https://doi.org/10.3390/batteries2040033
R. Wang, K. Wang, H. Tao, W. Zhao, M. Jiang, J. Yan, K. Jiang, Controllable electrolytic formation of Ti2O as an efficient sulfur host in lithium–sulfur (Li–S) batteries, Journal of Materials Chemistry A. 8 (2020) 11224–11232. https://doi.org/10.1039/D0TA01454K
S.K. Yongju Jung, Effect of Organic Solvents and Electrode Materials on Electrochemical Reduction of Sulfur, International Journal of Electrochemical Science. 3 (2008) 566-577
Z. Gong, Q. Wu, F. Wang, X. Li, X. Fan, H. Yang, Z. Luo, PEDOT-PSS coated sulfur/carbon composite on porous carbon papers for high sulfur loading lithium–sulfur batteries, RSC Advances. 5 (2015) 96862-96869. https://doi.org/10.1039/C5RA18567J
J. Lee, W. Choi, Surface Modification of Sulfur Cathodes with PEDOT:PSS Conducting Polymer in Lithium-Sulfur Batteries, Journal of the Electrochemical Society. 162 (2015) A935-A939. https://doi.org/10.1149/2.0651506jes
A.B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, P.M. Ajayan, High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery, Electrochimica Acta. 306 (2019) 489–497. https://doi.org/10.1016/j.electacta.2019.03.136.
S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang, S. Chen, Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries, ChemSusChem. 10 (2017) 3378-3386. https://doi.org/10.1002/cssc.201700913
Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Application of Polyaniline for Li‐Ion Batteries, Lithium–Sulfur Batteries, and Supercapacitors, ChemSusChem. 12 (2019) 1591-1611. https://doi.org/10.1002/cssc.201802186
G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries, Advanced Energy Materials. 2 (2012) 1238-1245. https://doi.org/10.1002/aenm.201200017
J. Wang, S.Y. Chew, Z.W. Zhao, S. Ashraf, D. Wexler, J. Chen, S.H. Ng, S.L. Chou, H.K. Liu, Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon. 46 (2008) 229–235. https://doi.org/10.1016/j.carbon.2007.11.007
K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, Ionic liquids for high performance lithium metal batteries, Journal of Energy Chemistry. 59 (2021) 320-333. https://doi.org/10.1016/j.jechem.2020.11.017
L.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications. 8 (2006) 610–614. https://doi.org/10.1016/j.elecom.2006.02.007
J. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium–sulphur batteries, Journal of Power Sources. 255 (2014) 204–218. https://doi.org/10.1016/j.jpowsour.2014.01.023
L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries, MRS Bulletin. 39 (2014) 436-442. https://doi.org/10.1557/mrs.2014.86
J.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531-20541. https://doi.org/10.1021/jp408037e
M. Liu, X. Wu, X. Shen, K. Luan, Y. Zhang, S. Yao, Effects of nano-TiO 2 particle size on microstructure and electrochemical performance of TiO 2 /PEDOT nanocomposites cathode in lithium-sulphur battery, Materials Technology. 36 (2021) 616–622. https://doi.org/10.1080/10667857.2020.1782310
Y. Ansari, S. Zhang, B. Wen, F. Fan, Y. Chiang, Stabilizing Li–S Battery Through Multilayer Encapsulation of Sulfur, Advanced Energy Materials. 9 (2019) 1802213. https://doi.org/10.1002/aenm.201802213
Y. Jia, Y.-S. Zhao, X.-X. Yang, M.-X. Ren, Y.-Q. Wang, B.-Y. Lei, D.-L. Zhao, Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries, International Journal of Hydrogen Energy. 46 (2021) 7642-7652. https://doi.org/10.1016/j.ijhydene.2020.11.199
Y. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide, Nature Communications. 11 (2020) 845. https://doi.org/10.1038/s41467-020-14686-2
L. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes, Energy and Environmental Science. 9 (2016) 224-231. https://doi.org/10.1039/C5EE02837J
J.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531–20541. https://doi.org/10.1021/jp408037e
E. Levillain, F. Gaillard, A. Demortier, J.P. Lelieur, Electrochemical and spectroelectrochemical study of the oxidation of S2−4 and S2−6 ions in liquid ammonia, Journal of Electroanalytical Chemistry. 405 (1996) 85–94. https://doi.org/10.1016/0022-0728(95)04334-9
T. Fujinaga, T. Kuwamoto, S. Okazaki, M. Hojo, Electrochemical Reduction of Elemental Sulfur in AcetonitrileBulletin of the Chemical Society of Japan. 53 (1980) 2851-2855. https://doi.org/10.1246/bcsj.53.2851
J. Paris, V. Plichon, Electrochemistry of polysulphide ions in dimethylacetamide: basic properties and oxidation in acid medium, Electrochimica Acta. 27 (1982) 1501–1508. https://doi.org/10.1016/0013-4686(82)80045-5
F. Gaillard, E. Levillain, Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide, Journal of Electroanalytical Chemistry. 398 (1995) 77–87. https://doi.org/10.1016/0022-0728(95)04144-1
E. Levillain, F. Gaillard, P. Leghie, A. Demortier, J.P. Lelieur, On the understanding of the reduction of sulfur (S8) in dimethylformamide (DMF), Journal of Electroanalytical Chemistry. 420 (1997) 167-177. https://doi.org/10.1016/S0022-0728(96)04796-1
R. Chen, T. Zhao, F. Wu, From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels, Chemical Communications. 51 (2015) 18–33. https://doi.org/10.1039/C4CC05109B
M. v. Merritt, D.T. Sawyer, Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8- species, Inorganic Chemistry. 9 (1970) 211–215. https://doi.org/10.1021/ic50084a003
R. Bonnaterre, G. Cauquis, Spectrophotometric study of the electrochemical reduction of sulphur in organic media, Journal of the Chemical Society. (1972) 293. https://doi.org/10.1039/c39720000293
A.S. Baranski, W.R. Fawcett, C.M. Gilbert, Use of microelectrodes for the rapid determination of the number of electrons involved in an electrode reaction, Analytical Chemistry. 57 (1985) 166–170. https://doi.org/10.1021/ac00279a041
R.P. Martin, W.H. Doub, J.L. Roberts, D.T. Sawyer, Electrochemical reduction of sulfur in aprotic solvents, Inorganic Chemistry. 12 (1973) 1921–1925. https://doi.org/10.1021/ic50126a047
P. Leghié, J.-P. Lelieur, E. Levillain, Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide, Electrochemistry Communications. 4 (2002) 406–411. https://doi.org/10.1016/S1388-2481(02)00333-8
F. Gaillard, E. Levillain, M.-C. Dhamelincourt, P. Dhamelincourt, J.P. Lelieur, Polysulphides in dimethylformamide: a micro-Raman spectroelectrochemical study, Journal of Raman Spectroscopy. 28 (1997) 511–517. https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<511::AID-JRS119>3.0.CO;2-4
F. Gaillard, E. Levillain, J.P. Lelieur, Polysulfides in dimethylformamide: Only the radical anions S3− and S4− are reducible, Journal of Electroanalytical Chemistry. 432 (1997) 129–138. https://doi.org/10.1016/S0022-0728(97)00192-7
A. Evans, M.I. Montenegro, D. Pletcher, The mechanism for the cathodic reduction of sulphur in dimethylformamide: low temperature voltammetry, Electrochemistry Communications. 3 (2001) 514–518. https://doi.org/10.1016/S1388-2481(01)00203-X
N.S.A. Manan, L. Aldous, Y. Alias, P. Murray, L.J. Yellowlees, M.C. Lagunas, C. Hardacre, Electrochemistry of Sulfur and Polysulfides in Ionic Liquids, Journal of Physical Chemistry B. 115 (2011) 13873–13879. https://doi.org/10.1021/jp208159v
Q. Zou, Y.-C. Lu, Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study, Journal of Physical Chemistry Letters. 7 (2016) 1518-1525. https://doi.org/10.1021/acs.jpclett.6b00228
C.C. Herrmann, G.G. Perrault, A.A. Pilla, Dual reference electrode for electrochemical pulse studies, Analytical Chemistry. 40 (1968) 1173–1174. https://doi.org/10.1021/ac60263a011
M.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes, Physical Chemistry Chemical Physics. 14 (2012) 14391. https://doi.org/10.1039/c2cp42719b
M.F. Suarez-Herrera, J.M. Feliu, Electrochemical Properties of Thin Films of Polythiophene Polymerized on Basal Plane Platinum Electrodes in Nonaqueous Media, Journal of Physical Chemistry B. 113 (2009) 1899–1905. https://doi.org/10.1021/jp8089837
M.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water, Langmuir. 28 (2012) 5286–5294. https://doi.org/10.1021/la205097p
W.E. van der Linden, J.W. Dieker, Glassy carbon as electrode material in electro- analytical chemistry, Analytica Chimica Acta. 119 (1980) 1–24. https://doi.org/10.1016/S0003-2670(00)00025-8
A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Glassy carbon electrodes, Carbon. 39 (2001) 1195–1205. https://doi.org/10.1016/S0008-6223(00)00228-1
Honghua. Zhang, L.A. Coury, Effects of high-intensity ultrasound on glassy carbon electrodes, Analytical Chemistry. 65 (1993) 1552–1558. https://doi.org/10.1021/ac00059a012
R.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Analytical Chemistry. 56 (1984) 136–141. https://doi.org/10.1021/ac00266a005
O. Dumanlı, A.N. Onar, Activation of glassy carbon electrodes by photocatalytic pretreatment, Electrochimica Acta. 54 (2009) 6438–6444. https://doi.org/10.1016/j.electacta.2009.05.096
G.K. Kiema, M. Aktay, M.T. McDermott, Preparation of reproducible glassy carbon electrodes by removal of polishing impurities, Journal of Electroanalytical Chemistry. 540 (2003) 7–15. https://doi.org/10.1016/S0022-0728(02)01264-0
R.J. Rice, N.M. Pontikos, R.L. McCreery, Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes, Journal of the American Chemical Society. 112 (1990) 4617–4622. https://doi.org/10.1021/ja00168a001
L.H. Edelson, A.M. Glaeser, Method for removing surface porosity on glassy carbon tiles, Carbon. 24 (1986) 635–637. https://doi.org/10.1016/0008-6223(86)90153-3
A.P. Sandoval, M.F. Suárez-Herrera, J.M. Feliu, Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes, Electrochemistry Communications. 46 (2014) 84–86. https://doi.org/10.1016/j.elecom.2014.06.016
E. Yildirim, G. Wu, X. Yong, T.L. Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, S.-W. Yang, A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS, Journal of Materials Chemistry C. 6 (2018) 5122–5131. https://doi.org/10.1039/C8TC00917A
J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer. 45 (2004) 8443–8450. https://doi.org/10.1016/j.polymer.2004.10.001
T.R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao, Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display, Journal of Materials Chemistry C. 3 (2015) 3760–3766. https://doi.org/10.1039/C5TC00276A
Y. Xia, J. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, Journal of Materials Chemistry. 21 (2011) 4927. https://doi.org/10.1039/c0jm04177g
F. Arnaud-Neu, R. Delgado, S. Chaves, Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report), Pure and Applied Chemistry. 75 (2003) 71–102. https://doi.org/10.1351/pac200375010071
M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Gutmann Donor and Acceptor Numbers for Ionic Liquids, Chemistry - A European Journal. 18 (2012) 10969–10982. https://doi.org/10.1002/chem.201200584
M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rüther, Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids, Electrochimica Acta. 180 (2015) 636-644. https://doi.org/10.1016/j.electacta.2015.08.132
K. Ueno, J.-W. Park, A. Yamazaki, T. Mandai, N. Tachikawa, K. Dokko, M. Watanabe, Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20509-20516. https://doi.org/10.1021/jp407158y
C. Dillard, A. Singh, V. Kalra, Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries with in Situ Infrared Spectroelectrochemistry, The Journal of Physical Chemistry C. 122 (2018) 18195-18203. https://doi.org/10.1021/acs.jpcc.8b02506
C.Y. Lee, J.P. Bullock, G.F. Kennedy, A.M. Bond, Effects of Coupled Homogeneous Chemical Reactions on the Response of Large-Amplitude AC Voltammetry: Extraction of Kinetic and Mechanistic Information by Fourier Transform Analysis of Higher Harmonic Data, The Journal of Physical Chemistry A. 114 (2010) 10122–10134. https://doi.org/10.1021/jp105626z
P. Córdoba-Torres, T.J. Mesquita, R.P. Nogueira, Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure, The Journal of Physical Chemistry C. 119 (2015) 4136–4147. https://doi.org/10.1021/jp512063f
J. Zheng, M. Gu, H. Chen, P. Meduri, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries, Journal of Materials Chemistry A. 1 (2013) 8464. https://doi.org/10.1039/c3ta11553d
S. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries, Journal of Power Sources. 252 (2014) 150–155. https://doi.org/10.1016/j.jpowsour.2013.11.119
D. Su, M. Cortie, H. Fan, G. Wang, Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High‐Capacity Cathodes for Lithium–Sulfur Batteries, Advanced Materials. 29 (2017) 1700587. https://doi.org/10.1002/adma.201700587
J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries, Nano Letters. 14 (2014) 2345–2352. https://doi.org/10.1021/nl404721h
I.C. Monge-Romero, M.F. Suárez-Herrera, Electrocatalysis of the hydroquinone/benzoquinone redox couple at platinum electrodes covered by a thin film of poly(3,4-ethylenedioxythiophene), Synthetic Metals. 175 (2013) 36–41. https://doi.org/10.1016/j.synthmet.2013.04.027
E.S. Stoyanov, K.-C. Kim, C.A. Reed, A Strong Acid that Does Not Protonate Water, Journal of Physical Chemistry A. 108 (2004) 9310–9315. https://doi.org/10.1021/jp047409l
D.K. Singh, P. Donfack, B. Rathke, J. Kiefer, A. Materny, Interplay of Different Moieties in the Binary System 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate/Water Studied by Raman Spectroscopy and Density Functional Theory Calculations, Journal of Physical Chemistry A B. 123 (2019) 4004–4016. https://doi.org/10.1021/acs.jpcb.9b00066
A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev, Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at 25 °C: A New Approach for the Study of Polysulfides’ Equilibria, Environmental Science & Technology. 38 (2004) 6633–6644. https://doi.org/10.1021/es049514e
H.-L. Wu, R.T. Haasch, B.R. Perdue, C.A. Apblett, A.A. Gewirth, The effect of water-containing electrolyte on lithium-sulfur batteries, Journal of Power Sources. 369 (2017) 50–56. https://doi.org/10.1016/j.jpowsour.2017.09.044
H. Liu, M.N. Radford, C. Yang, W. Chen, M. Xian, Inorganic hydrogen polysulfides: chemistry, chemical biology and detection, British Journal of Pharmacology. 176 (2019) 616–627. https://doi.org/10.1111/bph.14330
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 69 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84171/5/1073518865.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84171/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84171/6/1073518865.2022.pdf.jpg
bitstream.checksum.fl_str_mv 4fe6ad425e20d9c1bcb65c8625369c6e
eb34b1cf90b7e1103fc9dfd26be24b4a
1380f1cc7dade3831e9bdbcc3d79caeb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089419595972608
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Suarez Herrera, Marco Fidelbd5855fa56b4f38160dad3196b07ddd2Moreno Piza, Oscar Javierc1494e9db2119e338e77f8382e6bab16Electroquímica y Termodinámica Computacional2023-07-07T21:02:53Z2023-07-07T21:02:53Z2022https://repositorio.unal.edu.co/handle/unal/84171Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLas baterías de litio-azufre han sido foco de estudio durante varios años, sin embargo, su implementación se ha visto limitada debido a su corta vida útil debido al efecto ‘suttle’, el cual se debe al transporte de los polisulfuros hacia el ánodo formando depósitos altamente resistivos que pasivan los electrodos. Este inconveniente puede solucionarse al restringir los procesos de transporte de estas especies desde el cátodo al ánodo y al mismo tiempo mejorar la cinética de transferencia de carga de las reacciones electroquímicas. Este trabajo de investigación estudia las reacciones redox del azufre elemental en acetonitrilo (CH3CN) y dimetilsulfóxido (DMSO) sobre electrodos de trabajo de carbón vítreo y carbón vítreo modificado con una lámina delgada de poli(3,4-etilenodioxitiofeno) (PEDOT) empleando voltamperometría cíclica, voltamperometría ac y espectroscopia de impedancia electroquímica. Como electrolitos se emplearon hexafluorofosfato de tetrabutilamonio (TBAPF6), 1-Butil-3-metilimidazolio tetrafluoroborato ([Bmim][BF4]) y 1-Butil-3-metilimidazolio triflato ([Bmim][OTf]). Se encontró que la cinética de transferencia de carga para la primera reacción de reducción del S8 sobre carbón vítreo es más rápido en CH3CN que en DMSO y cuando [Bmim][OTf] se usa como electrolito. Por otro lado, se encontró que el PEDOT es electrocatalítico para la primera reacción de reducción del azufre elemental. Finalmente, al encapsular el azufre entre láminas de PEDOT es posible aumentar el tiempo de retención de las especies de azufre al interior del PEDOT bajo ciclos sucesivos de oxido-reducción si se usan líquidos iónicos puros como electrolitos (Texto tomado de la fuente)The commercial use of Lithium-sulfur batteries has been limited by their short service life due to the shuttle effect of polysulfides, which is due the transport of polysulfides towards the anode and the formation of highly resistive deposits that passivate the electrodes. This problem can be solved by decreasing the transport of these species from the cathode to the anode and improving at the same time the kinetics of electron transfer reactions. This work studies by electrochemical impedance spectroscopy and cyclic and ac voltammetry the redox reactions of elemental sulfur in either acetonitrile (CH3CN) or Dimethyl sulfoxide (DMSO) using as a working electrode either pristine glassy carbon (GC) or GC modified with a thin film of Poly 3,4-ethylenedioxythiophene (GC-PEDOT) as working electrodes. As electrolytes were studied tetrabutylammonium hexafluorophosphate (TBAPF6), 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and 1-Butyl-3-methylimidazolium triflate ([Bmim][OTf]). It was found that the kinetics of the first reduction reaction of S8 on GC is much faster in CH3CN than in DMSO and when [Bmim][OTf] is used as electrolyte. On the other hand, it was found that PEDOT is electrocatalytic for the first reduction reaction of elemental sulfur. Finally, by encapsulating the sulfur in PEDOT it is possible to increase the retention of the sulfur species inside PEDOT upon redox cycling if pure ionic liquids are used as electrolytes.MaestríaMagíster en Ciencias - QuímicaMateriales y Energíaxxi, 69 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaElectroquímica del azufreElectrocatálisisBaterías de azufre-litioPolímeros conductoresLíquidos iónicosElectrochemistry of sulfurElectrocatalysisSulfur-lithium batteriesconductive polymersIonic liquids.Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporteElectrochemical study of the redox processes of elemental sulfur in organic solvents using poly (3,4-ethylene-dioxy-thiophene) modified glassy carbon electrodes as working electrodes and ionic liquids as electrolytesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMC.-E. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, R. Westerholm, Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air., Environ Health Perspect. 110 (2002) 451–488. https://doi.org/10.1289/ehp.110-1241197M.E. Munawer, Human health and environmental impacts of coal combustion and post-combustion wastes, Journal of Sustainable Mining. 17 (2018) 87–96. https://doi.org/10.1016/j.jsm.2017.12.007G.P. Peters, R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. le Quéré, G. Marland, M.R. Raupach, C. Wilson, The challenge to keep global warming below 2 °C, Nat Clim Chang. 3 (2013) 4–6. https://doi.org/10.1038/nclimate1783D. Castelvecchi, Electric cars and batteries: how will the world produce enough?, Nature. 596 (2021) 336–339. https://doi.org/10.1038/d41586-021-02222-1K. Siczek, Next-generation Batteries with Sulfur Cathodes, 1st Edition, Academic Press, (2019) 44-92. ISBN 9780128163924K. Siczek, The Toxicity of Secondary Lithium-Sulfur Batteries Components, Batteries. 6 (2020) 45. https://doi.org/10.3390/batteries6030045X. Gu, L. Hencz, S. Zhang, Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries, Batteries. 2 (2016) 33. https://doi.org/10.3390/batteries2040033R. Wang, K. Wang, H. Tao, W. Zhao, M. Jiang, J. Yan, K. Jiang, Controllable electrolytic formation of Ti2O as an efficient sulfur host in lithium–sulfur (Li–S) batteries, Journal of Materials Chemistry A. 8 (2020) 11224–11232. https://doi.org/10.1039/D0TA01454KS.K. Yongju Jung, Effect of Organic Solvents and Electrode Materials on Electrochemical Reduction of Sulfur, International Journal of Electrochemical Science. 3 (2008) 566-577Z. Gong, Q. Wu, F. Wang, X. Li, X. Fan, H. Yang, Z. Luo, PEDOT-PSS coated sulfur/carbon composite on porous carbon papers for high sulfur loading lithium–sulfur batteries, RSC Advances. 5 (2015) 96862-96869. https://doi.org/10.1039/C5RA18567JJ. Lee, W. Choi, Surface Modification of Sulfur Cathodes with PEDOT:PSS Conducting Polymer in Lithium-Sulfur Batteries, Journal of the Electrochemical Society. 162 (2015) A935-A939. https://doi.org/10.1149/2.0651506jesA.B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, P.M. Ajayan, High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery, Electrochimica Acta. 306 (2019) 489–497. https://doi.org/10.1016/j.electacta.2019.03.136.S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang, S. Chen, Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries, ChemSusChem. 10 (2017) 3378-3386. https://doi.org/10.1002/cssc.201700913Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Application of Polyaniline for Li‐Ion Batteries, Lithium–Sulfur Batteries, and Supercapacitors, ChemSusChem. 12 (2019) 1591-1611. https://doi.org/10.1002/cssc.201802186G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries, Advanced Energy Materials. 2 (2012) 1238-1245. https://doi.org/10.1002/aenm.201200017J. Wang, S.Y. Chew, Z.W. Zhao, S. Ashraf, D. Wexler, J. Chen, S.H. Ng, S.L. Chou, H.K. Liu, Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon. 46 (2008) 229–235. https://doi.org/10.1016/j.carbon.2007.11.007K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, Ionic liquids for high performance lithium metal batteries, Journal of Energy Chemistry. 59 (2021) 320-333. https://doi.org/10.1016/j.jechem.2020.11.017L.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications. 8 (2006) 610–614. https://doi.org/10.1016/j.elecom.2006.02.007J. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium–sulphur batteries, Journal of Power Sources. 255 (2014) 204–218. https://doi.org/10.1016/j.jpowsour.2014.01.023L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries, MRS Bulletin. 39 (2014) 436-442. https://doi.org/10.1557/mrs.2014.86J.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531-20541. https://doi.org/10.1021/jp408037eM. Liu, X. Wu, X. Shen, K. Luan, Y. Zhang, S. Yao, Effects of nano-TiO 2 particle size on microstructure and electrochemical performance of TiO 2 /PEDOT nanocomposites cathode in lithium-sulphur battery, Materials Technology. 36 (2021) 616–622. https://doi.org/10.1080/10667857.2020.1782310Y. Ansari, S. Zhang, B. Wen, F. Fan, Y. Chiang, Stabilizing Li–S Battery Through Multilayer Encapsulation of Sulfur, Advanced Energy Materials. 9 (2019) 1802213. https://doi.org/10.1002/aenm.201802213Y. Jia, Y.-S. Zhao, X.-X. Yang, M.-X. Ren, Y.-Q. Wang, B.-Y. Lei, D.-L. Zhao, Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries, International Journal of Hydrogen Energy. 46 (2021) 7642-7652. https://doi.org/10.1016/j.ijhydene.2020.11.199Y. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide, Nature Communications. 11 (2020) 845. https://doi.org/10.1038/s41467-020-14686-2L. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes, Energy and Environmental Science. 9 (2016) 224-231. https://doi.org/10.1039/C5EE02837JJ.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531–20541. https://doi.org/10.1021/jp408037eE. Levillain, F. Gaillard, A. Demortier, J.P. Lelieur, Electrochemical and spectroelectrochemical study of the oxidation of S2−4 and S2−6 ions in liquid ammonia, Journal of Electroanalytical Chemistry. 405 (1996) 85–94. https://doi.org/10.1016/0022-0728(95)04334-9T. Fujinaga, T. Kuwamoto, S. Okazaki, M. Hojo, Electrochemical Reduction of Elemental Sulfur in AcetonitrileBulletin of the Chemical Society of Japan. 53 (1980) 2851-2855. https://doi.org/10.1246/bcsj.53.2851J. Paris, V. Plichon, Electrochemistry of polysulphide ions in dimethylacetamide: basic properties and oxidation in acid medium, Electrochimica Acta. 27 (1982) 1501–1508. https://doi.org/10.1016/0013-4686(82)80045-5F. Gaillard, E. Levillain, Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide, Journal of Electroanalytical Chemistry. 398 (1995) 77–87. https://doi.org/10.1016/0022-0728(95)04144-1E. Levillain, F. Gaillard, P. Leghie, A. Demortier, J.P. Lelieur, On the understanding of the reduction of sulfur (S8) in dimethylformamide (DMF), Journal of Electroanalytical Chemistry. 420 (1997) 167-177. https://doi.org/10.1016/S0022-0728(96)04796-1R. Chen, T. Zhao, F. Wu, From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels, Chemical Communications. 51 (2015) 18–33. https://doi.org/10.1039/C4CC05109BM. v. Merritt, D.T. Sawyer, Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8- species, Inorganic Chemistry. 9 (1970) 211–215. https://doi.org/10.1021/ic50084a003R. Bonnaterre, G. Cauquis, Spectrophotometric study of the electrochemical reduction of sulphur in organic media, Journal of the Chemical Society. (1972) 293. https://doi.org/10.1039/c39720000293A.S. Baranski, W.R. Fawcett, C.M. Gilbert, Use of microelectrodes for the rapid determination of the number of electrons involved in an electrode reaction, Analytical Chemistry. 57 (1985) 166–170. https://doi.org/10.1021/ac00279a041R.P. Martin, W.H. Doub, J.L. Roberts, D.T. Sawyer, Electrochemical reduction of sulfur in aprotic solvents, Inorganic Chemistry. 12 (1973) 1921–1925. https://doi.org/10.1021/ic50126a047P. Leghié, J.-P. Lelieur, E. Levillain, Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide, Electrochemistry Communications. 4 (2002) 406–411. https://doi.org/10.1016/S1388-2481(02)00333-8F. Gaillard, E. Levillain, M.-C. Dhamelincourt, P. Dhamelincourt, J.P. Lelieur, Polysulphides in dimethylformamide: a micro-Raman spectroelectrochemical study, Journal of Raman Spectroscopy. 28 (1997) 511–517. https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<511::AID-JRS119>3.0.CO;2-4F. Gaillard, E. Levillain, J.P. Lelieur, Polysulfides in dimethylformamide: Only the radical anions S3− and S4− are reducible, Journal of Electroanalytical Chemistry. 432 (1997) 129–138. https://doi.org/10.1016/S0022-0728(97)00192-7A. Evans, M.I. Montenegro, D. Pletcher, The mechanism for the cathodic reduction of sulphur in dimethylformamide: low temperature voltammetry, Electrochemistry Communications. 3 (2001) 514–518. https://doi.org/10.1016/S1388-2481(01)00203-XN.S.A. Manan, L. Aldous, Y. Alias, P. Murray, L.J. Yellowlees, M.C. Lagunas, C. Hardacre, Electrochemistry of Sulfur and Polysulfides in Ionic Liquids, Journal of Physical Chemistry B. 115 (2011) 13873–13879. https://doi.org/10.1021/jp208159vQ. Zou, Y.-C. Lu, Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study, Journal of Physical Chemistry Letters. 7 (2016) 1518-1525. https://doi.org/10.1021/acs.jpclett.6b00228C.C. Herrmann, G.G. Perrault, A.A. Pilla, Dual reference electrode for electrochemical pulse studies, Analytical Chemistry. 40 (1968) 1173–1174. https://doi.org/10.1021/ac60263a011M.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes, Physical Chemistry Chemical Physics. 14 (2012) 14391. https://doi.org/10.1039/c2cp42719bM.F. Suarez-Herrera, J.M. Feliu, Electrochemical Properties of Thin Films of Polythiophene Polymerized on Basal Plane Platinum Electrodes in Nonaqueous Media, Journal of Physical Chemistry B. 113 (2009) 1899–1905. https://doi.org/10.1021/jp8089837M.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water, Langmuir. 28 (2012) 5286–5294. https://doi.org/10.1021/la205097pW.E. van der Linden, J.W. Dieker, Glassy carbon as electrode material in electro- analytical chemistry, Analytica Chimica Acta. 119 (1980) 1–24. https://doi.org/10.1016/S0003-2670(00)00025-8A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Glassy carbon electrodes, Carbon. 39 (2001) 1195–1205. https://doi.org/10.1016/S0008-6223(00)00228-1Honghua. Zhang, L.A. Coury, Effects of high-intensity ultrasound on glassy carbon electrodes, Analytical Chemistry. 65 (1993) 1552–1558. https://doi.org/10.1021/ac00059a012R.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Analytical Chemistry. 56 (1984) 136–141. https://doi.org/10.1021/ac00266a005O. Dumanlı, A.N. Onar, Activation of glassy carbon electrodes by photocatalytic pretreatment, Electrochimica Acta. 54 (2009) 6438–6444. https://doi.org/10.1016/j.electacta.2009.05.096G.K. Kiema, M. Aktay, M.T. McDermott, Preparation of reproducible glassy carbon electrodes by removal of polishing impurities, Journal of Electroanalytical Chemistry. 540 (2003) 7–15. https://doi.org/10.1016/S0022-0728(02)01264-0R.J. Rice, N.M. Pontikos, R.L. McCreery, Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes, Journal of the American Chemical Society. 112 (1990) 4617–4622. https://doi.org/10.1021/ja00168a001L.H. Edelson, A.M. Glaeser, Method for removing surface porosity on glassy carbon tiles, Carbon. 24 (1986) 635–637. https://doi.org/10.1016/0008-6223(86)90153-3A.P. Sandoval, M.F. Suárez-Herrera, J.M. Feliu, Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes, Electrochemistry Communications. 46 (2014) 84–86. https://doi.org/10.1016/j.elecom.2014.06.016E. Yildirim, G. Wu, X. Yong, T.L. Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, S.-W. Yang, A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS, Journal of Materials Chemistry C. 6 (2018) 5122–5131. https://doi.org/10.1039/C8TC00917AJ. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer. 45 (2004) 8443–8450. https://doi.org/10.1016/j.polymer.2004.10.001T.R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao, Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display, Journal of Materials Chemistry C. 3 (2015) 3760–3766. https://doi.org/10.1039/C5TC00276AY. Xia, J. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, Journal of Materials Chemistry. 21 (2011) 4927. https://doi.org/10.1039/c0jm04177gF. Arnaud-Neu, R. Delgado, S. Chaves, Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report), Pure and Applied Chemistry. 75 (2003) 71–102. https://doi.org/10.1351/pac200375010071M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Gutmann Donor and Acceptor Numbers for Ionic Liquids, Chemistry - A European Journal. 18 (2012) 10969–10982. https://doi.org/10.1002/chem.201200584M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rüther, Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids, Electrochimica Acta. 180 (2015) 636-644. https://doi.org/10.1016/j.electacta.2015.08.132K. Ueno, J.-W. Park, A. Yamazaki, T. Mandai, N. Tachikawa, K. Dokko, M. Watanabe, Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20509-20516. https://doi.org/10.1021/jp407158yC. Dillard, A. Singh, V. Kalra, Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries with in Situ Infrared Spectroelectrochemistry, The Journal of Physical Chemistry C. 122 (2018) 18195-18203. https://doi.org/10.1021/acs.jpcc.8b02506C.Y. Lee, J.P. Bullock, G.F. Kennedy, A.M. Bond, Effects of Coupled Homogeneous Chemical Reactions on the Response of Large-Amplitude AC Voltammetry: Extraction of Kinetic and Mechanistic Information by Fourier Transform Analysis of Higher Harmonic Data, The Journal of Physical Chemistry A. 114 (2010) 10122–10134. https://doi.org/10.1021/jp105626zP. Córdoba-Torres, T.J. Mesquita, R.P. Nogueira, Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure, The Journal of Physical Chemistry C. 119 (2015) 4136–4147. https://doi.org/10.1021/jp512063fJ. Zheng, M. Gu, H. Chen, P. Meduri, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries, Journal of Materials Chemistry A. 1 (2013) 8464. https://doi.org/10.1039/c3ta11553dS. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries, Journal of Power Sources. 252 (2014) 150–155. https://doi.org/10.1016/j.jpowsour.2013.11.119D. Su, M. Cortie, H. Fan, G. Wang, Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High‐Capacity Cathodes for Lithium–Sulfur Batteries, Advanced Materials. 29 (2017) 1700587. https://doi.org/10.1002/adma.201700587J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries, Nano Letters. 14 (2014) 2345–2352. https://doi.org/10.1021/nl404721hI.C. Monge-Romero, M.F. Suárez-Herrera, Electrocatalysis of the hydroquinone/benzoquinone redox couple at platinum electrodes covered by a thin film of poly(3,4-ethylenedioxythiophene), Synthetic Metals. 175 (2013) 36–41. https://doi.org/10.1016/j.synthmet.2013.04.027E.S. Stoyanov, K.-C. Kim, C.A. Reed, A Strong Acid that Does Not Protonate Water, Journal of Physical Chemistry A. 108 (2004) 9310–9315. https://doi.org/10.1021/jp047409lD.K. Singh, P. Donfack, B. Rathke, J. Kiefer, A. Materny, Interplay of Different Moieties in the Binary System 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate/Water Studied by Raman Spectroscopy and Density Functional Theory Calculations, Journal of Physical Chemistry A B. 123 (2019) 4004–4016. https://doi.org/10.1021/acs.jpcb.9b00066A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev, Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at 25 °C: A New Approach for the Study of Polysulfides’ Equilibria, Environmental Science & Technology. 38 (2004) 6633–6644. https://doi.org/10.1021/es049514eH.-L. Wu, R.T. Haasch, B.R. Perdue, C.A. Apblett, A.A. Gewirth, The effect of water-containing electrolyte on lithium-sulfur batteries, Journal of Power Sources. 369 (2017) 50–56. https://doi.org/10.1016/j.jpowsour.2017.09.044H. Liu, M.N. Radford, C. Yang, W. Chen, M. Xian, Inorganic hydrogen polysulfides: chemistry, chemical biology and detection, British Journal of Pharmacology. 176 (2019) 616–627. https://doi.org/10.1111/bph.14330Estudio de los procesos redox de azufre elemental en solventes orgánicos cuando se utilizan líquidos iónicos como electrolitos y electrodos de carbón vítreo modificados con Poli (3,4-etilén-dioxi- tiofeno) como electrodos de trabajo.Fundación para la promoción de la ciencia y tecnología del banco de la repúblicaInvestigadoresORIGINAL1073518865.2022.pdf1073518865.2022.pdfMaestría en Ciencias - Químicaapplication/pdf2562211https://repositorio.unal.edu.co/bitstream/unal/84171/5/1073518865.2022.pdf4fe6ad425e20d9c1bcb65c8625369c6eMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84171/4/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD54THUMBNAIL1073518865.2022.pdf.jpg1073518865.2022.pdf.jpgGenerated Thumbnailimage/jpeg4618https://repositorio.unal.edu.co/bitstream/unal/84171/6/1073518865.2022.pdf.jpg1380f1cc7dade3831e9bdbcc3d79caebMD56unal/84171oai:repositorio.unal.edu.co:unal/841712023-08-08 23:04:01.002Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=