Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ

ilustraciones, diagramas

Autores:
Mayorga Betancourt, Manuel Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84628
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84628
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
540 - Química y ciencias afines::547 - Química orgánica
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomásica
Vital force
Biomass energy
Diésel renovable
Donante
Desoxigenación catalítica
Generación de hidrógeno in situ
Aceite de palma
Hidrogenación por transferencia catalítica
Reformado en fase acuosa
Green diesel
Donor
Catalytic deoxygenation
On-site hydrogen generation
Palm oil
Catalytic transfer hydrogenation (CTH)
Aqueous phase reforming (APR)
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6e91db95f37ce88b585a776bdc894b47
oai_identifier_str oai:repositorio.unal.edu.co:unal/84628
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
dc.title.translated.eng.fl_str_mv Non-ester biodiesel production by catalytic deoxygenation of palm oil with in situ hydrogen generation
title Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
spellingShingle Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
540 - Química y ciencias afines::547 - Química orgánica
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomásica
Vital force
Biomass energy
Diésel renovable
Donante
Desoxigenación catalítica
Generación de hidrógeno in situ
Aceite de palma
Hidrogenación por transferencia catalítica
Reformado en fase acuosa
Green diesel
Donor
Catalytic deoxygenation
On-site hydrogen generation
Palm oil
Catalytic transfer hydrogenation (CTH)
Aqueous phase reforming (APR)
title_short Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
title_full Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
title_fullStr Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
title_full_unstemmed Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
title_sort Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
dc.creator.fl_str_mv Mayorga Betancourt, Manuel Alejandro
dc.contributor.advisor.none.fl_str_mv Cadavid Estrada, Juan Guillermo
Narváez Rincón, Paulo César
dc.contributor.author.none.fl_str_mv Mayorga Betancourt, Manuel Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.contributor.orcid.spa.fl_str_mv Mayorga, Manuel A. [0000-0001-6207-8338]
dc.contributor.cvlac.spa.fl_str_mv Mayorga Betancourt, Manuel Alejandro [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229]
dc.contributor.scopus.spa.fl_str_mv Mayorga Betancourt, Manuel Alejandro [57209243312]
dc.contributor.researchgate.spa.fl_str_mv Manuel Alejandro Mayorga Betancourt [https://www.researchgate.net/profile/Manuel-Mayorga-Betancourt-2/stats]
dc.contributor.googlescholar.spa.fl_str_mv Manuel Alejandro Mayorga Betancourt [https://scholar.google.com/citations?user=wyQTSPEAAAAJ&hl=es]
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
540 - Química y ciencias afines::547 - Química orgánica
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
540 - Química y ciencias afines::547 - Química orgánica
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomásica
Vital force
Biomass energy
Diésel renovable
Donante
Desoxigenación catalítica
Generación de hidrógeno in situ
Aceite de palma
Hidrogenación por transferencia catalítica
Reformado en fase acuosa
Green diesel
Donor
Catalytic deoxygenation
On-site hydrogen generation
Palm oil
Catalytic transfer hydrogenation (CTH)
Aqueous phase reforming (APR)
dc.subject.lemb.spa.fl_str_mv Energía biomásica
dc.subject.lemb.eng.fl_str_mv Vital force
Biomass energy
dc.subject.proposal.spa.fl_str_mv Diésel renovable
Donante
Desoxigenación catalítica
Generación de hidrógeno in situ
Aceite de palma
Hidrogenación por transferencia catalítica
Reformado en fase acuosa
dc.subject.proposal.eng.fl_str_mv Green diesel
Donor
Catalytic deoxygenation
On-site hydrogen generation
Palm oil
Catalytic transfer hydrogenation (CTH)
Aqueous phase reforming (APR)
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-01T19:24:45Z
dc.date.available.none.fl_str_mv 2023-09-01T19:24:45Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv DataPaper
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84628
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84628
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500
Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500
Acid, F. (1960). Phys. Org. 1923. 1923–1925
Afonso, M., Pedroza, P., Soter, I., Segtovich, V., Sermoud, V. D. M., & Antunes, M. (2022). Hydrodeoxygenation of stearic acid to produce diesel – like hydrocarbons: kinetic modeling, parameter estimation and simulation. Chemical Engineering Science, 254, 117576. https://doi.org/10.1016/j.ces.2022.117576
Ahmadi, M., Nambo, A., Jasinski, J. B., Ratnasamy, P., & Carreon, M. A. (2014). Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science & Technology, 5(1), 380–388. https://doi.org/10.1039/C4CY00661E
Al-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Al-Hinai, M. a., Baawain, M., Myint, M. T. Z., & Rooney, D. (2016). Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions. Energy Conversion and Management, 127, 226–232. https://doi.org/10.1016/j.enconman.2016.09.004
Al Alwan, B., Salley, S. O., & Ng, K. Y. S. (2015). Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. In Applied Catalysis A: General (Vol. 498, pp. 32–40). Elsevier B.V. https://doi.org/10.1016/j.apcata.2015.03.012
Alvear, M., Aho, A., Simakova, I. L., Grénman, H., Salmi, T., & Murzin, D. Y. (2020). Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 10(15), 5245–5255. https://doi.org/10.1039/d0cy00811g
Anand, M., Farooqui, S. A., Kumar, R., Joshi, R., Kumar, R., Sibi, M. G., Singh, H., & Sinha, A. K. (2016). Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils. Applied Catalysis A: General, 516, 144–152. https://doi.org/10.1016/j.apcata.2016.02.027
Andersson, K., Hell, M., & Lowendahl, L. (1974). Diffusivities of Hydrogen and Glyceryl Trioleate in Cottonseed Oil at Elevated Temperature. Journal of the American Oil Chemists´s Society, 51(April), 171–173.
Arora, P., Lind, E., Olsson, L., & Creaser, D. (2019). Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils. Chemical Engineering Journal, 364(January), 376–389. https://doi.org/10.1016/j.cej.2019.01.134
Arun, N., Sharma, R. V., & Dalai, A. K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074
Aslam, M., Konwar, L. J., Sarma, A. K., & Kothiyal, N. C. (2015). An investigation of catalytic hydrocracking of high FFA vegetable oils to liquid hydrocarbons using biomass derived heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis, 115, 401–409. https://doi.org/10.1016/j.jaap.2015.08.015
Austin, G. T. (1988). Manual de Procesos Químicos en la Industria (McGraw-Hill (ed.); 1a (En Esp).
Bach, A., Maillard, F., Chatenet, M., Soudant, P., & Cremers, C. (2016). Ethanol oxidation reaction ( EOR ) investigation on Pt/C , Rh/C , and Pt-based bi- and tri-metallic electrocatalysts : A DEMS and in situ FTIR study. “Applied Catalysis B, Environmental,” 181, 672–680. https://doi.org/10.1016/j.apcatb.2015.08.041
Baharudin, K. B., Arumugam, M., Hunns, J., Lee, A. F., Mayes, E., & Taufiq-yap, Y. H. (2019). Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science & Technology, 9, 6673–6680. https://doi.org/10.1039/c9cy01710k
Balagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for Thermochemical Conversion of Biomass. In Recent Advances in Thermochemical Conversion of Biomass. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00004-1
Baldiraghi, F., Stanislao, M. Di, Faraci, G., Perego, C., Marker, T., Gosling, C., Kokayeff, P., Kalnes, T., & Marinangeli, R. (2009). Ecofining: New Process for Green Diesel Production from Vegetable Oil. In Sustainable Industrial Chemistry (pp. 427–438). https://doi.org/10.1002/9783527629114.ch8
Benson, T. J., Daggolu, P. R., Hernandez, R. A., Liu, S., & White, M. G. (2013). Catalytic deoxygenation chemistry: Upgrading of liquids derived from biomass processing. In Advances in Catalysis (1st ed., Vol. 56). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420173-6.00003-6
Bernard, E. (2014). Biodiesel : Los aspectos mecánicos en los vehículos (Issue 506). http://www.bioenergywiki.net/images/e/e1/CNPML-Costa-Rica-Biodiesel-Aspectos-Meca?nicos-Vehi?culos.pdf
Bernas, A., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2009). Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 353(2), 166–180. https://doi.org/10.1016/j.apcata.2008.10.059
Bertero, M., & Sedran, U. (2015). Coprocessing of Bio-oil in Fluid Catalytic Cracking. In Recent Advances in Thermochemical Conversion of Biomass (pp. 355–381). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00013-2
Besse, X., Schuurman, Y., & Guilhaume, N. (2016). Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Applied Catalysis A: General, 524, 139–148. https://doi.org/10.1016/j.apcata.2016.06.030
Bezergianni, S., & Dimitriadis, A. (2013). Comparison between different types of renewable diesel. Renewable and Sustainable Energy Reviews, 21, 110–116. https://doi.org/10.1016/j.rser.2012.12.04
Bezergianni, S., Dimitriadis, A., & Chrysikou, L. P. (2014). Quality and sustainability comparison of one- vs. Two-step catalytic hydroprocessing of waste cooking oil. Fuel, 118, 300–307. https://doi.org/10.1016/j.fuel.2013.10.078
Bezergianni, S., Dimitriadis, A., Kalogianni, A., & Knudsen, K. G. (2011). Toward hydrotreating of waste cooking oil for biodiesel production. Effect of pressure, H2/oil ratio, and liquid hourly space velocity. Industrial and Engineering Chemistry Research, 50(7), 3874–3879. https://doi.org/10.1021/ie200251a
Bezergianni, S., Dimitriadis, A., Kikhtyanin, O., & Kubi, D. (2018). Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, 68, 29–64. https://doi.org/10.1016/j.pecs.2018.04.002
Bhaskar, T., & Pandey, A. (2015). Advances in Thermochemical Conversion of Biomass-Introduction. Recent Advances in Thermochemical Conversion of Biomass, 3–30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6
Bie, Y., Lehtonen, J., & Kanervo, J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: Insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General, 526, 183–190. https://doi.org/10.1016/j.apcata.2016.08.030
Biswas, B., Kumar, J., & Bhaskar, T. (2019). Advanced hydrothermal liquefaction of biomass for bio-oil production. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (2nd ed., pp. 245–266). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816856-1.00010-5
Bockey, D. (2019). The significance and perspective of biodiesel production –A European and global view. OCL Journal, 26(40)
Boda, L., Onyestyák, G., Solt, H., Lónyi, F., Valyon, J., & Thernesz, A. (2010). Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Applied Catalysis A: General, 374(1–2), 158–169. https://doi.org/10.1016/j.apcata.2009.12.005
Boffito, D. C., Galli, F., Pirola, C., & Patience, G. S. (2017). CaO and isopropanol transesterify and crack triglycerides to isopropyl esters and green diesel. Energy Conversion and Management, 139, 71–78. https://doi.org/10.1016/j.enconman.2017.02.008
Bond, G. C. (1987). Heterogeneous Catalysis: Principles and Aplications (Oxford University Press (ed.); Second Edi)
Brieger, G., & Nestrick, T. J. (1974). Brieger, G., & Nestrick, T. J. (1974). Catalytic transfer hydrogenation. Chemical Reviews, 74, 567–580. http://doi.org/10.1021/cr60291a003. Chemical Reviews, 74, 567–580. https://doi.org/10.1021/cr60291a003
Brown, B., & Radich, T. (2015). Renewable diesel production, planned projects on the rise. Biomass Magazine.
Browning, B., Afanasiev, P., Pitault, I., Couenne, F., & Tayakout-Fayolle, M. (2016). Detailed kinetic modelling of vacuum gas oil hydrocracking using bifunctional catalyst: A distribution approach. Chemical Engineering Journal, 284, 270–284. https://doi.org/10.1016/j.cej.2015.08.126
Bu, Q., Lei, H., Zacher, A. H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., & Ruan, R. (2012). A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource Technology, 124, 470–477. https://doi.org/10.1016/j.biortech.2012.08.089
Bui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angewandte Chemie - International Edition, 52(31), 8022–8025. https://doi.org/10.1002/anie.201302575
CABA. (2019). A Roadmap for Eliminating Petroleum Diesel in California by 2030 (Issue January). caadvancedbiofuelsalliance.org
Calero, J., Luna, D., Sancho, E. D., Luna, C., Bautista, F. M., Romero, A. A., Posadillo, A., Berbel, J., & Verdugo-escamilla, C. (2015). An overview on glycerol-free processes for the production of renewable liquid biofuels , applicable in diesel engines. Renewable and Sustainable Energy Reviews, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007
Cao, W., Luo, W., Ge, H., Su, Y., Wang, A., & Zhanga, T. (2017). UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 19, 2201–2211. https://doi.org/10.1039/C7GC00512A
Cao, X., Long, F., Zhai, Q., Liu, P., & Xu, J. (2020). Enhancement of fatty acids hydrodeoxygenation selectivity to diesel- range alkanes over the supported Ni-MoO x catalyst and elucidation of the active phase. Renewable Energy, 162, 2113–2125. https://doi.org/10.1016/j.renene.2020.10.052
Castillo, E. (2015). Advanced Biofuels from Palm Oil. 18Th International Oil Palm Conference.
Ce, L., Ni, O., & Lee, C. (2012). Hydrogen production from oxidative steam reforming of ethanol on pyrochlore-type metal oxide ,. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 9–11.
Chang, X., Liu, A. F., Cai, B., Luo, J. Y., Pan, H., & Huang, Y. B. (2016). Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 9(23), 3330–3337. https://doi.org/10.1002/cssc.201601122
Cheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., Bridgwater, A. V., & Kyriakou, G. (2020). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, 355(November 2018), 882–892. https://doi.org/10.1016/j.cattod.2019.03.017
Cheah, K. W., Yusup, S., Kyriakou, G., Ameen, M., Taylor, M. J., Nowakowski, D. J., Bridgwater, A. V., & Uemura, Y. (2019). In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. International Journal of Hydrogen Energy, 44(37), 20678–20689. https://doi.org/10.1016/j.ijhydene.2018.05.112
Cheah, K. W., Yusup, S., Taylor, M. J., How, B. S., Osatiashtiani, A., Nowakowski, D. J., Bridgwater, A. V., Skoulou, V., Kyriakou, G., & Uemura, Y. (2020). Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40catalyst: An investigation of the surface reaction mechanism and rate limiting step. Reaction Chemistry and Engineering, 5(9), 1682–1693. https://doi.org/10.1039/d0re00214c
Chen, H., Chen, K., Fu, J., Lu, X., Huang, H., & Ouyang, P. (2017). Water-mediated promotion of the catalytic conversion of oleic acid to produce an alternative fuel using Pt/C without a H 2 source. Catalysis Communications, 98(April), 26–29. https://doi.org/10.1016/j.catcom.2017.04.044
Chen, H., Wang, Q., Zhang, X., & Wang, L. (2015). Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides. Fuel, 159, 430–435. https://doi.org/10.1016/j.fuel.2015.07.010
Chen, L., Zhu, Y., Zheng, H., Zhang, C., & Li, Y. (2012). Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts. Applied Catalysis A: General, 411–412, 95–104. https://doi.org/10.1016/j.apcata.2011.10.026
Chen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., & Li, Y. (2011). Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A: Chemical, 351, 217–227. https://doi.org/10.1016/j.molcata.2011.10.015
Chen, N., Gong, S., & Qian, E. W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Applied Catalysis B: Environmental, 174–175, 253–263. https://doi.org/10.1016/j.apcatb.2015.03.011
Chen, R., & Wang, W. (2019). The production of renewable aviation fuel from waste cooking oil . Part I : Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 135, 819–835. https://doi.org/10.1016/j.renene.2018.12.048
Chen, S., Zhou, G., & Miao, C. (2019). Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, 101(December 2018), 568–589. https://doi.org/10.1016/j.rser.2018.11.027
Chen, X., Wang, X., Yao, S., & Mu, X. (2013). Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catalysis Communications, 39(3), 86–89. https://doi.org/10.1016/j.catcom.2013.05.012
Cheng, S., Wei, L., Radhi, M., Corbin, F., Julson, J., Boakye, E., & Raynie, D. (2018). In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. Journal of the Energy Institute, 91(2), 163–171. https://doi.org/10.1016/j.joei.2017.01.004
Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals Angewandte. 7164–7183. https://doi.org/10.1002/anie.200604274
Chia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. ChemComm, 47, 12233–12235. https://doi.org/10.1039/c1cc14748j
Chiappero, M., Thi, P., Do, M., Crossley, S., Lobban, L. L., & Resasco, D. E. (2011). Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 90(3), 1155–1165. https://doi.org/10.1016/j.fuel.2010.10.025
Chiu, Y. T., Wang, H., Lee, J., & Lin, K. Y. A. (2019). Reductive and adsorptive elimination of bromate from water using Ru/C, Pt/C and Pd/C in the absence of H2 : A comparative study. Process Safety and Environmental Protection, 127, 36–44. https://doi.org/10.1016/j.psep.2019.04.030
Choi, I. H., Hwang, K. R., Choi, H. Y., & Lee, J. S. (2018). Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: in situ supply of hydrogen by aqueous-phase reforming (APR) of glycerol. Research on Chemical Intermediates, 1–10. https://doi.org/10.1007/s11164-018-3376-2
Choudhary, T. V., & Phillips, C. B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1–2), 1–12. https://doi.org/10.1016/j.apcata.2011.02.025
Coronado, I., Stekrova, M., Reinikainen, M., Simell, P., Lefferts, L., & Lehtonen, J. (2016). A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 41(26), 11003–11032. https://doi.org/10.1016/j.ijhydene.2016.05.032
Cortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964–967. https://doi.org/10.1038/nature01009
Czernik, S., French, R., Feik, C., & Chornet, E. (2002). Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial and Engineering Chemistry Research, 41(17), 4209–4215. https://doi.org/10.1021/ie020107q
da Mota, S. A. P., Mancio, A. A., Lhamas, D. E. L., de Abreu, D. H., da Silva, M. S., dos Santos, W. G., de Castro, D. A. R., de Oliveira, R. M., Araújo, M. E., Borges, L. E. P., & Machado, N. T. (2014). Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis, 110(1), 1–11. https://doi.org/10.1016/j.jaap.2014.06.011
da Silva, V. T., & Sousa, L. A. (2013). Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6
Dabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J.-D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis , catalytic hydrodeoxygenation , and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/j.pecs.2018.05.002
Darpo Bioenergy. (2016). Diamond Green Diesel. https://www.darpro-bioenergy.com/solutions/diamond-green-diesel/
Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2 SPEC. ISS.), 171–186. https://doi.org/10.1016/j.apcatb.2004.04.027
De Oliveira, F. C., & Coelho, S. T. (2016). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, October, 0–1. https://doi.org/10.1016/j.rser.2016.10.060
De, S., Dutta, S., & Saha, B. (2012). One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 5(9), 1826–1833. https://doi.org/10.1002/cssc.201200031
De, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065
Delly, I., Vlasona, E. N., Nuzhdin, A. L., & Bukhtuyarova, G. A. (2011). The comparison of sulfide CoMo / γ -Al2O3 and NiMo / γ -Al2O3 catalysts in methyl palmitate and methyl heptanoate hydrodeoxygenation. Proceedings of the 2nd European Conference of Control, and Proceedings of the 2nd European Conference on Mechanical Engineering, February 2016, 24–29
Deng, L., Li, J., Lai, D. M., Fu, Y., & Guo, Q. X. (2009). Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply. Angewandte Chemie - International Edition, 48(35), 6529–6532. https://doi.org/10.1002/anie.200902281
Deng, L., Zhao, Y., Li, J., Fu, Y., Liao, B., & Guo, Q. X. (2010). Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10), 1172–1175. https://doi.org/10.1002/cssc.201000163
Departament of Commerce, E. (2016). United States Patent and Trademark Office. USPTO Patent Full-Text and Image Database. http://patft.uspto.gov/netahtml/PTO/search-bool.htm
Di, G., Nolfi, V., & Gallucci, K. (2021). Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.
Dickinson, J. G., Poberezny, J. T., & Savage, P. E. (2012). Deoxygenation of benzofuran in supercritical water over a platinum catalyst. Applied Catalysis B: Environmental, 123–124, 357–366. https://doi.org/10.1016/j.apcatb.2012.05.005
Ding, S., Li, Z., Li, F., Wang, Z., Li, J., Zhao, T., Lin, H., & Chen, C. (2018). Catalytic hydrogenation of stearic acid over reduced NiMo catalysts : Structure – activity relationship and e ff ect of the hydrogen-donor. Applied Catalysis A, General, 566(August), 146–154. https://doi.org/10.1016/j.apcata.2018.08.028
DNP. (2017). Energy Demand Situation in Colombia.
DNP. (2022). Política de Transición Energética - CONPES 4075. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf
Do, P. T., Chiappero, M., Lobban, L. L., & Resasco, D. E. (2009). Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catalysis Letters, 130(1–2), 9–18. https://doi.org/10.1007/s10562-009-9900-7
Domínguez-Barroso, M. V., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2016). Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt-Ni/Al2O3 and Pd/C combined catalysts. Fuel Processing Technology, 148, 110–116. https://doi.org/10.1016/j.fuproc.2016.02.032
Donnis, B., Egeberg, R. G., Blom, P., & Knudsen, K. G. (2009). Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics in Catalysis, 52(3), 229–240. https://doi.org/10.1007/s11244-008-9159-z
Dragu, A., Kinayyigit, S., García-suárez, E. J., Florea, M., Stepan, E., & Velea, S. (2015). Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. “Applied Catalysis A, General,” 504, 81–91. https://doi.org/10.1016/j.apcata.2015.01.008
Dry, M. E. (2002). The Fischer - Tropsch process: 1950-2000. Catalysis Today, 71(3–4), 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9
Du, J., Zhang, J., Sun, Y., Jia, W., Si, Z., Gao, H., Tang, X., Zeng, X., Lei, T., Liu, S., & Lin, L. (2018). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 368, 69–78. https://doi.org/10.1016/j.jcat.2018.09.025
Du, X. L., He, L., Zhao, S., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2011). Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angewandte Chemie - International Edition, 50(34), 7815–7819. https://doi.org/10.1002/anie.201100102
Duan, J., Han, J., Sun, H., Chen, P., Lou, H., & Zheng, X. (2012). Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 17, 76–80. https://doi.org/10.1016/j.catcom.2011.10.009
Duan, P., Bai, X., Xu, Y., Zhang, A., Wang, F., Zhang, L., & Miao, J. (2013). Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel, 109, 225–233. https://doi.org/10.1016/j.fuel.2012.12.074
Duan, P., Xu, Y., & Bai, X. (2013). Upgrading of crude duckweed bio-oil in subcritical water. Energy and Fuels, 27(8), 4729–4738. https://doi.org/10.1021/ef4009168
Durán-Martín, D., Ojeda, M., Granados, M. L., Fierro, J. L. G., & Mariscal, R. (2013). Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catalysis Today, 210(3), 98–105. https://doi.org/10.1016/j.cattod.2012.11.013
ECOPETROL. (2011). Biocombustibles: Una Apuesta Estratégica de Ecopetrol S.A
ECOPETROL. (2012). Diesel Renovable: Una Nueva Opción en Biocombustibles. Entorno Verde. Departamento de Biocombustibles. Vol. 3.
Edeh, I., Overton, T., & Bowra, S. (2019). Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst over platinum on carbon catalyst. Biofuels, 0(0), 1–8. https://doi.org/10.1080/17597269.2018.1560554
Edeh, I., Overton, T., & Bowra, S. (2021a). Catalytic hydrothermal deoxygenation of fatty acids over palladium on activated carbon catalyst (Pd/C) for renewable diesel production. Biofuels, 12(9), 1075–1082. https://doi.org/10.1080/17597269.2019.1580971
Edeh, I., Overton, T., & Bowra, S. (2021b). Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge. Biofuels, 12(8), 925–929. https://doi.org/10.1080/17597269.2018.1558842
EEA. (2022). Transport and Environment Report 2021 (Issue 02). https://www.eea.europa.eu/publications/transport-and-environment-report-2021
EIA. (2022). U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity (Vol. 2). https://www.eia.gov/biofuels/renewable/capacity/
ElAmin, B., Anantharamaiah, G. M., Royer, G. P., & Means, G. E. (1979). Removal of benzyl-type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 44(19), 3442–3444. https://doi.org/10.1021/jo01333a048
Elliott, D. C., & Hart, T. R. (2009). Catalytic hydroprocessing of chemical models for bio-oil. Energy and Fuels, 23(2), 631–637. https://doi.org/10.1021/ef8007773
En, J., Rahman, A., Ng, A., Lup, K., & Kee, M. (2022). Palm fatty acid distillate derived biofuels via deoxygenation : Properties , catalysts and processes. Fuel Processing Technology, 236(March), 1–15. https://doi.org/10.1016/j.fuproc.2022.107394
eni. (2014). Green Refinery: reinventing petroleum refineries.
Environmental Protection Agency. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. In Program. https://doi.org/EPA-420-R-10-006., February 2010
EPA, E. P. A. (United S. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis.
ExxonMobil. (2021). Improving renewable diesel yield with BIDW TM dewaxing catalyst.
FAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. In Mundi-Prensa Madrid.
FAO, O. de las N. U. para la A. y la A. (2013). El desarrollo de los biocombustibles no debe comprometer la seguridad alimentaria.
Feng, J., Yang, Z., Hse, C. yun, Su, Q., Wang, K., Jiang, J., & Xu, J. (2017). In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy, 105, 140–148. https://doi.org/10.1016/j.renene.2016.12.054
Fossil Free Fuels F3. (2016). HEFA/HVO, Hydroprocessed Esters and Fatty Acids CnH2n+2. http://www.f3centre.se/fact-sheet/HVO
Fraga, G., Batalha, N., Kumar, A., Bhaskar, T., Konarova, M., & Perkins, G. (2022). Advances in liquefaction for the production of hydrocarbon biofuels. In Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels (pp. 127–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00009-1
French, R. J., Stunkel, J., & Baldwin, R. M. (2011). Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy and Fuels, 25(7), 3266–3274. https://doi.org/10.1021/ef200462v
Fu, J., Lu, X., & Savage, P. E. (2010). Catalytic Hydrothermal Deoxygenation of Palmitic Acid. Energy & Environmental Science, The Royal of Chemistry, 3, 311–317. https://doi.org/10.1039/c003390c
Fu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem, 4(4), 481–486. https://doi.org/10.1002/cssc.201000370
Fu, J., Shi, F., Thompson, L. T., Lu, X., & Savage, P. E. (2011). Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. 227–231.
Fu, J., Yang, C., Wu, J., Zhuang, J., Hou, Z., & Lu, X. (2015). Direct production of aviation fuels from microalgae lipids in water. Fuel, 139, 678–683. https://doi.org/10.1016/j.fuel.2014.09.025
Furimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4
Furimsky, E. (2013a). Hydroprocessing challenges in biofuels production. Catalysis Today, 217, 13–56. https://doi.org/10.1016/j.cattod.2012.11.008
Furimsky, E. (2013b). Hydroprocessing in aqueous phase. Industrial and Engineering Chemistry Research, 52(50), 17695–17713. https://doi.org/10.1021/ie4034768
Gandarias, I., Arias, P. L., Fernández, S. G., Requies, J., El Doukkali, M., & Güemez, M. B. (2012). Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 195(1), 22–31. https://doi.org/10.1016/j.cattod.2012.03.067
Gandarias, I., Arias, P. L., Requies, J., El Doukkali, M., & Güemez, M. B. (2011). Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 282(1), 237–247. https://doi.org/10.1016/j.jcat.2011.06.020
Gandarias, I., Fernández, S. G., El Doukkali, M., Requies, J., & Arias, P. L. (2013). Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 56(11), 995–1007. https://doi.org/10.1007/s11244-013-0063-9
Gandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al 2O 3 catalysts. Journal of Catalysis, 290, 79–89. https://doi.org/10.1016/j.jcat.2012.03.004
Gandía, L. M., Arzamendi, G., & Diéguez, P. M. (2013). Renewable Hydrogen Energy. In Renewable Hydrogen Technologies (pp. 1–17). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00001-5
Gao, Y., Zhang, H., Han, A., Wang, J., Tan, H. R., Tok, E. S., Jaenicke, S., & Chuah, G. K. (2018). Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 3(5), 1343–1351. https://doi.org/10.1002/slct.201702152
Gao, Z., Yang, L., Fan, G., & Li, F. (2016). Promotional Role of Surface Defects on Carbon-Supported Ruthenium-Based Catalysts in the Transfer Hydrogenation of Furfural. ChemCatChem, 8(24), 3769–3779. https://doi.org/10.1002/cctc.201601070
García, J. R. (2016). VIAS CATALÍTICAS PARA MAXIMIZAR LA PRODUCCIÓN Y MEJORAR LA CALIDAD DEL CORTE LCO ( DIESEL ) EN EL CRAQUEO CATALÍTICO DE HIDROCARBUROS (FCC). Universidad Nacional del Litoral.
Gazsi, A., Bánsági, T., & Solymos, F. (2011). Decomposition and Reforming of Formic Acid on Supported Au Catalysts : Production of CO-Free H 2. The Journal of Physical Chemistry, 115, 15459–15466.
Gilkey, M. J., Panagiotopoulou, P., Mironenko, A. V, Jenness, G. R., Vlachos, D. G., & Xu, B. (2015). Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2 ‑ Methylfuran. ACS Catalysis, 5, 3988−3994. https://doi.org/10.1021/acscatal.5b00586
Goddard, J. D., Yamaguchi, Y., & Schaefer, H. F. (1992). The decarboxylation and dehydration reactions of monomeric formic acid. The Journal of Chemical Physics, 96(2), 1158. https://doi.org/10.1063/1.462203
Gong, L.-H., Cai, Y.-Y., Li, X.-H., Zhang, Y.-N., Su, J., & Chen, J.-S. (2014). Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 16(8), 3746–3751. https://doi.org/10.1039/C4GC00981A
Gong, S., Shinozaki, A., & Qian, E. Q. (2012). Effect of Support on Performance of NiMo Catalyst in Hydrotreating of Jatropha Oil. Industrial & Engineering Chemistry Research, American Chemical Society, 1–26.
Gong, W., Chen, C., Zhang, Y., Zhou, H., Wang, H., Zhang, H., Zhang, Y., Wang, G., & Zhao, H. (2017). Efficient Synthesis of Furfuryl Alcohol from H2-Hydrogenation/Transfer Hydrogenation of Furfural Using Sulfonate Group Modified Cu Catalyst. In ACS Sustainable Chemistry and Engineering (Vol. 5, Issue 3). https://doi.org/10.1021/acssuschemeng.6b02343
Gosselink, R. W., Hollak, S. A. W., Chang, S. W., Van Haveren, J., De Jong, K. P., Bitter, J. H., & Van Es, D. S. (2013). Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem, 6(9), 1576–1594. https://doi.org/10.1002/cssc.201300370
Green Car Congress. (2013). ConocoPhillips begins production of renewable diesel fuel at whitegate refinery at Whitegate refinery, Ireland.
Gundupalli, M. P., Gundupalli, S. P., Somavarapu Thomas, A. S., Jayakumar, M., Bhattacharyya, D., & Gurunathan, B. (2022). Hydrothermal liquefaction of lignocellulosic biomass for production of biooil and by-products: current state of the art and challenges. In Biofuels and Bioenergy (pp. 61–84). Elsevier Inc. https://doi.org/10.1016/b978-0-323-85269-2.00001-0
Han, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2011). Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chemistry, 13(9), 2561. https://doi.org/10.1039/c1gc15421d
Han, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2012). Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. ChemSusChem, 5(4), 727–733. https://doi.org/10.1002/cssc.201100476
Hansen, T. S., Barta, K., Anastas, P. T., Ford, P. C., & Riisager, A. (2012). One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chemistry, 14(9), 2457–2461. https://doi.org/10.1039/c2gc35667h
Harmsen, J., & Powell, J. B. (2010). Sustanaible Development in the Process Industries. Cases and Impact (Wiley-AIChe (ed.)).
Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74(October 2014), 938–948. https://doi.org/10.1016/j.rser.2017.03.045
He, C., Li, J., Zhang, X., Yin, L., Chen, J., & Gao, S. (2012). Highly active Pd-based catalysts with hierarchical pore structure for toluene oxidation : Catalyst property and reaction determining factor. Chemical Engineering Journal, 180, 46–56. https://doi.org/10.1016/j.cej.2011.10.099
He, J., Zhao, C., & Lercher, J. A. (2012). Ni-catalyzed cleavage of aryl ethers in the aqueous phase. Journal of the American Chemical Society, 134(51), 20768–20775. https://doi.org/10.1021/ja309915e
He, L., Yang, J., & Chen, D. (2013). Hydrogen from Biomass: Advances in Thermochemical Processes. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 111–133. https://doi.org/10.1016/B978-0-444-56352-1.00006-4
He, S., Barati, B., Hu, X., & Wang, S. (2023). Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Processing Technology, 240(September 2022), 107563. https://doi.org/10.1016/j.fuproc.2022.107563
He, Z., & Wang, X. (2012). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, Versita, 1, 28–52. https://doi.org/10.2478/cse-2012-0004
Hengsawad, T., Jindarat, T., Resasco, D. E., & Jongpatiwut, S. (2018). Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol – gel process for deoxygenation of triglycerides. Applied Catalysis A, General, 566(May), 74–86. https://doi.org/10.1016/j.apcata.2018.08.007
Hengst, K., Arend, M., Pfützenreuter, R., & Hoelderich, W. F. (2015). Deoxygenation and cracking of free fatty acids over acidic catalysts by single step conversion for the production of diesel fuel and fuel blends. Applied Catalysis B: Environmental, 174–175, 383–394. https://doi.org/10.1016/j.apcatb.2015.03.009
Hermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223–1233. https://doi.org/10.1016/j.rser.2014.10.099
Herskowitz, M., Landau, M. V, Reizner, Y., & Berger, D. (2013). A commercially-viable , one-step process for production of green diesel from soybean oil on Pt / SAPO-11. Fuel, 111, 157–164. https://doi.org/10.1016/j.fuel.2013.04.044
Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
Hollak, S. A. W., Ariëns, M. A., De Jong, K. P., & Van Es, D. S. (2014). Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 7(4), 1057–1062. https://doi.org/10.1002/cssc.201301145
Honeywell UOP. (2016). Honeywell Green DieselTM. https://www.uop.com/processing-solutions/renewables/green-diesel/#biodiesel
Hong, D. Y., Miller, S. J., Agrawal, P. K., & Jones, C. W. (2010). Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 46(7), 1038–1040. https://doi.org/10.1039/b918209h
Hongloi, N., Prapainainar, P., & Prapainainar, C. (2022). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523(September 2020), 111696. https://doi.org/10.1016/j.mcat.2021.111696
Hossain, M. Z., Chowdhury, M. B. I., Jhawar, A. K., Xu, W. Z., & Charpentier, P. A. (2018). Continuous low pressure decarboxylation of fatty acids to fuel-range hydrocarbons with in situ hydrogen production. Fuel, 212(June 2017), 470–478. https://doi.org/10.1016/j.fuel.2017.09.092
Hossain, M. Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., & Charpentier, P. A. (2018). Hydrothermal Decarboxylation of Corn Distillers Oil for Fuel-Grade Hydrocarbons. Energy Technology, 6(7), 1261–1274. https://doi.org/10.1002/ente.201700957
Hossain, Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., Wu, W., Hiscott, D., & Charpentier, P. A. (2017). Using subcritical water for decarboxylation of oleic acid into fuel range hydrocarbons. Energy & Fuels, 31(4), 4013–4023. https://doi.org/10.1021/acs.energyfuels.6b03418
Hu, C., Pulleri, J. K., Ting, S. W., & Chan, K. Y. (2014). Activity of Pd/C for hydrogen generation in aqueous formic acid solution. International Journal of Hydrogen Energy, 39(1), 381–390. https://doi.org/10.1016/j.ijhydene.2013.10.067
Hu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2012). Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals. International Journal of Hydrogen Energy, 37(21), 15956–15965. https://doi.org/10.1016/j.ijhydene.2012.08.035
Hu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2013). Insights into hydrogen generation from formic acid on PtRuBiOxin aqueous solution at room temperature. International Journal of Hydrogen Energy, 38(21), 8720–8731. https://doi.org/10.1016/j.ijhydene.2013.04.151
Hu, Z., Tan, S., Mi, R., Li, X., Bai, J., Guo, X., Hu, G., Hang, P., Li, J., Li, D., Yang, Y., & Yan, X. (2018). Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect, 3(10), 2850–2853. https://doi.org/10.1002/slct.201702863
Huang, H., & Yuan, X. (2015). Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science, 49, 59–80. https://doi.org/10.1016/j.pecs.2015.01.003
Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences : Ten years of applications and trends. Science of the Total Environment, The, 409(19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
Huang, Y., Xu, J., Ma, X., Huang, Y., Li, Q., & Qiu, H. (2017). An effective low Pd-loading catalyst for hydrogen generation from formic acid. International Journal of Hydrogen Energy, 4–11. https://doi.org/10.1016/j.ijhydene.2017.04.138
Huber, G. W., Shabaker, J. W., & Dumesic, J. A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628), 2075–2077. https://doi.org/10.1126/science.1085597
Hwang, K., Choi, I., Choi, H., Han, J., Lee, K., & Lee, J. (2016). Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source. FUEL, 174, 107–113. https://doi.org/10.1016/j.fuel.2016.01.080
IATA. (2018). Developing Sustainable Aviation Fuel (SAF). https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/#tab-2
IDEAM, Fundación Natura, PNUD, MADS, DNP, C. (2021). Tercer Informe Bienal de Actualización de Cambio Climático de Colombia (CMNUCC).
IDEAM, I. de H. M. y E. A. (2012). Inventario Nacional de Emisiones de Gases de Efecto Invernadero.
Idesh, S., Kudo, S., Norinaga, K., & Hayashi, J. I. (2013). Catalytic hydrothermal reforming of jatropha oil in subcritical water for the production of green fuels: Characteristics of reactions over Pt and Ni catalysts. Energy and Fuels, 27(8), 4796–4803. https://doi.org/10.1021/ef4011065
IEA. (2021a). Global Hydrogen Review 2021. In Global Hydrogen Review 2021. https://doi.org/10.1787/39351842-en
IEA. (2021b). Renewables 2021. In Publications International. www.iea.org/t&c/%0Ahttps://webstore.iea.org/download/direct/4329
IEA. (2021c). Renewables 2021.
IEA. (2021d). Renewables 2021 Data Explorer. https://www.iea.org/data-and-statistics/data-tools/renewables-2021-data-explorer
IEA. (2022). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser
Immer, J. G., Kelly, M. J., & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1), 134–139. https://doi.org/10.1016/j.apcata.2009.12.028
Induplama. (2012). CATALOGO DE PRODUCTOS: ACEITE DE PALMA. In Aceite de palma (pp. 1–3). http://www.indupalma.com/aceite-de-palma
IRC, & NAS. (2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (E. W. Washburn (ed.); First Elec). Knovel.
Iriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49(1–2), 46–58. https://doi.org/10.1007/s11244-008-9060-9
Iriondo, A., Cambra, J. F., Barrio, V. L., Guemez, M. B., Arias, P. L., Sanchez-Sanchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2011). Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 106(1–2), 83–93. https://doi.org/10.1016/j.apcatb.2011.05.009
IRP-ONU. (2018). Eficiencia de los Recursos para el Desarrollo Sostenible: Mensajes Clave para el Grupo de los 20.
Isa, K. M., Abdullah, T. A. T., & Ali, U. F. M. (2018). Hydrogen donor solvents in liquefaction of biomass: A review. Renewable and Sustainable Energy Reviews, 81(October 2016), 1259–1268. https://doi.org/10.1016/j.rser.2017.04.006
Ivanova, E., Mihaylov, M., Thibault-Starzyk, F., Daturi, M., & Hadjiivanov, K. (2007). FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. Journal of Molecular Catalysis A: Chemical, 274(1–2), 179–184. https://doi.org/10.1016/j.molcata.2007.05.006
Jacobson, K., Maheria, K. C., & Kumar Dalai, A. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91–106. https://doi.org/10.1016/j.rser.2013.02.036
Jae, J., Zheng, W., Lobo, R. F., & Vlachos, D. G. (2013). Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem, 6(7), 1158–1162. https://doi.org/10.1002/cssc.201300288
Jagadeesh, R. V., Natte, K., Junge, H., & Beller, M. (2015). Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catalysis, 5(3), 1526–1529. https://doi.org/10.1021/cs501916p
Jaimes, L. (2008). Desulfurization of FCC Gasoline : Novel Catalytic Processes with Zeolites Desulfurization of FCC. International Journal of Chemical Reactor Enginnering, 6, 1–69.
Janampelli, S., & Darbha, S. (2017). Promotional Effect of WO x in Pt-WO x /AlPO 4 -5 Catalyzed Deoxygenation of Fatty Acids. ChemistrySelect, 2(5), 1895–1901. https://doi.org/10.1002/slct.201700159
Jȩczmionek, Ł., & Porzycka-Semczuk, K. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal effects - Theoretical considerations. Fuel, 131, 1–5. https://doi.org/10.1016/j.fuel.2014.04.055
Jeon, H. jin, & Chung, Y. M. (2017). Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Applied Catalysis B: Environmental, 210, 212–222. https://doi.org/10.1016/j.apcatb.2017.03.070
Jiang, K., Xu, K., Zou, S., & Cai, W. (2014). B ‑ Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid − Formate Solutions. J. Am. Chem. Soc., 136(13), 4861–4864. https://doi.org/10.1021/ja5008917
Jin, F., Yun, J., Li, G., Kishita, A., Tohji, K., & Enomoto, H. (2008). Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6), 612–615. https://doi.org/10.1039/b802076k
Jin, M., & Choi, M. (2019). Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Molecular Catalysis, 474(March), 110419. https://doi.org/10.1016/j.mcat.2019.110419
Jin, X. (2014). Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Kinetics
Joshi, N., & Lawal, A. (2012). Hydrodeoxygenation of pyrolysis oil in a microreactor. Chemical Engineering Science, 74, 1–8. https://doi.org/10.1016/j.ces.2012.01.052
Jr, R. J. M., Aughenbaugh, J. M., & Paredis, C. J. J. (2009). Multi-attribute utility analysis in set-based conceptual design. Computer-Aided Design, 41(3), 214–227. https://doi.org/10.1016/j.cad.2008.06.004
Jyoti, L., & Mikkola, J. (2022). Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/ deoxygenation of triglycerides. Applied Catalysis A, General, 638(January), 118611. https://doi.org/10.1016/j.apcata.2022.118611
Kaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy and Fuels, 29(2), 833–840. https://doi.org/10.1021/ef5023362
Kalnes, T. N., Marker, T., Shonnard, D. R., & Koers, K. P. (2008). Green diesel production by hydrorefining renewable feedstocks. Biofiuels Technology, 7–11. www.biofuels-tech.com
Kandel, K., Anderegg, J. W., Nelson, N. C., Chaudhary, U., & Slowing, I. I. (2014). Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. Journal of Catalysis, 314, 142–148. https://doi.org/10.1016/j.jcat.2014.04.009
Kanie, Y., Akiyama, K., & Iwamoto, M. (2011). Reaction pathways of glucose and fructose on Pt nanoparticles in subcritical water under a hydrogen atmosphere. Catalysis Today, 178(1), 58–63. https://doi.org/10.1016/j.cattod.2011.07.031
Kato, Y., & Sekine, Y. (2013). One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catalysis Letters, 143(5), 418–423. https://doi.org/10.1007/s10562-013-0992-8
Kay Lup, A. N., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 541(May), 87–106. https://doi.org/10.1016/j.apcata.2017.05.002
Kemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529
Kemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529
Ki, S., Brand, S., Lee, H., Kim, Y., & Kim, J. (2013). Production of renewable diesel by hydrotreatment of soybean oil : Effect of reaction parameters. Chemical Engineering Journal, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095
Ki, S., Young, J., Lee, H., Yum, T., Kim, Y., & Kim, J. (2014). Production of renewable diesel via catalytic deoxygenation of natural triglycerides : Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 116, 199–205. https://doi.org/10.1016/j.apenergy.2013.11.062
Kim, D., Vardon, D. R., Murali, D., Sharma, B. K., & Strathmann, T. J. (2016). Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 4(3), 1775–1784. https://doi.org/10.1021/acssuschemeng.5b01768
Kim, M. S., Simanjuntak, F. S. H., Lim, S., Jae, J., Ha, J. M., & Lee, H. (2017). Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 52, 59–65. https://doi.org/10.1016/j.jiec.2017.03.024
King, D. L., Zhang, L., Xia, G., Karim, A. M., Heldebrant, D. J., Wang, X., Peterson, T., & Wang, Y. (2010). Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Applied Catalysis B: Environmental, 99(1–2), 206–213. https://doi.org/10.1016/j.apcatb.2010.06.021
Kleinert, M., Gasson, J. R., & Barth, T. (2009). Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. Journal of Analytical and Applied Pyrolysis, 85(1–2), 108–117. https://doi.org/10.1016/j.jaap.2008.09.019
Kondarides, D. I., & Verykios, X. E. (2013). Photocatalytic Production of Renewable Hydrogen. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals (pp. 397–443). Elsevier. https://doi.org/10.1016/B978-0-444-56330-9.00012-7
Konwar, L. J., Oliani, B., Samikannu, A., Canu, P., & Mikkola, J. (2020). Efficient hydrothermal deoxygenation of tall oil fatty acids into n-paraffinic hydrocarbons and alcohols in the presence of aqueous formic acid. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01103-3
Kotrba, R. (2015). A Transformative Project: Total’s La Mède Conversion. Biodiesel Magazine.
Kouzu, M., Kojima, M., Mori, K., & Yamanaka, S. (2021). Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 217(January), 106831. https://doi.org/10.1016/j.fuproc.2021.106831
Kubacka, A. (2016). Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu , Ni and Co catalysts. “Applied Catalysis A, General,” 518, 2–17. https://doi.org/10.1016/j.apcata.2016.01.027
Kubička, D., Bejblová, M., & Vlk, J. (2010). Conversion of Vegetable Oils into Hydrocarbons over CoMo/MCM-41 Catalysts. Topics in Catalysis, 53(3–4), 168–178. https://doi.org/10.1007/s11244-009-9421-z
Kubicka, D., Horacek, J., Setnicka, M., Bulanek, R., Zukal, A., & Kubicková, I. (2014). Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 145, 101–107. https://doi.org/10.1016/j.apcatb.2013.01.012
Kubicka, D., Simácek, P., & Zilkova, N. (2009). Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Topics in Catalysis, 52(1–2), 161–168. https://doi.org/10.1007/s11244-008-9145-5
Kubičková, I., & Kubička, D. (2010). Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review. Waste and Biomass Valorization, 1(3), 293–308. https://doi.org/10.1007/s12649-010-9032-8
Kumar, P., Verma, D., Sibi, M. G., Butolia, P., & Maity, S. K. (2022). Hydrodeoxygenation of triglycerides for the production of green diesel : Role of heterogeneous catalysis. In Hydrocarbon Biorefinery (pp. 97–126). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00013-3
Kunze, R., Deane, P., Haasz, T., Jonatan, J. G., Fraboulet, D., Fahl, U., & Mulholland, E. (2020). Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Reviews, 20(2018), 124–132. https://doi.org/10.1016/j.esr.2017.12.007
Laboratorium, K. O., & Section, E. D. (1973). Ni AND Co-II IODATES OF CRYSTAL STRUCTURES and the optical properties of nickel and cobalt iodate hydrates . The nickel di- hydrate is known to be a weak ferromagnet with N6el temperature TN = 3 . 08 K [ 2 ]. In an attempt to determine its magnetic struct. 35(1972), 3183–3189.
Lam, M. K., & Lee, K. T. (2011). Chapter 15 - Production of Biodiesel Using Palm Oil. In Biofuels (pp. 353–374). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-385099-7.00016-4
Lane, J. (2016). Renewable jet fuel, competitive cost, at scale: The Digest’s Multi-Slide Guide to AltAir. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2016/05/19/63308/
Laurent, E., & Delmon, B. (1994). Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/[gamma]-Al2O3 and NiMo/[gamma]-Al2O3 catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General, 109(1), 77–96. https://doi.org/Doi 10.1016/0926-860x(94)85005-4
Lavrenov, A. V., Bogdanets, E. N., Chumachenko, Y. A., & Likholobov, V. A. (2011). Catalytic processes for the production of hydrocarbon biofuels from oil and fatty raw materials: Contemporary approaches. Catalysis in Industry, 3(3), 250–259. https://doi.org/10.1134/S2070050411030044
LeClerc, H. O., Tompsett, G. A., Paulsen, A. D., McKenna, A. M., Niles, S. F., Reddy, C. M., Nelson, R. K., Cheng, F., Teixeira, A. R., & Timko, M. T. (2022). Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), 104916. https://doi.org/10.1016/j.isci.2022.104916
Lee, J., Xu, Y., & Huber, G. W. (2013). High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 140–141, 98–107. https://doi.org/10.1016/j.apcatb.2013.03.031
Lehnert, K., & Claus, P. (2008). Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catalysis Communications, 9(15), 2543–2546. https://doi.org/10.1016/j.catcom.2008.07.002
Leifeng, G., Yuan, L. Ü., Yunjie, D., Ronghe, L. I. N., Jingwei, L. I., Wenda, D., Tao, W., & Weimiao, C. (2009). Solvent Effect on Selective Dehydroxylation of Glycerol to 1 , 3-Propanediol over a Pt/WO3/ZrO2 Catalyst. Chinese Journal of Catalysis, 30(12), 1189–1191. https://doi.org/10.1016/S1872-2067(08)60142-4
Lemonidou, A. A., Kechagiopoulos, P., Heracleous, E., & Voutetakis, S. (2013). Chapter 14: Steam Reforming of Bio-oils to Hydrogen. In The Role of Catalysis for the Sustainable Production 467 of Bio-fuels and Bio-chemicals (pp. 467–493).
Li, F., Yuan, Y., Huang, Z., Chen, B., & Wang, F. (2015). Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 165, 547–554. https://doi.org/10.1016/j.apcatb.2014.10.050
Li, G., Yang, H., Zhang, H., Qi, Z., Chen, M., Hu, W., Tian, L., Nie, R., & Huang, W. (2018). Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 8(9), 8396–8405. https://doi.org/10.1021/acscatal.8b01404
Li, G., Zhang, F., Chen, L., Zhang, C., Huang, H., & Li, X. (2015). Highly Selective Hydrodecarbonylation of Oleic Acid into n-Heptadecane over a Supported Nickel/Zinc Oxide-Alumina Catalyst. ChemCatChem, 7(17), 2646–2653. https://doi.org/10.1002/cctc.201500418
Li, J., Chen, W., Zhao, H., Zheng, X., Wu, L., Pan, H., Zhu, J., Chen, Y., & Lu, J. (2017). Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis, 352, 371–381. https://doi.org/10.1016/j.jcat.2017.06.007
Li, S., Li, N., Li, G., Li, L., Wang, A., Cong, Y., Wang, X., Xu, G., & Zhang, T. (2015). Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 170–171, 124–134. https://doi.org/10.1016/j.apcatb.2015.01.022
Li, S., Zhou, Y., Kang, X., Liu, D., Gu, L., & Zhang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 1806781, 1–7. https://doi.org/10.1002/adma.201806781
Lindfors, L. P. (2010). High Quality Transportation Fuels From Renewable Feedstock. XXIst World Energy Congress Montreal, 1–12. http://www.worldenergy.org/documents/congresspapers/178.pdf
Liu, C., Liu, J., Zhou, G., Tian, W., & Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 221–227. https://doi.org/10.1016/j.jtice.2012.10.006
Liu, J., He, J., Wang, L., Li, R., Chen, P., Rao, X., Deng, L., & Rong, L. (2016). NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Nature Publishing Group, 1–11. https://doi.org/10.1038/srep23667
Liu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461–1475. https://doi.org/10.1016/S1872-2067(15)60861-0
Liu, Z., Dong, W., Cheng, S., Guo, S., Shang, N., Gao, S., Feng, C., Wang, C., & Wang, Z. (2017). Pd9Ag1-N-doped-MOF-C: An efficient catalyst for catalytic transfer hydrogenation of nitro-compounds. Catalysis Communications, 95, 50–53. https://doi.org/10.1016/j.catcom.2017.02.019
Lodeng, R., Hannevold, L., Bergem, H., & Stöcker, M. (2013). Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals (pp. 351–396). https://doi.org/10.1016/B978-0-444-56330-9.00011-5
Löfstedt, J., Dahlstrand, C., Orebom, A., Meuzelaar, G., Sawadjoon, S., Galkin, M. V., Agback, P., Wimby, M., Corresa, E., Mathieu, Y., Sauvanaud, L., Eriksson, S., Corma, A., & Samec, J. S. M. (2016). Green Diesel from Kraft Lignin in Three Steps. ChemSusChem, 9(12), 1392–1396. https://doi.org/10.1002/cssc.201600172
Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., & Jiang, J. (2021). State-of-the-art technologies for biofuel production from triglycerides : A review. Renewable and Sustainable Energy Reviews, 148(April), 111269. https://doi.org/10.1016/j.rser.2021.111269
Lourenço, J., Willimann, C., Camargo, M. D. O., Duarte, R. B., Aparecida, O., Mario, L., & Jorge, D. M. (2021). A novel kinetic model applied to heterogeneous fatty acid deoxygenation. Chemical Engineering Science, 230, 1–10. https://doi.org/10.1016/j.ces.2020.116192
Lu, J., Behtash, S., Faheem, M., & Heyden, A. (2013). Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(1 1 1) model surfaces based on parameters obtained from first principles. Journal of Catalysis, 305, 56–66. https://doi.org/10.1016/j.jcat.2013.04.026
Lu, J., Faheem, M., Behtash, S., & Heyden, A. (2015). Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0001) model surface. Journal of Catalysis, 324, 14–24. https://doi.org/10.1016/j.jcat.2015.01.005
Luo, Q., Zhang, W., Fu, C. F., & Yang, J. (2018). Single Pd atom and Pd dimer embedded graphene catalyzed formic acid dehydrogenation: A first-principles study. International Journal of Hydrogen Energy, 43(14), 6997–7006. https://doi.org/10.1016/j.ijhydene.2018.02.129
Madsen, A. T., Ahmed, E. H., Christensen, C. H., Fehrmann, R., & Riisager, A. (2011). Hydrodeoxygenation of waste fat for diesel production : Study on model feed with Pt / alumina catalyst. Fuel, 90(11), 3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005
Mäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K., & Murzin, D. Y. (2007). Catalytic deoxygenation of fatty acids and their derivatives. Energy & Fuels, 21(1), 30–41. https://doi.org/10.1021/ef060455v
Mäki-Arvela, P., Kuusisto, J., Sevilla, E. M., Simakova, I., Mikkola, J. P., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2008). Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Applied Catalysis A: General, 345(2), 201–212. https://doi.org/10.1016/j.apcata.2008.04.042
Malins, C., & Sandford, C. (2022). Animal, Vegetable or Mineral (oil)? Exploring the potential impacts of new renewable diesel capacity on oil and fat markets in the United States. Cerulogy. https://doi.org/10.1080/00221345508982847
Mane, R. B., & Rode, C. V. (2012). Continuous dehydration and hydrogenolysis of glycerol over non-chromium copper catalyst: Laboratory-scale process studies. Organic Process Research and Development, 16(5), 1043–1052. https://doi.org/10.1021/op200383r
Mao, J., Jiang, D., Fang, Z., Wu, X., Ni, J., & Li, X. (2017). Efficient hydrothermal hydrodeoxygenation of triglycerides with in situ generated hydrogen for production of diesel-like hydrocarbons. Catalysis Communications, 90, 47–50. https://doi.org/10.1016/j.catcom.2016.11.017
Mardhiah, H. H., Chyuan, H., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036
Martin, A., Armbruster, U., Gandarias, I., & Arias, P. L. (2013). Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. European Journal of Lipid Science and Technology, 115(1), 9–27. https://doi.org/10.1002/ejlt.201200207
Martínez-Merino, V., Gil, M. J., & Cornejo, A. (2013). Biomass Sources for Hydrogen Production. In Renewable Hydrogen Technologies (pp. 87–110). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00005-2
Masel, R. I. (2001). Chemical Kinetcis and Catalysis (Wiley-Interscience (ed.)).
Matsumura, Y. (2015). Hydrothermal Gasification of Biomass. In Recent Advances in Thermochemical Conversion of Biomass (pp. 251–267). https://doi.org/10.1016/B978-0-444-63289-0.00009-0
Mauriello, F., Ariga, H., Musolino, M. G., Pietropaolo, R., Takakusagi, S., & Asakura, K. (2015). Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 166–167, 121–131. https://doi.org/10.1016/j.apcatb.2014.11.014
Mavrikakis, M., & Barteau, M. A. (1998). Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis A: Chemical, 131(1–3), 135–147. https://doi.org/10.1016/S1381-1169(97)00261-6
Mayorga, M. A., Cadavid, J. G., López, C. A., Suárez, O. Y., Bonilla, J. A., López, M., Trujillo, C. A., & Durán, H. A. (2020). Definition of the Catalyst Family for the Production of Green Diesel by Hydrotreatment In Situ of Triglycerides. Chemical Engineering Transactions, 80(June), 241–246. https://doi.org/10.3303/CET2080041
Mayorga, M. A., Cadavid, J. G., Suárez, O. Y., Vargas, J. C., Castellanos, C. J., Suarez, L. A., & Narváez, P. C. (2020). Bio-hydrogen production using metallic catalysts. Revista Mexicana de Ingeniería Química, 19(3), 1103–1115. https://doi.org/10.24275/rmiq/Cat652 issn-e:
Mayorga, M. A., Cadavid, J. G., Suárez Palacios, O. Y., Vargas, J. C., Narvaez, P. C., & Rodríguez, L. I. (2020). Selection of Hydrogen Donors for the Production of Renewable Diesel by In Situ Catalytic Deoxygenation of Palm Oil. Chemical Engineering Transactions, 80(June 2020), 61–66. https://doi.org/10.3303/CET2080011
Mayorga, M. A., Cadavid, J. G., Suarez Palacios, O. Y., Vargas, J., González, J., & Narváez, P. C. (2019). Production of Renewable Diesel by Hydrotreating of Palm Oil with Noble Metallic Catalysts. Chemical Engineering Transactions, 74(June 2019), 7–12. https://doi.org/10.3303/CET1974002
Mears, D. E. (1971). Tests for Transport limitations in Experimental Catalytic Reactors. Industrial & Engineering Chemistry Process Design and Development, 10(4), 541–547.
Mekhaev, A. V., Butin, F. N., Pervova, M. G., Taran, O. P., Simakova, I. L., & Parmon, V. N. (2014). Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls. Russian Journal of Organic Chemistry, 50(6), 900–901. https://doi.org/10.1134/S1070428014060244
Meller, E., Green, U., Aizenshtat, Z., & Sasson, Y. (2014). Catalytic deoxygenation of castor oil over Pd / C for the production of cost effective biofuel. FUEL, 133, 89–95. https://doi.org/10.1016/j.fuel.2014.04.094
Miller, P., & Kumar, A. (2014). Techno-economic assessment of hydrogenation-derived renewable diesel production from canola and camelina. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 6, 105–115. https://doi.org/10.1016/j.seta.2014.01.008
Mitra, J., Zhou, X., & Rauchfuss, T. (2015). Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chemistry, 17(1), 307–313. https://doi.org/10.1039/c4gc01520g
Mohammad, M., Kandaramath Hari, T., Yaakob, Z., Chandra Sharma, Y., & Sopian, K. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 22(X), 121–132. https://doi.org/10.1016/j.rser.2013.01.026
Monnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176–180. https://doi.org/10.1016/j.apcata.2010.04.035
Monteiro, R. R. C., Silvia, S. O., Cavalcante, L., Luna, F. M. T. De, Bolivar, J. M., Vieira, R. S., Fernandez-lafuente, R., & Pesquisa, G. De. (2022). Biosynthesis of alkanes / alkenes from fatty acids or derivatives ( triacylglycerols or fatty aldehydes ). 61(September). https://doi.org/10.1016/j.biotechadv.2022.108045
Murata, K., Liu, Y., Inaba, M., & Takahara, I. (2010). Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy and Fuels, 24(4), 2404–2409. https://doi.org/10.1021/ef901607t
Musolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2009). Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chemistry, 11, 1511–1513. https://doi.org/10.1039/b915745j
Musolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2011). Glycerol hydrogenolysis promoted by supported palladium catalysts. ChemSusChem, 4(8), 1143–1150. https://doi.org/10.1002/cssc.201100063
Nagpure, A. S., Venugopal, A. K., Lucas, N., Manikandan, M., Thirumalaiswamy, R., & Chilukuri, S. (2015). Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catalysis Science and Technology, 5(3), 1463–1472. https://doi.org/10.1039/c4cy01376j
Nakagoe, O., Furukawa, Y., & Tanabe, S. (2012). Hydrogen production from steam reforming of woody biomass with cobalt catalyst. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 2–5.
Narváez, P. C., Rincón, S. M., Castañeda, L. Z., & Sánchez, F. J. (2008). Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters. Latin American Applied Research, 38, 1–6.
Neste Oil. (2013a). Neste oil’s Singapore refinery – the world’s largest and most advanced. https://www.google.ca/url?sa¼t&rct¼j&q¼&esrc¼s&source¼ web&cd¼4&ved¼0CEMQFjAD&url¼http%253A%252F%252Fwww.nesteoil.com%25 2Fbinary.asp%253Fpath%253D1%253B41%253B540%253B2384%253B18010%253B21058%25
Neste Oil. (2013b). Production capacity. http://www.nesteoil.com/default.asp?path¼ 1,41,11991,22708,22720⟩; [accessed October 2013].
Neste Oil. (2016). No TitNeste oil’s renewable diesel plant in Rotterdam – the largest and most advanced in Europe.
Nie, R., Peng, X., Zhang, H., Yu, X., Lu, X., Zhou, D., & Xia, Q. (2017). Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catalysis Science and Technology, 7(3), 627–634. https://doi.org/10.1039/c6cy02461k
Nie, R., Tao, Y., Nie, Y., Lu, T., Wang, J., Zhang, Y., Lu, X., & Xu, C. C. (2021). Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 11(3), 1071–1095. https://doi.org/10.1021/acscatal.0c04939
Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003
Nuñez Isaza, M. L., & ECOPETROL. (2009). Proceso para obtencion de Diesel a Partir de Aceites Vegetales o Animales por Hidrotratamiento con Tiempos de Residencia Reducidos y Productos Obtenidos a Partir del Mismo (Patent No. WO 2009068981 A1).
OECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-en
Oh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257(December 2017), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089
Ohta, H., Kobayashi, H., Hara, K., & Fukuoka, A. (2011). Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chemical Communications, 47(44), 12209–12211. https://doi.org/10.1039/c1cc14859a
Oi, L. E., Choo, M. Y., Lee, H. V., Taufiq-Yap, Y. H., Cheng, C. K., & Juan, J. C. (2020). Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 45(20), 11605–11614. https://doi.org/10.1016/j.ijhydene.2019.07.172
Ondrey, G. (2014). Making renewable diesel and biopropane from vegetable oil. Chemical Engineering, 11. www.chemengonline.com
Onishi, N., Laurenczy, G., Beller, M., & Himeda, Y. (2018). Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews, 373, 317–332. https://doi.org/10.1016/j.ccr.2017.11.021
ONU. (2015). Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Objetivos y Metas de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energy
ONU. (2021). La COP26 termina con un acuerdo, pero se queda corta en acción climática. UNEP. https://www.unep.org/es/noticias-y-reportajes/reportajes/la-cop26-termina-con-un-acuerdo-pero-se-queda-corta-en-accion
ONU. (2022). Informe de los Objetivos de Desarrollo Sostenible 2022. https://acortar.link/ZD8YID
Oudenhuijzen, M. K., Kooyman, P. J., Tappel, B., Van Bokhoven, J. A., & Koningsberger, D. C. (2002). Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combination of HRTEM, mass spectrometry, and quick EXAFS. Journal of Catalysis, 205(1), 135–146. https://doi.org/10.1006/jcat.2001.3433
Pan, Z., Wang, R., & Chen, J. (2018). Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 224(October 2017), 88–100. https://doi.org/10.1016/j.apcatb.2017.10.040
Pan, Z., Wang, R., Nie, Z., & Chen, J. (2015). Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. Journal of Energy Chemistry, 25, 418–426. https://doi.org/10.1016/j.jechem.2016.02.007
Panagiotopoulou, P., Martin, N., & Vlachos, D. G. (2014). Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A: Chemical, 392, 223–228. https://doi.org/10.1016/j.molcata.2014.05.016
Paryjczak, T., & Szymura, J. A. (1979). Electron Microscopic and Chemisorption Comparison Studies on the Metal Dispersion of Pd , Rh , and I r Supported Catalysts. Zeitschrift Für Anorganische Und Allgemeine Chemie (ZAAC), 449(1), 105–114.
Patel, M., & Kumar, A. (2016). Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil : A review. Renewable and Sustainable Energy Reviews, 58, 1293–1307. https://doi.org/10.1016/j.rser.2015.12.146
Patil, P. T., Armbruster, U., Richter, M., & Martin, A. (2011). Heterogeneously catalyzed hydroprocessing of organosolv lignin in sub- and supercritical solvents. Energy and Fuels, 25(10), 4713–4722. https://doi.org/10.1021/ef2009875
Perego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52, 133–145.
Pérez-cisneros, E. S., Sales-cruz, M., & Ochoa-tapia, A. (2016). A Systematic Approach For The Hydrotreating of Biodiesel and Petroleum-Diesel Blends. Computer Aided Process Engineering - ESCAPE 26, 38, 1756–1761. https://doi.org/10.1016/B978-0-444-63428-3.50297-6
Perkins, G., Batalha, N., Kumar, A., Bhaskar, T., & Konarova, M. (2019). Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 115(March), 109400. https://doi.org/10.1016/j.rser.2019.109400
Pestman, R., Koster, R. M., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde. Journal of Cataly, 168, 255–264
Pipitone, G., Zoppi, G., Pirone, R., & Bensaid, S. (2022). A critical review on catalyst design for aqueous phase reforming. International Journal of Hydrogen Energy, 47(1), 151–180. https://doi.org/10.1016/j.ijhydene.2021.09.206
Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). THE PROPERTIES OF GASES AND LIQUIDS (McGRAW-HILL (ed.); Fifth
Popov, S., & Kumar, S. (2015). Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process. Energy and Fuels, 29(5), 3377–3384. https://doi.org/10.1021/acs.energyfuels.5b00308
Qin, Y., Chen, P., Duan, J., Han, J., Lou, H., Zheng, X., & Hong, H. (2013). Carbon Nanofibers Supported Molybdenum Carbide Catalysts for Hydrodeoxygenation of Vegetable Oils. RSC Advances, 3(38), 17485. https://doi.org/10.1039/c3ra42434k
Quiroga, I. G. (2004). Introducción al Equilibrio Termodinámico y de Fases (U. N. de Colombia (ed.))
Rabaev, M., Landau, M. V., Vidruk-Nehemya, R., Goldbourt, A., & Herskowitz, M. (2015). Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aromatization of vegetable oil. Journal of Catalysis, 332, 164–176. https://doi.org/10.1016/j.jcat.2015.10.005
Rahman, M. M., Liu, R., & Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180(June), 32–46. https://doi.org/10.1016/j.fuproc.2018.08.002
Raikova, S., Le, C. D., Wagner, J. L., Ting, V. P., & Chuck, C. J. (2016). Towards an Aviation Fuel Through the Hydrothermal Liquefaction of Algae. In Biofuels for Aviation (pp. 217–239). Elsevier. https://doi.org/10.1016/B978-0-12-804568-8.00009-3
Rambabu, K., Bharath, G., Sivarajasekar, N., Velu, S., Sudha, P. N., Wongsakulphasatch, S., & Banat, F. (2023). Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel, 331(P1), 125688. https://doi.org/10.1016/j.fuel.2022.125688
Ramirez-Corredores, M. M. (2013). Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 161–216. https://doi.org/10.1016/B978-0-444-56330-9.00006-1
Rana, B. S., Kumar, R., Tiwari, R., Kumar, R., Joshi, R. K., Garg, M. O., & Sinha, A. K. (2013). Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures. Biomass and Bioenergy, 56, 43–52. https://doi.org/10.1016/j.biombioe.2013.04.029
Richardson, J. T. (1992). Principles of Catalyst Development (Springer Science+Business (ed.); Second).
Robin, T., Jones, J. M., & Ross, A. B. (2017). Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 98, 26–36. https://doi.org/10.1016/j.biombioe.2017.01.012
Robinson, A. M., Hensley, J. E., & Will Medlin, J. (2016). Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 6(8), 5026–5043. https://doi.org/10.1021/acscatal.6b00923
Roquero, P. (2011). Carbon-Supported Platinum Molybdenum Electro-Catalysts and Their Electro-Activity Toward Ethanol Oxidation. June.
Ruddy, D. A., Schaidle, J. A., Ferrell III, J. R., Wang, J., Moens, L., & Hensley, J. E. (2014). Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem., 16(2), 454–490. https://doi.org/10.1039/C3GC41354C
Saha, B., & Abu-Omar, M. M. (2015). Current Technologies, Economics, and Perspectives for 2,5-Dimethylfuran Production from Biomass-Derived Intermediates. ChemSusChem, 8(7), 1133–1142. https://doi.org/10.1002/cssc.201403329
Sahu, R., Song, B. J., Im, J. S., Jeon, Y. P., & Lee, C. W. (2015). A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry, 27, 12–24. https://doi.org/10.1016/j.jiec.2015.01.011
Santillan-Jimenez, E., & Crocker, M. (2012a). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775
Santillan-Jimenez, E., & Crocker, M. (2012b). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775
Santillan-jimenez, E., Morgan, T., Lacny, J., Mohapatra, S., & Crocker, M. (2013). Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel, 103, 1010–1017. https://doi.org/10.1016/j.fuel.2012.08.035
Santis, L. (2017). Reformado catalítico en fase acuosa de glicerina, sobre catalizadores: Pt, Rh y Pt-Rh, soportados en óxidos mixtos Ce-Zr-Co. Universidad Nacional de Colombia.
Sari, E., Kim, M., Salley, S. O., & Ng, K. Y. S. (2013). A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: Correlation of activity and catalyst properties. Applied Catalysis A: General, 467, 261–269. https://doi.org/10.1016/j.apcata.2013.07.053
Satyarthi, J. K., Chiranjeevi, T., Gokak, D. T., & Viswanathan, P. S. (2013). An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catalysis Science & Technology, 3(70), 70–80. https://doi.org/10.1039/c2cy20415k
Savage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 50(January 2011), 52–61.
Sawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. https://doi.org/10.1016/j.rser.2013.04.007
Scaldaferri, C. A., Márcia, V., & Pasa, D. (2019). Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel, 245(December 2018), 458–466. https://doi.org/10.1016/j.fuel.2019.01.179
Scholz, D., Aellig, C., & Hermans, I. (2014). Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 7(1), 268–275. https://doi.org/10.1002/cssc.201300774
Scott Fogler, H. (2021). Elements of chemical reaction engineering (Pearson (ed.); Sixth). https://doi.org/10.1016/0009-2509(87)80130-6
Serrano-Ruiz, J. C., Luque, R., & Clark, J. H. (2013). Chapter 17 - The Role of Heterogeneous Catalysis in the Biorefinery of the Future. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals: Vol. #volume# (pp. 557–576). © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00017-6
Shi, N., Liu, Q. Y., Jiang, T., Wang, T. J., Ma, L. L., Zhang, Q., & Zhang, X. H. (2012). Hydrodeoxygenation of vegetable oils to liquid alkane fuels over Ni/HZSM-5 catalysts: Methyl hexadecanoate as the model compound. Catalysis Communications, 20, 80–84. https://doi.org/10.1016/j.catcom.2012.01.007
Simakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208–224. https://doi.org/10.1016/j.jechem.2016.01.004
Singh, R., Prakash, A., Balagurumurthy, B., & Bhaskar, T. (2015). Hydrothermal Liquefaction of Biomass. In Elsevier B.V. (Ed.), Recent Advances in Thermochemical Conversion of Biomass (pp. 269–291). https://doi.org/10.1016/B978-0-444-63289-0.00010-7
Sinha, A. K., Anand, M., & Farooqui, S. A. (2016). Chapter 5 – Aviation Biofuels Through Lipid Hydroprocessing. In Biofuels for Aviation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804568-8.00005-6
Skoda, F., Astier, M. P., & Paj, G. M. (1994). Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159–168.
Slinn, M., Kendall, K., Mallon, C., & Andrews, J. (2008). Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology, 99(13), 5851–5858. https://doi.org/10.1016/j.biortech.2007.10.003
Smirnova, M. Y., Kikhtyanin, O. V., Smirnov, M. Y., Kalinkin, A. V., Titkov, A. I., Ayupov, A. B., & Ermakov, D. Y. (2015). Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Applied Catalysis A: General, 505, 524–531. https://doi.org/10.1016/j.apcata.2015.06.019
Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., & Murzin, D. Y. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 45(16), 5708–5715. https://doi.org/10.1021/ie060334i
Son, P. A., Nishimura, S., & Ebitani, K. (2014). Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances, 4(21), 10525–10530. https://doi.org/10.1039/c3ra47580h
Sotelo-boyás, R., Trejo-zárraga, F., & Hernández-loyo, F. D. J. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. In InTech (Ed.), Hydrogenation (pp. 187–216).
Speight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628).
Speight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628). Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Viriya-empikul, N. (2014). Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys. BIORESOURCE TECHNOLOGY, 158, 81–90. https://doi.org/10.1016/j.biortech.2014.01.100
Suarez Palacios, O. Y. (2011). Producción y modelamiento de gliceril-ésteres como plastificantes para PVC. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0A
Suárez Palacios, O. Y. (2011). Producción y Modelamiento de Gliceril-Ésteres como Plastificantes para PVC [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0A
Sun, H. J., Pan, Y. J., Jiang, H. B., Li, S. H., Zhang, Y. X., Liu, S. C., & Liu, Z. Y. (2013). Effect of transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst. Applied Catalysis A: General, 464–465, 464–465. https://doi.org/10.1016/j.apcata.2013.05.021
Suresh, M., Jawahar, C. P., & Richard, A. (2018). A review on biodiesel production , combustion , performance , and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews, 92(March), 38–49. https://doi.org/10.1016/j.rser.2018.04.048
Sutton, J. E., Panagiotopoulou, P., Verykios, X. E., & Vlachos, D. G. (2013). Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. 3.
Szeto, W., & Leung, D. Y. C. (2022). Is hydrotreated vegetable oil a superior substitute for fossil diesel ? A comprehensive review on physicochemical properties , engine performance and emissions. Fuel, 327(July), 125065. https://doi.org/10.1016/j.fuel.2022.125065
Tai, L., Caprariis, B. De, Filippis, P. De, & Hamidi, R. (2021). In Situ Hydrodeoxygenation of Guaiacol using Magnetic Catalysts and Heterogeneous Hydrogen Producer. 86(April), 85–90. https://doi.org/10.3303/CET2186015
Tan, Z., Xu, X., Liu, Y., Zhang, C., Zhai, Y., Liu, P., Li, Y., & Zhang, R. (2014). Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environmental Progress and Sustainable Energy, 33(3), 751–755. https://doi.org/10.1002/ep.11915
Tang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., & Lin, L. (2014). Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 40, 608–620. https://doi.org/10.1016/j.rser.2014.07.209
Tazli, M., Ahmad, K., Husainni, M., & Ameen, M. (2016). Thermodynamic Equilibrium Analysis of Triolein Hydrodeoxygenation for Green Diesel Production. Procedia Engineering, 148, 1369–1376. https://doi.org/10.1016/j.proeng.2016.06.603
Tedsree, K., Chan, C. W. A., Jones, S., Cuan, Q., Li, W.-K., Gong, X.-Q., & Tsang, S. C. E. (2014). 13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation in Liquid Phase. Sciencie, 332(2011), 224–228. https://doi.org/10.1126/science.1202364
G. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302–307. https://doi.org/10.1038/nnano.2011.42
Thananatthanachon, T., & Rauchfuss, T. B. (2010). Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angewandte Chemie, 122(37), 6766–6768. https://doi.org/10.1002/ange.201002267
The European Parliament and the Council of the European Union. (2009). Directive 2009/28/EC. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:%0AL:2009:140:0016:0062:en:PDF.
The European Parliament and the Council of the European Union. (2018). DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 2001, 82–209. https://eur-lex.europa.eu/%0Alegal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.%0AENG.
The European Parliament and the Council of the European Union. (2019). Quality of petrol and diesel fuel used for road transport in the European Union (Vol. 15, Issue 2)
The European Parliament and the Council of the European Union. (2021). European Climate Law. In Official Journal of the European Union (Vol. 2021, Issue June). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119
Thomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (VCH (ed.); First).
Tian, Q., Qiao, K., Zhou, F., Chen, K., Wang, T., Fu, J., Lu, X., & Ouyang, P. (2016). Direct Production of Aviation Fuel Range Hydrocarbons and Aromatics from Oleic Acid without an Added Hydrogen Donor. Energy and Fuels, 30(9), 7291–7297. https://doi.org/10.1021/acs.energyfuels.6b00978
Tian, Q., Zhang, Z., Zhou, F., Chen, K., Fu, J., Lu, X., & Ouyang, P. (2017). Role of Solvent in Catalytic Conversion of Oleic Acid to Aviation Biofuels. Energy Fuels, 31, 6163−6172. https://doi.org/10.1021/acs.energyfuels.7b00586
Timilsina, G. R., & Shrestha, A. (2011). How much hope should we have for biofuels? Energy, 36(4), 2055–2069. https://doi.org/10.1016/j.energy.2010.08.023
Toba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., & Yoshimura, Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 164(1), 533–537. https://doi.org/10.1016/j.cattod.2010.11.049
Toledano, A., Serrano, L., Labidi, J., Pineda, A., Balu, A. M., & Luque, R. (2013). Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogen-Donating Solvents. ChemCatChem, 5(4), 977–985. https://doi.org/10.1002/cctc.201200616
Trimm, D. L. (1980). Design of Industrial Catalysts (E. S. P. Company (ed.); First)
Tuteja, J., Choudhary, H., Nishimura, S., & Ebitani, K. (2014). Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem, 7(1), 96–100. https://doi.org/10.1002/cssc.201300832
U.S. Congress. (2007). Energy independence and security act of 2007. In Public Law. https://doi.org/papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42
U.S. Government Accountability Office. (2016). RENEWABLE FUEL STANDARD Program Unlikely to Meet Its Targets for Reducing Greenhouse Gas Emissions.
UNEP. (2017). Resource Efficiency: Potential and Economic Implications. In P. Ekins, N. Hughes, S. Bringezu, C. Arden Clarke, M. Fischer-Kowalski, T. Graedel, M. Hajer, S. Hashimoto, S. Hatfield-Dodds, P. Havlik, E. Hertwich, J. Ingram, K. Kruit, B. Milligan, Y. Moriguchi, N. Nasr, D. Newth, M. Obersteiner, A. Ramaswami, … A. Pedroza (Eds.), A report of the International Resource Panel (UNEP). http://www.resourcepanel.org/sites/default/files/documents/document/media/resource_efficiency_report_march_2017_web_res.pdf
United Nations Industrial Development Organization. (1976). Catalyst Manual : a User’s Guide to Calysts for the Petrochemical and Fertilizer Industrie (J. U.-R. Centre (ed.)).
UPME. (2019). Plan Energético Nacional 2020-2050. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. PEN 2050 www.upme.gov.co /
USDA. (2020). Biofuels Annual - Colombia. In CO2022-0012 (Issue August 01). https://www.fas.usda.gov/data/colombia-biofuels-annual-8
USDA. (2021a). Biofuels Annual China. In United States Department of Agriculture: Foreign Agricultural Service.
USDA. (2021b). Report Name : Biofuels Annual. In GAIN Global Agricultural Information Network. USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).
USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).
USDA. (2022b). Biofuels Annual European Union (Vols. E42022-004).
USDA. (2022c). Report Name : Biofuels Annual India. In Unites States Department of Agriculture Foreign Agriculture Service (Issue May). https://www.fas.usda.gov/data/malaysia-biofuels-annual-3
Valencia, D., García-cruz, I., Hugo, V., Ramírez-verduzco, L. F., Amezcua-allieri, M. A., & Aburto, J. (2018). Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass and Bioenergy, 112(August 2017), 37–44. https://doi.org/10.1016/j.biombioe.2018.02.014
Vallinayagam, R., Vedharaj, S., Yang, W. M., Lee, P. S., Chua, K. J. E., & Chou, S. K. (2014). Pine oil-biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Applied Energy, 130, 466–473. https://doi.org/10.1016/j.apenergy.2013.11.025
Vannice, M. A. (2005). Kinetics of Catalytic Reactions (Springer Science+Business Media (ed.)).
Vardon, D. R., Sharma, B. K., Jaramillo, H., Kim, D., Choe, J. K., Ciesielski, P. N., & Strathmann, T. J. (2014). Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 16(3), 1507. https://doi.org/10.1039/c3gc41798k
Vasiliadou, E., & Lemonidou, A. (2014). Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts, 4(4), 397–413. https://doi.org/10.3390/catal4040397
Veriansyah, B., Young, J., Ki, S., Hong, S., Jun, Y., Sung, J., Shu, Y., Oh, S., & Kim, J. (2012). Production of renewable diesel by hydroprocessing of soybean oil : Effect of catalysts. Fuel, 94, 578–585. https://doi.org/10.1016/j.fuel.2011.10.057
Viêgas, C. V., Hachemi, I., Freitas, S. P., Mäki-Arvela, P., Aho, A., Hemming, J., Smeds, A., Heinmaa, I., Fontes, F. B., Da Silva Pereira, D. C., Kumar, N., Aranda, D. A. G., & Murzin, D. Y. (2015). A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 155, 144–154. https://doi.org/10.1016/j.fuel.2015.03.064
Villaverde, M. M., Garetto, T. F., & Marchi, A. J. (2015). Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis Communications, 58, 6–10. https://doi.org/10.1016/j.catcom.2014.08.021
Vutolkina, A. V., Baigildin, I. G., Glotov, A. P., Pimerzin, A. A., Akopyan, A. V., Maximov, A. L., & Karakhanov, E. A. (2022). Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 312(April), 121403. https://doi.org/10.1016/j.apcatb.2022.121403
Wai, K., Yusup, S., Chun, A., Loy, M., Shen, B., Skoulou, V., & Taylor, M. J. (2022). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds : Catalysis , process , and kinetics. Molecular Catalysis, 523(September 2020), 111469. https://doi.org/10.1016/j.mcat.2021.111469
Wan, H., Chaudhari, R. V., & Subramaniam, B. (2012). Catalytic hydroprocessing of p-cresol: Metal, solvent and mass-transfer effects. Topics in Catalysis, 55(3–4), 129–139. https://doi.org/10.1007/s11244-012-9782-6
Wan, H., Chaudhari, R. V., & Subramaniam, B. (2013). Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy and Fuels, 27(1), 487–493. https://doi.org/10.1021/ef301400c
Wang, B., Hou, H., & Gu, Y. (2000). New mechanism for the catalyzed thermal decomposition of formic acid. Journal of Physical Chemistry A, 104(45), 10526–10528. https://doi.org/10.1021/jp001173d
Wang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203
Wang, F., Xu, H., Yu, S., Zhu, H., Du, Y., Zhang, Z., You, C., Jiang, X., & Jiang, J. (2022). Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel. Renewable Energy, 197(July), 40–49. https://doi.org/10.1016/j.renene.2022.07.079
Wang, F., & Zhang, Z. (2017). Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS Sustainable Chemistry and Engineering, 5(1), 942–947. https://doi.org/10.1021/acssuschemeng.6b02272
Wang, H., Chi, Y., Gao, D., Wang, Z., Wang, C., & Wang, L. (2019). Applied Catalysis B : Environmental Enhancing formic acid dehydrogenation for hydrogen production with the metal / organic interface. Applied Catalysis B: Environmental, 255(April), 117776. https://doi.org/10.1016/j.apcatb.2019.117776
Wang, H., Male, J., & Wang, Y. (2013). Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis, 3(5), 1047–1070. https://doi.org/10.1021/cs400069z
Wang, H., Yan, S., Salley, S. O., & Ng, K. Y. S. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81–87. https://doi.org/10.1016/j.fuel.2013.04.066
Wang, J., Li, X., Zheng, J., Cao, J., Hao, X., Wang, Z., Abudula, A., & Guan, G. (2018). Non-precious molybdenum-based catalyst derived from biomass: CO-free hydrogen production from formic acid at low temperature. Energy Conversion and Management, 164(December 2017), 122–131. https://doi.org/10.1016/j.enconman.2018.02.092
Wang, J., Xu, L., Nie, R., Lyu, X., & Lu, X. (2020). Bifunctional CuNi / CoO x catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 265(December 2019), 116913. https://doi.org/10.1016/j.fuel.2019.116913
Wang, L., Liu, Q., Jing, C., Mominou, N., Li, S., & Wang, H. (2018). In-situ hydrodeoxygenation of a mixture of oxygenated compounds with hydrogen donor over ZrNi / Ir-ZSM-5 þ Pd / C. Journal of Alloys and Compounds, 753, 664–672. https://doi.org/10.1016/j.jallcom.2018.03.356
Wang, L., Zhang, B., Meng, X., Su, D. S., & Xiao, F. S. (2014). Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. ChemSusChem, 7(6), 1537–1541. https://doi.org/10.1002/cssc.201400039
Wang, Q., Sun, G. Q., Jiang, L. H., Xin, Q., Sun, S. G., Jiang, Y. X., Chen, S. P., Jusysb, Z., & Behm, R. J. (2007). Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studiesw. Physical Chemistry Chemical Physics, 9, 2686–2696. https://doi.org/10.1039/b700676b
Wang, T., Du, J., Sun, Y., Tang, X., Wei, Z. J., Zeng, X., Liu, S. J., & Lin, L. (2021). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 32(3), 1186–1190. https://doi.org/10.1016/j.cclet.2020.07.044
Wang, T., Zhang, J., Xie, W., Tang, Y., Guo, D., & Ni, Y. (2017). Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 7(3), 1–8. https://doi.org/10.3390/catal7030092
Wang, W., Thapaliya, N., Campos, A., Stikeleather, L. F., & Roberts, W. L. (2012). Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel, 95, 622–629. https://doi.org/10.1016/j.fuel.2011.12.041
Wang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146
Wang, X., Qi, G., Tan, C., Li, Y., Guo, J., Pang, X., & Zhang, S. (2014). Pd/C nanocatalyst with high turnover frequency for hydrogen generation from the formic acid–formate mixtures. International Journal of Hydrogen Energy, 39(2), 837–843. https://doi.org/10.1016/j.ijhydene.2013.10.154
Wang, X., Qiu, Z., Liu, Q., Chen, X., Tao, S., Shi, C., Pang, M., & Liang, C. (2017). Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catalysis Letters, 147(2), 517–524. https://doi.org/10.1007/s10562-016-1929-9
Wang, Z. L., Yan, J. M., Wang, H. L., Ping, Y., & Jiang, Q. (2012). Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate. Scientific Reports, 2, 1–6. https://doi.org/10.1038/srep00598
Wang, Z., Zeng, Y., Lin, W., & Song, W. (2017a). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053
Wang, Z., Zeng, Y., Lin, W., & Song, W. (2017b). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053
Watanabe, M., Iida, T., & Inomata, H. (2006). Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management, 47(18–19), 3344–3350. https://doi.org/10.1016/j.enconman.2006.01.009
Wiener, H., Sasson, Y., & Blum, J. (1986). Palladium-catalyzed decomposition of aqueous alkali metal formate solutions. Journal of Molecular Catalysis, 35(3), 277–284. https://doi.org/10.1016/0304-5102(86)87075-4
Wilches Flórez, Á. M. (2011). Biocombustibles: ¿son realmente amigables con el medio ambiente? Revista Colombiana de Bioética, 6(1), 89–102. http://www.redalyc.org/articulo.oa?id=55140109
Williams, R., Crandall, R. S., & Bloom, A. (1978). Use of carbon dioxide in energy storage. Applied Physics Letters, 33(5), 381–383. https://doi.org/10.1063/1.90403
Wind, J., Auckett, J. E., Withers, R. L., Piltz, R. O., & Ling, C. D. (2015). commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide. 679–687. https://doi.org/10.1107/S2052520615018351
WMO. (2022). State of the Global Climate 2021 (Issue WMO-No. 1290). https://library.wmo.int/index.php?lvl=notice_display&id=21880#.YHg0ABMzZR0
Wu, J., Wang, T., Fu, J., Hou, Z., & Lu, X. (2016). Mechanism for the Controllable Production of Heptadecane by Hydrothermal In-Situ Hydrogenation and Decarboxylation of Oleic Acid with Methanol. Energy and Environment Focus, 5(3), 163-168(6). https://doi.org/10.1166/eef.2016.1208
Xia, S., Yuan, Z., Wang, L., Chen, P., & Hou, Z. (2011). Applied Catalysis A : General Hydrogenolysis of glycerol on bimetallic Pd-Cu / solid-base catalysts prepared via layered double hydroxides precursors. “Applied Catalysis A, General,” 403(1–2), 173–182. https://doi.org/10.1016/j.apcata.2011.06.026
Xia, S., Zheng, L., Wang, L., Chen, P., & Hou, Z. (2013). Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu–Mg–Al catalysts. RSC Advances, 3(37), 16569. https://doi.org/10.1039/c3ra42543f
Xie, S., Jia, C., Prakash, A., Palafox, M. I., Pfaendtner, J., & Lin, H. (2019). Generic Biphasic Catalytic Approach for Producing Renewable Diesel from Fatty Acids and Vegetable Oils [Research-article]. ACS Catalysis, 9, 3753–3763. https://doi.org/10.1021/acscatal.9b00215
Xiong, W., Fu, Y., Zeng, F., & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Processing Technology, 92(8), 1599–1605. https://doi.org/10.1016/j.fuproc.2011.04.005
Xu, L., Nie, R., Lyu, X., Wang, J., & Lu, X. (2020). Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 197(May 2019), 106205. https://doi.org/10.1016/j.fuproc.2019.106205
Xu, X., Luo, J., Li, L., Zhang, D., Wang, Y., & Li, G. (2018). Unprecedented catalytic performance in amine syntheses: Via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chemistry, 20(9), 2038–2046. https://doi.org/10.1039/c8gc00144h
Xu, Y., Li, Y., Wang, C., Wang, C., Ma, L., & Wang, T. (2017). In-situ hydrogenation of model compounds and raw bio-oil over Ni / CMK-3 catalyst. Fuel Processing Technology, 161, 226–231. https://doi.org/10.1016/j.fuproc.2016.08.018
Xu, Y., Long, J., Liu, Q., Li, Y., Wang, C., Zhang, Q., Lv, W., Zhang, X., Qiu, S., Wang, T., & Ma, L. (2015). In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Conversion and Management, 89, 188–196. https://doi.org/10.1016/j.enconman.2014.09.017
Yanase, S., & Oi, T. (2008). Lithium Isotope Effect Accompanying Electrochemical Insertion of Lithium into Liquid Gallium. May 2014. https://doi.org/10.1016/j.pnucene.2007.11.034
Yang, C., Nie, R., Fu, J., Hou, Z., & Lu, X. (2013). Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresource Technology, 146, 569–573. https://doi.org/10.1016/j.biortech.2013.07.131
Yang, P., Xia, Q., Liu, X., & Wang, Y. (2017). Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 187, 159–166. https://doi.org/10.1016/j.fuel.2016.09.026
Yang, Y., Ochoa-Hernández, C., Pizarro, P., de la Peña O’Shea, V. A., Coronado, J. M., & Serrano, D. P. (2015). Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 144, 60–70. https://doi.org/10.1016/j.fuel.2014.12.008
Yang, Y., Wang, Q., Chen, H., & Zhang, X. (2014). Enhancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors. FUEL, 133, 241–244. https://doi.org/10.1016/j.fuel.2014.05.044
Yang, Z., Huang, Y. B., Guo, Q. X., & Fu, Y. (2013). Raney® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chemical Communications, 49(46), 5328–5330. https://doi.org/10.1039/c3cc40980e
Yeh, T. M., Dickinson, J. G., Franck, A., Linic, S., Thompson, L. T., & Savage, P. E. (2013). Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 88(1), 13–24. https://doi.org/10.1002/jctb.3933
Yenumala, S. R., Maity, S. K., & Shee, D. (2017). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis, 120(1), 109–128. https://doi.org/10.1007/s11144-016-1098-2
Yigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084
You, S. J., Baek, I. G., & Park, E. D. (2013). Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts. Applied Catalysis A: General, 466, 161–168. https://doi.org/10.1016/j.apcata.2013.06.053
Yu, J. L., & Savage, P. E. (1998). Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research, 37(1), 2–10. https://doi.org/10.1021/ie970182e
Yuan, J., Li, S. S., Yu, L., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2013). Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 6(11), 3308–3313. https://doi.org/10.1039/c3ee40857d
Yuan, J., Li, S., Yu, L., Liu, Y., & Cao, Y. (2013). Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Cuihua Xuebao/Chinese Journal of Catalysis, 34(11), 2066–2074. https://doi.org/10.1016/S1872-2067(12)60656-1
Yuan, M., Long, Y., Yang, J., Hu, X., Xu, D., Zhu, Y., & Dong, Z. (2018). Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem, 11(23), 4156–4165. https://doi.org/10.1002/cssc.201802163
Zarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M. V., & Herskowitz, M. (2015). Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 139, 684–691. https://doi.org/10.1016/j.fuel.2014.09.053
Zeng, Y., Wang, Z., Lin, W., Song, W., Christensen, J. M., & Jensen, A. D. (2016). Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid. Catalysis Communications, 82, 46–49. https://doi.org/10.1016/j.catcom.2016.04.018
Zhang, C., Leng, Y., Jiang, P., Li, J., & Du, S. (2017). Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect, 2(20), 5469–5474. https://doi.org/10.1002/slct.201701176
Zhang, G., Peng, Z., & Li, C. (2016). A study of thermal behavior of cesium phosphate. Journal of Thermal Analysis and Calorimetry, 124(2), 1063–1070. https://doi.org/10.1007/s10973-015-5192-x
Zhang, H., Lin, H., Wang, W., Zheng, Y., & Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. https://doi.org/10.1016/j.apcatb.2013.12.006
Zhang, J., Huo, X., Li, Y., & Strathmann, T. J. (2019). Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 7, 14400−14410. https://doi.org/10.1021/acssuschemeng.9b00215
Zhang, J., & Zhao, C. (2015). A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 51(97), 17249–17252. https://doi.org/10.1039/c5cc06601h
Zhang, L., Wu, W., Jiang, Z., & Fang, T. (2018). A review on liquid ‑ phase heterogeneous dehydrogenation of formic acid : recent advances and perspectives. Chemical Papers. https://doi.org/10.1007/s11696-018-0469-8
Zhang, S., Yan, Y., Li, T., & Ren, Z. (2005). Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology, 96(5), 545–550. https://doi.org/10.1016/j.biortech.2004.06.015
Zhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019a). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0
Zhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019b). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178, pp. 195–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0
Zhang, Z., Chen, H., Wang, C., Chen, K., Lu, X., Ouyang, P., & Fu, J. (2018). Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 230(May), 211–217. https://doi.org/10.1016/j.fuel.2018.05.018
Zhang, Z., Wang, F., Jiang, J., Zhu, H., Du, Y., Feng, J., Li, H., & Jiang, X. (2023). LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel. Fuel, 333(P1), 126341. https://doi.org/10.1016/j.fuel.2022.126341
Zhang, Z., Yang, Q., Chen, H., Chen, K., Lu, X., Ouyang, P., Fu, J., & Chen, J. G. (2018). In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 20(1), 197–206. https://doi.org/10.1039/c7gc02774e
Zhao, C., He, J., Lemonidou, A. A., Li, X., & Lercher, J. A. (2011). Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 280(1), 8–16. https://doi.org/10.1016/j.jcat.2011.02.001
Zhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2009). Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie - International Edition, 48(22), 3987–3990. https://doi.org/10.1002/anie.200900404
Zhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2010). Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chemical Communications, 46(3), 412–414. https://doi.org/10.1039/b916822b
Zhao, C., & Lercher, J. A. (2013). Catalytic Depolymerization and Deoxygenation of Lignin. 289–320.
Zhao, Z., Zhang, L., Tan, Q., Faria, J., & Resasco, D. (2019). Synergistic Bimetallic Ru – Pt Catalysts for the Low-Temperature Aqueous Phase Reforming of Ethanol. 65(1), 151–160. https://doi.org/10.1002/aic.16430
Zhou, L., & Lawal, A. (2014). Evaluation of Presulfided NiMo/γ-Al2O3 for Hydrodeoxygenation of Microalgae Oil To Produce Green Diesel. Energy & Fuels, American Chemical Sociesty, xxx, xxx–xxx. https://doi.org/10.1021/ef502258q
Zhou, L., & Lawal, A. (2017). Kinetic study of hydrodeoxygenation of palmitic acid as a model compound for microalgae oil over Pt/γ-Al2O3. Applied Catalysis A: General, 532, 40–49. https://doi.org/10.1016/j.apcata.2016.12.014
Zhou, M., Tian, L., Niu, L., Li, C., Xiao, G., & Xiao, R. (2014). Upgrading of liquid fuel from fast pyrolysis of biomass over modi fi ed Ni / CNT catalysts. Fuel Processing Technology, 126, 12–18. https://doi.org/10.1016/j.fuproc.2014.04.015
Zhou, W., Xin, H., Yang, H., Du, X., Yang, R., Li, D., & Hu, C. (2018). The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts. Catalysts, 153(8), 1–20. https://doi.org/10.3390/catal8040153
Zhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., & Lu, T. (2008). High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C. Chemical Communications (Cambridge, England), 30, 3540–3542. https://doi.org/10.1039/b803661f
Zhu, S., Qiu, Y., Zhu, Y., Hao, S., Zheng, H., & Li, Y. (2013). Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today, 212, 120–126. https://doi.org/10.1016/j.cattod.2012.09.011
Zoppi, G., Pipitone, G., Pirone, R., & Bensaid, S. (2022). Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catalysis Today, 387, 224–236. https://doi.org/10.1016/j.cattod.2021.06.002
Žula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444(February), 1–25. https://doi.org/10.1016/j.cej.2022.136564
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 352
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84628/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84628/2/79729627.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84628/3/79729627.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ac77ba4b97843845619b88520b3322ae
9bc7163a42503e9e3ff2e08175e757c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090208696598528
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadavid Estrada, Juan Guillermobc8a518da0b6532a694c51e2d0e34e1dNarváez Rincón, Paulo César1424150a73b4193d8936a493fb231fd5Mayorga Betancourt, Manuel Alejandro3ace50d44cc941fe7e14ce57e90a29bcGrupo de Investigación en Procesos Químicos y BioquímicosMayorga, Manuel A. [0000-0001-6207-8338]Mayorga Betancourt, Manuel Alejandro [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229]Mayorga Betancourt, Manuel Alejandro [57209243312]Manuel Alejandro Mayorga Betancourt [https://www.researchgate.net/profile/Manuel-Mayorga-Betancourt-2/stats]Manuel Alejandro Mayorga Betancourt [https://scholar.google.com/citations?user=wyQTSPEAAAAJ&hl=es]2023-09-01T19:24:45Z2023-09-01T19:24:45Z2023https://repositorio.unal.edu.co/handle/unal/84628Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl desarrollo de biocombustibles avanzados es una opción que contribuye a la transición energética a corto y mediano plazo. Así, en esta investigación se verificó experimentalmente la obtención de biodiésel no éster por desoxigenación catalítica de aceite de palma con hidrógeno generado in situ en lugar de alimentarlo. Entonces se definieron dos sistemas catalíticos capaces de generarlo, por transferencia catalítica y/o reformado en fase acuosa, a partir de donantes como ácido fórmico y etanol, para luego hidrotratar los triglicéridos. Se seleccionaron como fases activas platino y paladio soportadas al 5% en carbono, así como su mezcla equimásica. Para estudiar primordialmente el rendimiento de hidrocarburos y la selectividad hacia hidrodesoxigenación, se evaluó el proceso con exceso hidrógeno del 50% y 100%, a 250 °C y 300 °C. El sistema 5% Pt/C con ácido fórmico en un exceso del 50% a 300 °C presentó el mejor desempeño en la producción de hidrocarburos, pues se obtuvo un producto líquido con 94% principalmente de n-pentadecano y n-heptadecano, por lo que favoreció la descarbonilación-descarboxilación, minimizando la selectividad. La temperatura es la variable de mayor incidencia en la producción de hidrocarburos, tal que para el mismo sistema de platino con 100% de exceso de fórmico a 250 °C se obtuvieron menos hidrocarburos aunque se maximizó la selectividad. Mientras que el sistema platino-paladio con un exceso del 50% de ácido fórmico a 300 °C fue el más equilibrado en rendimiento y selectividad. Las diferencias observadas en la actividad de ambos catalizadores, se explican en parte por la mayor mesoporosidad y dispersión del platino. (Texto tomado de la fuente)The development of advanced biofuels is an option that contributes to the energy transition in the short and medium term. Thus, in this research, the obtaining of non-ester biodiesel by catalytic deoxygenation of palm oil with hydrogen generated in situ instead of feeding it was experimentally verified. Two catalytic systems capable of generating it were then defined, by catalytic transfer and/or reforming in the aqueous phase, from donors such as formic acid and ethanol, to then hydrotreat the triglycerides. Platinum and palladium supported at 5% on carbon were selected as active phases, as well as their of equal mass mixture. To primarily study the yield of hydrocarbons and the selectivity towards hydrodeoxygenation, the process was evaluated with excess hydrogen of 50% and 100%, at 250 °C and 300 °C. The 5% Pt/C system with formic acid in excess of 50% at 300 °C presented the best performance in the production of hydrocarbons, since a liquid product with 94% mainly n-pentadecane and n-heptadecane was obtained, for which favored decarbonylation-decarboxylation, minimizing selectivity. Temperature is the variable with the highest incidence in the production of hydrocarbons, such that for the same platinum system with 100% excess formic at 250 °C, the less hydrocarbons were obtained, although selectivity was maximized. While the platinum-palladium system with a 50% excess of formic acid at 300 °C was the most balanced in yield and selectivity. The differences observed in the activity of both catalysts are partly explained by the higher mesoporosity and dispersion of platinum.Universidad ECCIInstituto de Investigaciones en Catálisis y Petroquímica, INCAPE, de la Universidad Nacional del Litoral (UNL) y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Santa Fe, ArgentinaDoctoradoDoctor en IngenieríaExperimental, empleando un diseño factorial con cuatro (4) factores: tres (3) sistemas catalíticos (5%Pt/C, 5% Pd/C y Mezcla equimásica 5% Pt/C - 5% Pd/C), dos (2) donantes de hidrógeno (ácido fórmico y alcohol etílico), dos (2) excesos de donante (50% y 100%), y dos (2) temperaturas (250 °C y 300 °C). Las variables de respuesta fueron el rendimiento en la producción de hidrocarburos, la selectividad por la ruta de la hidrodesoxigenación, la concentración de hidrógeno generado y la conversión del aceite de palma. El análisis químico se realizó mediante GC y HPLC, mientras que los catalizadores empleados fueron caracterización en estado fresco y usado.Biorrefinerías y Biocombustiblesxiii, 352application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::661 - Tecnología de químicos industriales660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales660 - Ingeniería química::668 - Tecnología de otros productos orgánicos540 - Química y ciencias afines::547 - Química orgánica620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaEnergía biomásicaVital forceBiomass energyDiésel renovableDonanteDesoxigenación catalíticaGeneración de hidrógeno in situAceite de palmaHidrogenación por transferencia catalíticaReformado en fase acuosaGreen dieselDonorCatalytic deoxygenationOn-site hydrogen generationPalm oilCatalytic transfer hydrogenation (CTH)Aqueous phase reforming (APR)Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situNon-ester biodiesel production by catalytic deoxygenation of palm oil with in situ hydrogen generationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06DataPaperTexthttp://purl.org/redcol/resource_type/TDAatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500Acid, F. (1960). Phys. Org. 1923. 1923–1925Afonso, M., Pedroza, P., Soter, I., Segtovich, V., Sermoud, V. D. M., & Antunes, M. (2022). Hydrodeoxygenation of stearic acid to produce diesel – like hydrocarbons: kinetic modeling, parameter estimation and simulation. Chemical Engineering Science, 254, 117576. https://doi.org/10.1016/j.ces.2022.117576Ahmadi, M., Nambo, A., Jasinski, J. B., Ratnasamy, P., & Carreon, M. A. (2014). Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science & Technology, 5(1), 380–388. https://doi.org/10.1039/C4CY00661EAl-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Al-Hinai, M. a., Baawain, M., Myint, M. T. Z., & Rooney, D. (2016). Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions. Energy Conversion and Management, 127, 226–232. https://doi.org/10.1016/j.enconman.2016.09.004Al Alwan, B., Salley, S. O., & Ng, K. Y. S. (2015). Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. In Applied Catalysis A: General (Vol. 498, pp. 32–40). Elsevier B.V. https://doi.org/10.1016/j.apcata.2015.03.012Alvear, M., Aho, A., Simakova, I. L., Grénman, H., Salmi, T., & Murzin, D. Y. (2020). Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 10(15), 5245–5255. https://doi.org/10.1039/d0cy00811gAnand, M., Farooqui, S. A., Kumar, R., Joshi, R., Kumar, R., Sibi, M. G., Singh, H., & Sinha, A. K. (2016). Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils. Applied Catalysis A: General, 516, 144–152. https://doi.org/10.1016/j.apcata.2016.02.027Andersson, K., Hell, M., & Lowendahl, L. (1974). Diffusivities of Hydrogen and Glyceryl Trioleate in Cottonseed Oil at Elevated Temperature. Journal of the American Oil Chemists´s Society, 51(April), 171–173.Arora, P., Lind, E., Olsson, L., & Creaser, D. (2019). Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils. Chemical Engineering Journal, 364(January), 376–389. https://doi.org/10.1016/j.cej.2019.01.134Arun, N., Sharma, R. V., & Dalai, A. K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074Aslam, M., Konwar, L. J., Sarma, A. K., & Kothiyal, N. C. (2015). An investigation of catalytic hydrocracking of high FFA vegetable oils to liquid hydrocarbons using biomass derived heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis, 115, 401–409. https://doi.org/10.1016/j.jaap.2015.08.015Austin, G. T. (1988). Manual de Procesos Químicos en la Industria (McGraw-Hill (ed.); 1a (En Esp).Bach, A., Maillard, F., Chatenet, M., Soudant, P., & Cremers, C. (2016). Ethanol oxidation reaction ( EOR ) investigation on Pt/C , Rh/C , and Pt-based bi- and tri-metallic electrocatalysts : A DEMS and in situ FTIR study. “Applied Catalysis B, Environmental,” 181, 672–680. https://doi.org/10.1016/j.apcatb.2015.08.041Baharudin, K. B., Arumugam, M., Hunns, J., Lee, A. F., Mayes, E., & Taufiq-yap, Y. H. (2019). Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science & Technology, 9, 6673–6680. https://doi.org/10.1039/c9cy01710kBalagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for Thermochemical Conversion of Biomass. In Recent Advances in Thermochemical Conversion of Biomass. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00004-1Baldiraghi, F., Stanislao, M. Di, Faraci, G., Perego, C., Marker, T., Gosling, C., Kokayeff, P., Kalnes, T., & Marinangeli, R. (2009). Ecofining: New Process for Green Diesel Production from Vegetable Oil. In Sustainable Industrial Chemistry (pp. 427–438). https://doi.org/10.1002/9783527629114.ch8Benson, T. J., Daggolu, P. R., Hernandez, R. A., Liu, S., & White, M. G. (2013). Catalytic deoxygenation chemistry: Upgrading of liquids derived from biomass processing. In Advances in Catalysis (1st ed., Vol. 56). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420173-6.00003-6Bernard, E. (2014). Biodiesel : Los aspectos mecánicos en los vehículos (Issue 506). http://www.bioenergywiki.net/images/e/e1/CNPML-Costa-Rica-Biodiesel-Aspectos-Meca?nicos-Vehi?culos.pdfBernas, A., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2009). Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 353(2), 166–180. https://doi.org/10.1016/j.apcata.2008.10.059Bertero, M., & Sedran, U. (2015). Coprocessing of Bio-oil in Fluid Catalytic Cracking. In Recent Advances in Thermochemical Conversion of Biomass (pp. 355–381). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00013-2Besse, X., Schuurman, Y., & Guilhaume, N. (2016). Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Applied Catalysis A: General, 524, 139–148. https://doi.org/10.1016/j.apcata.2016.06.030Bezergianni, S., & Dimitriadis, A. (2013). Comparison between different types of renewable diesel. Renewable and Sustainable Energy Reviews, 21, 110–116. https://doi.org/10.1016/j.rser.2012.12.04Bezergianni, S., Dimitriadis, A., & Chrysikou, L. P. (2014). Quality and sustainability comparison of one- vs. Two-step catalytic hydroprocessing of waste cooking oil. Fuel, 118, 300–307. https://doi.org/10.1016/j.fuel.2013.10.078Bezergianni, S., Dimitriadis, A., Kalogianni, A., & Knudsen, K. G. (2011). Toward hydrotreating of waste cooking oil for biodiesel production. Effect of pressure, H2/oil ratio, and liquid hourly space velocity. Industrial and Engineering Chemistry Research, 50(7), 3874–3879. https://doi.org/10.1021/ie200251aBezergianni, S., Dimitriadis, A., Kikhtyanin, O., & Kubi, D. (2018). Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, 68, 29–64. https://doi.org/10.1016/j.pecs.2018.04.002Bhaskar, T., & Pandey, A. (2015). Advances in Thermochemical Conversion of Biomass-Introduction. Recent Advances in Thermochemical Conversion of Biomass, 3–30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6Bie, Y., Lehtonen, J., & Kanervo, J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: Insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General, 526, 183–190. https://doi.org/10.1016/j.apcata.2016.08.030Biswas, B., Kumar, J., & Bhaskar, T. (2019). Advanced hydrothermal liquefaction of biomass for bio-oil production. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (2nd ed., pp. 245–266). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816856-1.00010-5Bockey, D. (2019). The significance and perspective of biodiesel production –A European and global view. OCL Journal, 26(40)Boda, L., Onyestyák, G., Solt, H., Lónyi, F., Valyon, J., & Thernesz, A. (2010). Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Applied Catalysis A: General, 374(1–2), 158–169. https://doi.org/10.1016/j.apcata.2009.12.005Boffito, D. C., Galli, F., Pirola, C., & Patience, G. S. (2017). CaO and isopropanol transesterify and crack triglycerides to isopropyl esters and green diesel. Energy Conversion and Management, 139, 71–78. https://doi.org/10.1016/j.enconman.2017.02.008Bond, G. C. (1987). Heterogeneous Catalysis: Principles and Aplications (Oxford University Press (ed.); Second Edi)Brieger, G., & Nestrick, T. J. (1974). Brieger, G., & Nestrick, T. J. (1974). Catalytic transfer hydrogenation. Chemical Reviews, 74, 567–580. http://doi.org/10.1021/cr60291a003. Chemical Reviews, 74, 567–580. https://doi.org/10.1021/cr60291a003Brown, B., & Radich, T. (2015). Renewable diesel production, planned projects on the rise. Biomass Magazine.Browning, B., Afanasiev, P., Pitault, I., Couenne, F., & Tayakout-Fayolle, M. (2016). Detailed kinetic modelling of vacuum gas oil hydrocracking using bifunctional catalyst: A distribution approach. Chemical Engineering Journal, 284, 270–284. https://doi.org/10.1016/j.cej.2015.08.126Bu, Q., Lei, H., Zacher, A. H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., & Ruan, R. (2012). A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource Technology, 124, 470–477. https://doi.org/10.1016/j.biortech.2012.08.089Bui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angewandte Chemie - International Edition, 52(31), 8022–8025. https://doi.org/10.1002/anie.201302575CABA. (2019). A Roadmap for Eliminating Petroleum Diesel in California by 2030 (Issue January). caadvancedbiofuelsalliance.orgCalero, J., Luna, D., Sancho, E. D., Luna, C., Bautista, F. M., Romero, A. A., Posadillo, A., Berbel, J., & Verdugo-escamilla, C. (2015). An overview on glycerol-free processes for the production of renewable liquid biofuels , applicable in diesel engines. Renewable and Sustainable Energy Reviews, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007Cao, W., Luo, W., Ge, H., Su, Y., Wang, A., & Zhanga, T. (2017). UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 19, 2201–2211. https://doi.org/10.1039/C7GC00512ACao, X., Long, F., Zhai, Q., Liu, P., & Xu, J. (2020). Enhancement of fatty acids hydrodeoxygenation selectivity to diesel- range alkanes over the supported Ni-MoO x catalyst and elucidation of the active phase. Renewable Energy, 162, 2113–2125. https://doi.org/10.1016/j.renene.2020.10.052Castillo, E. (2015). Advanced Biofuels from Palm Oil. 18Th International Oil Palm Conference.Ce, L., Ni, O., & Lee, C. (2012). Hydrogen production from oxidative steam reforming of ethanol on pyrochlore-type metal oxide ,. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 9–11.Chang, X., Liu, A. F., Cai, B., Luo, J. Y., Pan, H., & Huang, Y. B. (2016). Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 9(23), 3330–3337. https://doi.org/10.1002/cssc.201601122Cheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., Bridgwater, A. V., & Kyriakou, G. (2020). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, 355(November 2018), 882–892. https://doi.org/10.1016/j.cattod.2019.03.017Cheah, K. W., Yusup, S., Kyriakou, G., Ameen, M., Taylor, M. J., Nowakowski, D. J., Bridgwater, A. V., & Uemura, Y. (2019). In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. International Journal of Hydrogen Energy, 44(37), 20678–20689. https://doi.org/10.1016/j.ijhydene.2018.05.112Cheah, K. W., Yusup, S., Taylor, M. J., How, B. S., Osatiashtiani, A., Nowakowski, D. J., Bridgwater, A. V., Skoulou, V., Kyriakou, G., & Uemura, Y. (2020). Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40catalyst: An investigation of the surface reaction mechanism and rate limiting step. Reaction Chemistry and Engineering, 5(9), 1682–1693. https://doi.org/10.1039/d0re00214cChen, H., Chen, K., Fu, J., Lu, X., Huang, H., & Ouyang, P. (2017). Water-mediated promotion of the catalytic conversion of oleic acid to produce an alternative fuel using Pt/C without a H 2 source. Catalysis Communications, 98(April), 26–29. https://doi.org/10.1016/j.catcom.2017.04.044Chen, H., Wang, Q., Zhang, X., & Wang, L. (2015). Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides. Fuel, 159, 430–435. https://doi.org/10.1016/j.fuel.2015.07.010Chen, L., Zhu, Y., Zheng, H., Zhang, C., & Li, Y. (2012). Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts. Applied Catalysis A: General, 411–412, 95–104. https://doi.org/10.1016/j.apcata.2011.10.026Chen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., & Li, Y. (2011). Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A: Chemical, 351, 217–227. https://doi.org/10.1016/j.molcata.2011.10.015Chen, N., Gong, S., & Qian, E. W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Applied Catalysis B: Environmental, 174–175, 253–263. https://doi.org/10.1016/j.apcatb.2015.03.011Chen, R., & Wang, W. (2019). The production of renewable aviation fuel from waste cooking oil . Part I : Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 135, 819–835. https://doi.org/10.1016/j.renene.2018.12.048Chen, S., Zhou, G., & Miao, C. (2019). Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, 101(December 2018), 568–589. https://doi.org/10.1016/j.rser.2018.11.027Chen, X., Wang, X., Yao, S., & Mu, X. (2013). Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catalysis Communications, 39(3), 86–89. https://doi.org/10.1016/j.catcom.2013.05.012Cheng, S., Wei, L., Radhi, M., Corbin, F., Julson, J., Boakye, E., & Raynie, D. (2018). In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. Journal of the Energy Institute, 91(2), 163–171. https://doi.org/10.1016/j.joei.2017.01.004Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals Angewandte. 7164–7183. https://doi.org/10.1002/anie.200604274Chia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. ChemComm, 47, 12233–12235. https://doi.org/10.1039/c1cc14748jChiappero, M., Thi, P., Do, M., Crossley, S., Lobban, L. L., & Resasco, D. E. (2011). Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 90(3), 1155–1165. https://doi.org/10.1016/j.fuel.2010.10.025Chiu, Y. T., Wang, H., Lee, J., & Lin, K. Y. A. (2019). Reductive and adsorptive elimination of bromate from water using Ru/C, Pt/C and Pd/C in the absence of H2 : A comparative study. Process Safety and Environmental Protection, 127, 36–44. https://doi.org/10.1016/j.psep.2019.04.030Choi, I. H., Hwang, K. R., Choi, H. Y., & Lee, J. S. (2018). Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: in situ supply of hydrogen by aqueous-phase reforming (APR) of glycerol. Research on Chemical Intermediates, 1–10. https://doi.org/10.1007/s11164-018-3376-2Choudhary, T. V., & Phillips, C. B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1–2), 1–12. https://doi.org/10.1016/j.apcata.2011.02.025Coronado, I., Stekrova, M., Reinikainen, M., Simell, P., Lefferts, L., & Lehtonen, J. (2016). A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 41(26), 11003–11032. https://doi.org/10.1016/j.ijhydene.2016.05.032Cortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964–967. https://doi.org/10.1038/nature01009Czernik, S., French, R., Feik, C., & Chornet, E. (2002). Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial and Engineering Chemistry Research, 41(17), 4209–4215. https://doi.org/10.1021/ie020107qda Mota, S. A. P., Mancio, A. A., Lhamas, D. E. L., de Abreu, D. H., da Silva, M. S., dos Santos, W. G., de Castro, D. A. R., de Oliveira, R. M., Araújo, M. E., Borges, L. E. P., & Machado, N. T. (2014). Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis, 110(1), 1–11. https://doi.org/10.1016/j.jaap.2014.06.011da Silva, V. T., & Sousa, L. A. (2013). Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6Dabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J.-D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis , catalytic hydrodeoxygenation , and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/j.pecs.2018.05.002Darpo Bioenergy. (2016). Diamond Green Diesel. https://www.darpro-bioenergy.com/solutions/diamond-green-diesel/Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2 SPEC. ISS.), 171–186. https://doi.org/10.1016/j.apcatb.2004.04.027De Oliveira, F. C., & Coelho, S. T. (2016). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, October, 0–1. https://doi.org/10.1016/j.rser.2016.10.060De, S., Dutta, S., & Saha, B. (2012). One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 5(9), 1826–1833. https://doi.org/10.1002/cssc.201200031De, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065Delly, I., Vlasona, E. N., Nuzhdin, A. L., & Bukhtuyarova, G. A. (2011). The comparison of sulfide CoMo / γ -Al2O3 and NiMo / γ -Al2O3 catalysts in methyl palmitate and methyl heptanoate hydrodeoxygenation. Proceedings of the 2nd European Conference of Control, and Proceedings of the 2nd European Conference on Mechanical Engineering, February 2016, 24–29Deng, L., Li, J., Lai, D. M., Fu, Y., & Guo, Q. X. (2009). Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply. Angewandte Chemie - International Edition, 48(35), 6529–6532. https://doi.org/10.1002/anie.200902281Deng, L., Zhao, Y., Li, J., Fu, Y., Liao, B., & Guo, Q. X. (2010). Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10), 1172–1175. https://doi.org/10.1002/cssc.201000163Departament of Commerce, E. (2016). United States Patent and Trademark Office. USPTO Patent Full-Text and Image Database. http://patft.uspto.gov/netahtml/PTO/search-bool.htmDi, G., Nolfi, V., & Gallucci, K. (2021). Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.Dickinson, J. G., Poberezny, J. T., & Savage, P. E. (2012). Deoxygenation of benzofuran in supercritical water over a platinum catalyst. Applied Catalysis B: Environmental, 123–124, 357–366. https://doi.org/10.1016/j.apcatb.2012.05.005Ding, S., Li, Z., Li, F., Wang, Z., Li, J., Zhao, T., Lin, H., & Chen, C. (2018). Catalytic hydrogenation of stearic acid over reduced NiMo catalysts : Structure – activity relationship and e ff ect of the hydrogen-donor. Applied Catalysis A, General, 566(August), 146–154. https://doi.org/10.1016/j.apcata.2018.08.028DNP. (2017). Energy Demand Situation in Colombia.DNP. (2022). Política de Transición Energética - CONPES 4075. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdfDo, P. T., Chiappero, M., Lobban, L. L., & Resasco, D. E. (2009). Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catalysis Letters, 130(1–2), 9–18. https://doi.org/10.1007/s10562-009-9900-7Domínguez-Barroso, M. V., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2016). Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt-Ni/Al2O3 and Pd/C combined catalysts. Fuel Processing Technology, 148, 110–116. https://doi.org/10.1016/j.fuproc.2016.02.032Donnis, B., Egeberg, R. G., Blom, P., & Knudsen, K. G. (2009). Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics in Catalysis, 52(3), 229–240. https://doi.org/10.1007/s11244-008-9159-zDragu, A., Kinayyigit, S., García-suárez, E. J., Florea, M., Stepan, E., & Velea, S. (2015). Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. “Applied Catalysis A, General,” 504, 81–91. https://doi.org/10.1016/j.apcata.2015.01.008Dry, M. E. (2002). The Fischer - Tropsch process: 1950-2000. Catalysis Today, 71(3–4), 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9Du, J., Zhang, J., Sun, Y., Jia, W., Si, Z., Gao, H., Tang, X., Zeng, X., Lei, T., Liu, S., & Lin, L. (2018). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 368, 69–78. https://doi.org/10.1016/j.jcat.2018.09.025Du, X. L., He, L., Zhao, S., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2011). Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angewandte Chemie - International Edition, 50(34), 7815–7819. https://doi.org/10.1002/anie.201100102Duan, J., Han, J., Sun, H., Chen, P., Lou, H., & Zheng, X. (2012). Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 17, 76–80. https://doi.org/10.1016/j.catcom.2011.10.009Duan, P., Bai, X., Xu, Y., Zhang, A., Wang, F., Zhang, L., & Miao, J. (2013). Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel, 109, 225–233. https://doi.org/10.1016/j.fuel.2012.12.074Duan, P., Xu, Y., & Bai, X. (2013). Upgrading of crude duckweed bio-oil in subcritical water. Energy and Fuels, 27(8), 4729–4738. https://doi.org/10.1021/ef4009168Durán-Martín, D., Ojeda, M., Granados, M. L., Fierro, J. L. G., & Mariscal, R. (2013). Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catalysis Today, 210(3), 98–105. https://doi.org/10.1016/j.cattod.2012.11.013ECOPETROL. (2011). Biocombustibles: Una Apuesta Estratégica de Ecopetrol S.AECOPETROL. (2012). Diesel Renovable: Una Nueva Opción en Biocombustibles. Entorno Verde. Departamento de Biocombustibles. Vol. 3.Edeh, I., Overton, T., & Bowra, S. (2019). Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst over platinum on carbon catalyst. Biofuels, 0(0), 1–8. https://doi.org/10.1080/17597269.2018.1560554Edeh, I., Overton, T., & Bowra, S. (2021a). Catalytic hydrothermal deoxygenation of fatty acids over palladium on activated carbon catalyst (Pd/C) for renewable diesel production. Biofuels, 12(9), 1075–1082. https://doi.org/10.1080/17597269.2019.1580971Edeh, I., Overton, T., & Bowra, S. (2021b). Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge. Biofuels, 12(8), 925–929. https://doi.org/10.1080/17597269.2018.1558842EEA. (2022). Transport and Environment Report 2021 (Issue 02). https://www.eea.europa.eu/publications/transport-and-environment-report-2021EIA. (2022). U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity (Vol. 2). https://www.eia.gov/biofuels/renewable/capacity/ElAmin, B., Anantharamaiah, G. M., Royer, G. P., & Means, G. E. (1979). Removal of benzyl-type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 44(19), 3442–3444. https://doi.org/10.1021/jo01333a048Elliott, D. C., & Hart, T. R. (2009). Catalytic hydroprocessing of chemical models for bio-oil. Energy and Fuels, 23(2), 631–637. https://doi.org/10.1021/ef8007773En, J., Rahman, A., Ng, A., Lup, K., & Kee, M. (2022). Palm fatty acid distillate derived biofuels via deoxygenation : Properties , catalysts and processes. Fuel Processing Technology, 236(March), 1–15. https://doi.org/10.1016/j.fuproc.2022.107394eni. (2014). Green Refinery: reinventing petroleum refineries.Environmental Protection Agency. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. In Program. https://doi.org/EPA-420-R-10-006., February 2010EPA, E. P. A. (United S. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis.ExxonMobil. (2021). Improving renewable diesel yield with BIDW TM dewaxing catalyst.FAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. In Mundi-Prensa Madrid.FAO, O. de las N. U. para la A. y la A. (2013). El desarrollo de los biocombustibles no debe comprometer la seguridad alimentaria.Feng, J., Yang, Z., Hse, C. yun, Su, Q., Wang, K., Jiang, J., & Xu, J. (2017). In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy, 105, 140–148. https://doi.org/10.1016/j.renene.2016.12.054Fossil Free Fuels F3. (2016). HEFA/HVO, Hydroprocessed Esters and Fatty Acids CnH2n+2. http://www.f3centre.se/fact-sheet/HVOFraga, G., Batalha, N., Kumar, A., Bhaskar, T., Konarova, M., & Perkins, G. (2022). Advances in liquefaction for the production of hydrocarbon biofuels. In Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels (pp. 127–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00009-1French, R. J., Stunkel, J., & Baldwin, R. M. (2011). Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy and Fuels, 25(7), 3266–3274. https://doi.org/10.1021/ef200462vFu, J., Lu, X., & Savage, P. E. (2010). Catalytic Hydrothermal Deoxygenation of Palmitic Acid. Energy & Environmental Science, The Royal of Chemistry, 3, 311–317. https://doi.org/10.1039/c003390cFu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem, 4(4), 481–486. https://doi.org/10.1002/cssc.201000370Fu, J., Shi, F., Thompson, L. T., Lu, X., & Savage, P. E. (2011). Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. 227–231.Fu, J., Yang, C., Wu, J., Zhuang, J., Hou, Z., & Lu, X. (2015). Direct production of aviation fuels from microalgae lipids in water. Fuel, 139, 678–683. https://doi.org/10.1016/j.fuel.2014.09.025Furimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4Furimsky, E. (2013a). Hydroprocessing challenges in biofuels production. Catalysis Today, 217, 13–56. https://doi.org/10.1016/j.cattod.2012.11.008Furimsky, E. (2013b). Hydroprocessing in aqueous phase. Industrial and Engineering Chemistry Research, 52(50), 17695–17713. https://doi.org/10.1021/ie4034768Gandarias, I., Arias, P. L., Fernández, S. G., Requies, J., El Doukkali, M., & Güemez, M. B. (2012). Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 195(1), 22–31. https://doi.org/10.1016/j.cattod.2012.03.067Gandarias, I., Arias, P. L., Requies, J., El Doukkali, M., & Güemez, M. B. (2011). Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 282(1), 237–247. https://doi.org/10.1016/j.jcat.2011.06.020Gandarias, I., Fernández, S. G., El Doukkali, M., Requies, J., & Arias, P. L. (2013). Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 56(11), 995–1007. https://doi.org/10.1007/s11244-013-0063-9Gandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al 2O 3 catalysts. Journal of Catalysis, 290, 79–89. https://doi.org/10.1016/j.jcat.2012.03.004Gandía, L. M., Arzamendi, G., & Diéguez, P. M. (2013). Renewable Hydrogen Energy. In Renewable Hydrogen Technologies (pp. 1–17). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00001-5Gao, Y., Zhang, H., Han, A., Wang, J., Tan, H. R., Tok, E. S., Jaenicke, S., & Chuah, G. K. (2018). Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 3(5), 1343–1351. https://doi.org/10.1002/slct.201702152Gao, Z., Yang, L., Fan, G., & Li, F. (2016). Promotional Role of Surface Defects on Carbon-Supported Ruthenium-Based Catalysts in the Transfer Hydrogenation of Furfural. ChemCatChem, 8(24), 3769–3779. https://doi.org/10.1002/cctc.201601070García, J. R. (2016). VIAS CATALÍTICAS PARA MAXIMIZAR LA PRODUCCIÓN Y MEJORAR LA CALIDAD DEL CORTE LCO ( DIESEL ) EN EL CRAQUEO CATALÍTICO DE HIDROCARBUROS (FCC). Universidad Nacional del Litoral.Gazsi, A., Bánsági, T., & Solymos, F. (2011). Decomposition and Reforming of Formic Acid on Supported Au Catalysts : Production of CO-Free H 2. The Journal of Physical Chemistry, 115, 15459–15466.Gilkey, M. J., Panagiotopoulou, P., Mironenko, A. V, Jenness, G. R., Vlachos, D. G., & Xu, B. (2015). Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2 ‑ Methylfuran. ACS Catalysis, 5, 3988−3994. https://doi.org/10.1021/acscatal.5b00586Goddard, J. D., Yamaguchi, Y., & Schaefer, H. F. (1992). The decarboxylation and dehydration reactions of monomeric formic acid. The Journal of Chemical Physics, 96(2), 1158. https://doi.org/10.1063/1.462203Gong, L.-H., Cai, Y.-Y., Li, X.-H., Zhang, Y.-N., Su, J., & Chen, J.-S. (2014). Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 16(8), 3746–3751. https://doi.org/10.1039/C4GC00981AGong, S., Shinozaki, A., & Qian, E. Q. (2012). Effect of Support on Performance of NiMo Catalyst in Hydrotreating of Jatropha Oil. Industrial & Engineering Chemistry Research, American Chemical Society, 1–26.Gong, W., Chen, C., Zhang, Y., Zhou, H., Wang, H., Zhang, H., Zhang, Y., Wang, G., & Zhao, H. (2017). Efficient Synthesis of Furfuryl Alcohol from H2-Hydrogenation/Transfer Hydrogenation of Furfural Using Sulfonate Group Modified Cu Catalyst. In ACS Sustainable Chemistry and Engineering (Vol. 5, Issue 3). https://doi.org/10.1021/acssuschemeng.6b02343Gosselink, R. W., Hollak, S. A. W., Chang, S. W., Van Haveren, J., De Jong, K. P., Bitter, J. H., & Van Es, D. S. (2013). Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem, 6(9), 1576–1594. https://doi.org/10.1002/cssc.201300370Green Car Congress. (2013). ConocoPhillips begins production of renewable diesel fuel at whitegate refinery at Whitegate refinery, Ireland.Gundupalli, M. P., Gundupalli, S. P., Somavarapu Thomas, A. S., Jayakumar, M., Bhattacharyya, D., & Gurunathan, B. (2022). Hydrothermal liquefaction of lignocellulosic biomass for production of biooil and by-products: current state of the art and challenges. In Biofuels and Bioenergy (pp. 61–84). Elsevier Inc. https://doi.org/10.1016/b978-0-323-85269-2.00001-0Han, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2011). Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chemistry, 13(9), 2561. https://doi.org/10.1039/c1gc15421dHan, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2012). Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. ChemSusChem, 5(4), 727–733. https://doi.org/10.1002/cssc.201100476Hansen, T. S., Barta, K., Anastas, P. T., Ford, P. C., & Riisager, A. (2012). One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chemistry, 14(9), 2457–2461. https://doi.org/10.1039/c2gc35667hHarmsen, J., & Powell, J. B. (2010). Sustanaible Development in the Process Industries. Cases and Impact (Wiley-AIChe (ed.)).Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74(October 2014), 938–948. https://doi.org/10.1016/j.rser.2017.03.045He, C., Li, J., Zhang, X., Yin, L., Chen, J., & Gao, S. (2012). Highly active Pd-based catalysts with hierarchical pore structure for toluene oxidation : Catalyst property and reaction determining factor. Chemical Engineering Journal, 180, 46–56. https://doi.org/10.1016/j.cej.2011.10.099He, J., Zhao, C., & Lercher, J. A. (2012). Ni-catalyzed cleavage of aryl ethers in the aqueous phase. Journal of the American Chemical Society, 134(51), 20768–20775. https://doi.org/10.1021/ja309915eHe, L., Yang, J., & Chen, D. (2013). Hydrogen from Biomass: Advances in Thermochemical Processes. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 111–133. https://doi.org/10.1016/B978-0-444-56352-1.00006-4He, S., Barati, B., Hu, X., & Wang, S. (2023). Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Processing Technology, 240(September 2022), 107563. https://doi.org/10.1016/j.fuproc.2022.107563He, Z., & Wang, X. (2012). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, Versita, 1, 28–52. https://doi.org/10.2478/cse-2012-0004Hengsawad, T., Jindarat, T., Resasco, D. E., & Jongpatiwut, S. (2018). Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol – gel process for deoxygenation of triglycerides. Applied Catalysis A, General, 566(May), 74–86. https://doi.org/10.1016/j.apcata.2018.08.007Hengst, K., Arend, M., Pfützenreuter, R., & Hoelderich, W. F. (2015). Deoxygenation and cracking of free fatty acids over acidic catalysts by single step conversion for the production of diesel fuel and fuel blends. Applied Catalysis B: Environmental, 174–175, 383–394. https://doi.org/10.1016/j.apcatb.2015.03.009Hermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223–1233. https://doi.org/10.1016/j.rser.2014.10.099Herskowitz, M., Landau, M. V, Reizner, Y., & Berger, D. (2013). A commercially-viable , one-step process for production of green diesel from soybean oil on Pt / SAPO-11. Fuel, 111, 157–164. https://doi.org/10.1016/j.fuel.2013.04.044Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143Hollak, S. A. W., Ariëns, M. A., De Jong, K. P., & Van Es, D. S. (2014). Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 7(4), 1057–1062. https://doi.org/10.1002/cssc.201301145Honeywell UOP. (2016). Honeywell Green DieselTM. https://www.uop.com/processing-solutions/renewables/green-diesel/#biodieselHong, D. Y., Miller, S. J., Agrawal, P. K., & Jones, C. W. (2010). Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 46(7), 1038–1040. https://doi.org/10.1039/b918209hHongloi, N., Prapainainar, P., & Prapainainar, C. (2022). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523(September 2020), 111696. https://doi.org/10.1016/j.mcat.2021.111696Hossain, M. Z., Chowdhury, M. B. I., Jhawar, A. K., Xu, W. Z., & Charpentier, P. A. (2018). Continuous low pressure decarboxylation of fatty acids to fuel-range hydrocarbons with in situ hydrogen production. Fuel, 212(June 2017), 470–478. https://doi.org/10.1016/j.fuel.2017.09.092Hossain, M. Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., & Charpentier, P. A. (2018). Hydrothermal Decarboxylation of Corn Distillers Oil for Fuel-Grade Hydrocarbons. Energy Technology, 6(7), 1261–1274. https://doi.org/10.1002/ente.201700957Hossain, Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., Wu, W., Hiscott, D., & Charpentier, P. A. (2017). Using subcritical water for decarboxylation of oleic acid into fuel range hydrocarbons. Energy & Fuels, 31(4), 4013–4023. https://doi.org/10.1021/acs.energyfuels.6b03418Hu, C., Pulleri, J. K., Ting, S. W., & Chan, K. Y. (2014). Activity of Pd/C for hydrogen generation in aqueous formic acid solution. International Journal of Hydrogen Energy, 39(1), 381–390. https://doi.org/10.1016/j.ijhydene.2013.10.067Hu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2012). Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals. International Journal of Hydrogen Energy, 37(21), 15956–15965. https://doi.org/10.1016/j.ijhydene.2012.08.035Hu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2013). Insights into hydrogen generation from formic acid on PtRuBiOxin aqueous solution at room temperature. International Journal of Hydrogen Energy, 38(21), 8720–8731. https://doi.org/10.1016/j.ijhydene.2013.04.151Hu, Z., Tan, S., Mi, R., Li, X., Bai, J., Guo, X., Hu, G., Hang, P., Li, J., Li, D., Yang, Y., & Yan, X. (2018). Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect, 3(10), 2850–2853. https://doi.org/10.1002/slct.201702863Huang, H., & Yuan, X. (2015). Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science, 49, 59–80. https://doi.org/10.1016/j.pecs.2015.01.003Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences : Ten years of applications and trends. Science of the Total Environment, The, 409(19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022Huang, Y., Xu, J., Ma, X., Huang, Y., Li, Q., & Qiu, H. (2017). An effective low Pd-loading catalyst for hydrogen generation from formic acid. International Journal of Hydrogen Energy, 4–11. https://doi.org/10.1016/j.ijhydene.2017.04.138Huber, G. W., Shabaker, J. W., & Dumesic, J. A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628), 2075–2077. https://doi.org/10.1126/science.1085597Hwang, K., Choi, I., Choi, H., Han, J., Lee, K., & Lee, J. (2016). Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source. FUEL, 174, 107–113. https://doi.org/10.1016/j.fuel.2016.01.080IATA. (2018). Developing Sustainable Aviation Fuel (SAF). https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/#tab-2IDEAM, Fundación Natura, PNUD, MADS, DNP, C. (2021). Tercer Informe Bienal de Actualización de Cambio Climático de Colombia (CMNUCC).IDEAM, I. de H. M. y E. A. (2012). Inventario Nacional de Emisiones de Gases de Efecto Invernadero.Idesh, S., Kudo, S., Norinaga, K., & Hayashi, J. I. (2013). Catalytic hydrothermal reforming of jatropha oil in subcritical water for the production of green fuels: Characteristics of reactions over Pt and Ni catalysts. Energy and Fuels, 27(8), 4796–4803. https://doi.org/10.1021/ef4011065IEA. (2021a). Global Hydrogen Review 2021. In Global Hydrogen Review 2021. https://doi.org/10.1787/39351842-enIEA. (2021b). Renewables 2021. In Publications International. www.iea.org/t&c/%0Ahttps://webstore.iea.org/download/direct/4329IEA. (2021c). Renewables 2021.IEA. (2021d). Renewables 2021 Data Explorer. https://www.iea.org/data-and-statistics/data-tools/renewables-2021-data-explorerIEA. (2022). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browserImmer, J. G., Kelly, M. J., & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1), 134–139. https://doi.org/10.1016/j.apcata.2009.12.028Induplama. (2012). CATALOGO DE PRODUCTOS: ACEITE DE PALMA. In Aceite de palma (pp. 1–3). http://www.indupalma.com/aceite-de-palmaIRC, & NAS. (2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (E. W. Washburn (ed.); First Elec). Knovel.Iriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49(1–2), 46–58. https://doi.org/10.1007/s11244-008-9060-9Iriondo, A., Cambra, J. F., Barrio, V. L., Guemez, M. B., Arias, P. L., Sanchez-Sanchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2011). Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 106(1–2), 83–93. https://doi.org/10.1016/j.apcatb.2011.05.009IRP-ONU. (2018). Eficiencia de los Recursos para el Desarrollo Sostenible: Mensajes Clave para el Grupo de los 20.Isa, K. M., Abdullah, T. A. T., & Ali, U. F. M. (2018). Hydrogen donor solvents in liquefaction of biomass: A review. Renewable and Sustainable Energy Reviews, 81(October 2016), 1259–1268. https://doi.org/10.1016/j.rser.2017.04.006Ivanova, E., Mihaylov, M., Thibault-Starzyk, F., Daturi, M., & Hadjiivanov, K. (2007). FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. Journal of Molecular Catalysis A: Chemical, 274(1–2), 179–184. https://doi.org/10.1016/j.molcata.2007.05.006Jacobson, K., Maheria, K. C., & Kumar Dalai, A. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91–106. https://doi.org/10.1016/j.rser.2013.02.036Jae, J., Zheng, W., Lobo, R. F., & Vlachos, D. G. (2013). Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem, 6(7), 1158–1162. https://doi.org/10.1002/cssc.201300288Jagadeesh, R. V., Natte, K., Junge, H., & Beller, M. (2015). Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catalysis, 5(3), 1526–1529. https://doi.org/10.1021/cs501916pJaimes, L. (2008). Desulfurization of FCC Gasoline : Novel Catalytic Processes with Zeolites Desulfurization of FCC. International Journal of Chemical Reactor Enginnering, 6, 1–69.Janampelli, S., & Darbha, S. (2017). Promotional Effect of WO x in Pt-WO x /AlPO 4 -5 Catalyzed Deoxygenation of Fatty Acids. ChemistrySelect, 2(5), 1895–1901. https://doi.org/10.1002/slct.201700159Jȩczmionek, Ł., & Porzycka-Semczuk, K. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal effects - Theoretical considerations. Fuel, 131, 1–5. https://doi.org/10.1016/j.fuel.2014.04.055Jeon, H. jin, & Chung, Y. M. (2017). Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Applied Catalysis B: Environmental, 210, 212–222. https://doi.org/10.1016/j.apcatb.2017.03.070Jiang, K., Xu, K., Zou, S., & Cai, W. (2014). B ‑ Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid − Formate Solutions. J. Am. Chem. Soc., 136(13), 4861–4864. https://doi.org/10.1021/ja5008917Jin, F., Yun, J., Li, G., Kishita, A., Tohji, K., & Enomoto, H. (2008). Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6), 612–615. https://doi.org/10.1039/b802076kJin, M., & Choi, M. (2019). Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Molecular Catalysis, 474(March), 110419. https://doi.org/10.1016/j.mcat.2019.110419Jin, X. (2014). Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and KineticsJoshi, N., & Lawal, A. (2012). Hydrodeoxygenation of pyrolysis oil in a microreactor. Chemical Engineering Science, 74, 1–8. https://doi.org/10.1016/j.ces.2012.01.052Jr, R. J. M., Aughenbaugh, J. M., & Paredis, C. J. J. (2009). Multi-attribute utility analysis in set-based conceptual design. Computer-Aided Design, 41(3), 214–227. https://doi.org/10.1016/j.cad.2008.06.004Jyoti, L., & Mikkola, J. (2022). Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/ deoxygenation of triglycerides. Applied Catalysis A, General, 638(January), 118611. https://doi.org/10.1016/j.apcata.2022.118611Kaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy and Fuels, 29(2), 833–840. https://doi.org/10.1021/ef5023362Kalnes, T. N., Marker, T., Shonnard, D. R., & Koers, K. P. (2008). Green diesel production by hydrorefining renewable feedstocks. Biofiuels Technology, 7–11. www.biofuels-tech.comKandel, K., Anderegg, J. W., Nelson, N. C., Chaudhary, U., & Slowing, I. I. (2014). Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. Journal of Catalysis, 314, 142–148. https://doi.org/10.1016/j.jcat.2014.04.009Kanie, Y., Akiyama, K., & Iwamoto, M. (2011). Reaction pathways of glucose and fructose on Pt nanoparticles in subcritical water under a hydrogen atmosphere. Catalysis Today, 178(1), 58–63. https://doi.org/10.1016/j.cattod.2011.07.031Kato, Y., & Sekine, Y. (2013). One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catalysis Letters, 143(5), 418–423. https://doi.org/10.1007/s10562-013-0992-8Kay Lup, A. N., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 541(May), 87–106. https://doi.org/10.1016/j.apcata.2017.05.002Kemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529Kemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529Ki, S., Brand, S., Lee, H., Kim, Y., & Kim, J. (2013). Production of renewable diesel by hydrotreatment of soybean oil : Effect of reaction parameters. Chemical Engineering Journal, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095Ki, S., Young, J., Lee, H., Yum, T., Kim, Y., & Kim, J. (2014). Production of renewable diesel via catalytic deoxygenation of natural triglycerides : Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 116, 199–205. https://doi.org/10.1016/j.apenergy.2013.11.062Kim, D., Vardon, D. R., Murali, D., Sharma, B. K., & Strathmann, T. J. (2016). Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 4(3), 1775–1784. https://doi.org/10.1021/acssuschemeng.5b01768Kim, M. S., Simanjuntak, F. S. H., Lim, S., Jae, J., Ha, J. M., & Lee, H. (2017). Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 52, 59–65. https://doi.org/10.1016/j.jiec.2017.03.024King, D. L., Zhang, L., Xia, G., Karim, A. M., Heldebrant, D. J., Wang, X., Peterson, T., & Wang, Y. (2010). Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Applied Catalysis B: Environmental, 99(1–2), 206–213. https://doi.org/10.1016/j.apcatb.2010.06.021Kleinert, M., Gasson, J. R., & Barth, T. (2009). Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. Journal of Analytical and Applied Pyrolysis, 85(1–2), 108–117. https://doi.org/10.1016/j.jaap.2008.09.019Kondarides, D. I., & Verykios, X. E. (2013). Photocatalytic Production of Renewable Hydrogen. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals (pp. 397–443). Elsevier. https://doi.org/10.1016/B978-0-444-56330-9.00012-7Konwar, L. J., Oliani, B., Samikannu, A., Canu, P., & Mikkola, J. (2020). Efficient hydrothermal deoxygenation of tall oil fatty acids into n-paraffinic hydrocarbons and alcohols in the presence of aqueous formic acid. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01103-3Kotrba, R. (2015). A Transformative Project: Total’s La Mède Conversion. Biodiesel Magazine.Kouzu, M., Kojima, M., Mori, K., & Yamanaka, S. (2021). Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 217(January), 106831. https://doi.org/10.1016/j.fuproc.2021.106831Kubacka, A. (2016). Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu , Ni and Co catalysts. “Applied Catalysis A, General,” 518, 2–17. https://doi.org/10.1016/j.apcata.2016.01.027Kubička, D., Bejblová, M., & Vlk, J. (2010). Conversion of Vegetable Oils into Hydrocarbons over CoMo/MCM-41 Catalysts. Topics in Catalysis, 53(3–4), 168–178. https://doi.org/10.1007/s11244-009-9421-zKubicka, D., Horacek, J., Setnicka, M., Bulanek, R., Zukal, A., & Kubicková, I. (2014). Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 145, 101–107. https://doi.org/10.1016/j.apcatb.2013.01.012Kubicka, D., Simácek, P., & Zilkova, N. (2009). Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Topics in Catalysis, 52(1–2), 161–168. https://doi.org/10.1007/s11244-008-9145-5Kubičková, I., & Kubička, D. (2010). Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review. Waste and Biomass Valorization, 1(3), 293–308. https://doi.org/10.1007/s12649-010-9032-8Kumar, P., Verma, D., Sibi, M. G., Butolia, P., & Maity, S. K. (2022). Hydrodeoxygenation of triglycerides for the production of green diesel : Role of heterogeneous catalysis. In Hydrocarbon Biorefinery (pp. 97–126). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00013-3Kunze, R., Deane, P., Haasz, T., Jonatan, J. G., Fraboulet, D., Fahl, U., & Mulholland, E. (2020). Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Reviews, 20(2018), 124–132. https://doi.org/10.1016/j.esr.2017.12.007Laboratorium, K. O., & Section, E. D. (1973). Ni AND Co-II IODATES OF CRYSTAL STRUCTURES and the optical properties of nickel and cobalt iodate hydrates . The nickel di- hydrate is known to be a weak ferromagnet with N6el temperature TN = 3 . 08 K [ 2 ]. In an attempt to determine its magnetic struct. 35(1972), 3183–3189.Lam, M. K., & Lee, K. T. (2011). Chapter 15 - Production of Biodiesel Using Palm Oil. In Biofuels (pp. 353–374). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-385099-7.00016-4Lane, J. (2016). Renewable jet fuel, competitive cost, at scale: The Digest’s Multi-Slide Guide to AltAir. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2016/05/19/63308/Laurent, E., & Delmon, B. (1994). Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/[gamma]-Al2O3 and NiMo/[gamma]-Al2O3 catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General, 109(1), 77–96. https://doi.org/Doi 10.1016/0926-860x(94)85005-4Lavrenov, A. V., Bogdanets, E. N., Chumachenko, Y. A., & Likholobov, V. A. (2011). Catalytic processes for the production of hydrocarbon biofuels from oil and fatty raw materials: Contemporary approaches. Catalysis in Industry, 3(3), 250–259. https://doi.org/10.1134/S2070050411030044LeClerc, H. O., Tompsett, G. A., Paulsen, A. D., McKenna, A. M., Niles, S. F., Reddy, C. M., Nelson, R. K., Cheng, F., Teixeira, A. R., & Timko, M. T. (2022). Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), 104916. https://doi.org/10.1016/j.isci.2022.104916Lee, J., Xu, Y., & Huber, G. W. (2013). High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 140–141, 98–107. https://doi.org/10.1016/j.apcatb.2013.03.031Lehnert, K., & Claus, P. (2008). Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catalysis Communications, 9(15), 2543–2546. https://doi.org/10.1016/j.catcom.2008.07.002Leifeng, G., Yuan, L. Ü., Yunjie, D., Ronghe, L. I. N., Jingwei, L. I., Wenda, D., Tao, W., & Weimiao, C. (2009). Solvent Effect on Selective Dehydroxylation of Glycerol to 1 , 3-Propanediol over a Pt/WO3/ZrO2 Catalyst. Chinese Journal of Catalysis, 30(12), 1189–1191. https://doi.org/10.1016/S1872-2067(08)60142-4Lemonidou, A. A., Kechagiopoulos, P., Heracleous, E., & Voutetakis, S. (2013). Chapter 14: Steam Reforming of Bio-oils to Hydrogen. In The Role of Catalysis for the Sustainable Production 467 of Bio-fuels and Bio-chemicals (pp. 467–493).Li, F., Yuan, Y., Huang, Z., Chen, B., & Wang, F. (2015). Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 165, 547–554. https://doi.org/10.1016/j.apcatb.2014.10.050Li, G., Yang, H., Zhang, H., Qi, Z., Chen, M., Hu, W., Tian, L., Nie, R., & Huang, W. (2018). Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 8(9), 8396–8405. https://doi.org/10.1021/acscatal.8b01404Li, G., Zhang, F., Chen, L., Zhang, C., Huang, H., & Li, X. (2015). Highly Selective Hydrodecarbonylation of Oleic Acid into n-Heptadecane over a Supported Nickel/Zinc Oxide-Alumina Catalyst. ChemCatChem, 7(17), 2646–2653. https://doi.org/10.1002/cctc.201500418Li, J., Chen, W., Zhao, H., Zheng, X., Wu, L., Pan, H., Zhu, J., Chen, Y., & Lu, J. (2017). Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis, 352, 371–381. https://doi.org/10.1016/j.jcat.2017.06.007Li, S., Li, N., Li, G., Li, L., Wang, A., Cong, Y., Wang, X., Xu, G., & Zhang, T. (2015). Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 170–171, 124–134. https://doi.org/10.1016/j.apcatb.2015.01.022Li, S., Zhou, Y., Kang, X., Liu, D., Gu, L., & Zhang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 1806781, 1–7. https://doi.org/10.1002/adma.201806781Lindfors, L. P. (2010). High Quality Transportation Fuels From Renewable Feedstock. XXIst World Energy Congress Montreal, 1–12. http://www.worldenergy.org/documents/congresspapers/178.pdfLiu, C., Liu, J., Zhou, G., Tian, W., & Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 221–227. https://doi.org/10.1016/j.jtice.2012.10.006Liu, J., He, J., Wang, L., Li, R., Chen, P., Rao, X., Deng, L., & Rong, L. (2016). NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Nature Publishing Group, 1–11. https://doi.org/10.1038/srep23667Liu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461–1475. https://doi.org/10.1016/S1872-2067(15)60861-0Liu, Z., Dong, W., Cheng, S., Guo, S., Shang, N., Gao, S., Feng, C., Wang, C., & Wang, Z. (2017). Pd9Ag1-N-doped-MOF-C: An efficient catalyst for catalytic transfer hydrogenation of nitro-compounds. Catalysis Communications, 95, 50–53. https://doi.org/10.1016/j.catcom.2017.02.019Lodeng, R., Hannevold, L., Bergem, H., & Stöcker, M. (2013). Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals (pp. 351–396). https://doi.org/10.1016/B978-0-444-56330-9.00011-5Löfstedt, J., Dahlstrand, C., Orebom, A., Meuzelaar, G., Sawadjoon, S., Galkin, M. V., Agback, P., Wimby, M., Corresa, E., Mathieu, Y., Sauvanaud, L., Eriksson, S., Corma, A., & Samec, J. S. M. (2016). Green Diesel from Kraft Lignin in Three Steps. ChemSusChem, 9(12), 1392–1396. https://doi.org/10.1002/cssc.201600172Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., & Jiang, J. (2021). State-of-the-art technologies for biofuel production from triglycerides : A review. Renewable and Sustainable Energy Reviews, 148(April), 111269. https://doi.org/10.1016/j.rser.2021.111269Lourenço, J., Willimann, C., Camargo, M. D. O., Duarte, R. B., Aparecida, O., Mario, L., & Jorge, D. M. (2021). A novel kinetic model applied to heterogeneous fatty acid deoxygenation. Chemical Engineering Science, 230, 1–10. https://doi.org/10.1016/j.ces.2020.116192Lu, J., Behtash, S., Faheem, M., & Heyden, A. (2013). Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(1 1 1) model surfaces based on parameters obtained from first principles. Journal of Catalysis, 305, 56–66. https://doi.org/10.1016/j.jcat.2013.04.026Lu, J., Faheem, M., Behtash, S., & Heyden, A. (2015). Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0001) model surface. Journal of Catalysis, 324, 14–24. https://doi.org/10.1016/j.jcat.2015.01.005Luo, Q., Zhang, W., Fu, C. F., & Yang, J. (2018). Single Pd atom and Pd dimer embedded graphene catalyzed formic acid dehydrogenation: A first-principles study. International Journal of Hydrogen Energy, 43(14), 6997–7006. https://doi.org/10.1016/j.ijhydene.2018.02.129Madsen, A. T., Ahmed, E. H., Christensen, C. H., Fehrmann, R., & Riisager, A. (2011). Hydrodeoxygenation of waste fat for diesel production : Study on model feed with Pt / alumina catalyst. Fuel, 90(11), 3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005Mäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K., & Murzin, D. Y. (2007). Catalytic deoxygenation of fatty acids and their derivatives. Energy & Fuels, 21(1), 30–41. https://doi.org/10.1021/ef060455vMäki-Arvela, P., Kuusisto, J., Sevilla, E. M., Simakova, I., Mikkola, J. P., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2008). Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Applied Catalysis A: General, 345(2), 201–212. https://doi.org/10.1016/j.apcata.2008.04.042Malins, C., & Sandford, C. (2022). Animal, Vegetable or Mineral (oil)? Exploring the potential impacts of new renewable diesel capacity on oil and fat markets in the United States. Cerulogy. https://doi.org/10.1080/00221345508982847Mane, R. B., & Rode, C. V. (2012). Continuous dehydration and hydrogenolysis of glycerol over non-chromium copper catalyst: Laboratory-scale process studies. Organic Process Research and Development, 16(5), 1043–1052. https://doi.org/10.1021/op200383rMao, J., Jiang, D., Fang, Z., Wu, X., Ni, J., & Li, X. (2017). Efficient hydrothermal hydrodeoxygenation of triglycerides with in situ generated hydrogen for production of diesel-like hydrocarbons. Catalysis Communications, 90, 47–50. https://doi.org/10.1016/j.catcom.2016.11.017Mardhiah, H. H., Chyuan, H., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036Martin, A., Armbruster, U., Gandarias, I., & Arias, P. L. (2013). Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. European Journal of Lipid Science and Technology, 115(1), 9–27. https://doi.org/10.1002/ejlt.201200207Martínez-Merino, V., Gil, M. J., & Cornejo, A. (2013). Biomass Sources for Hydrogen Production. In Renewable Hydrogen Technologies (pp. 87–110). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00005-2Masel, R. I. (2001). Chemical Kinetcis and Catalysis (Wiley-Interscience (ed.)).Matsumura, Y. (2015). Hydrothermal Gasification of Biomass. In Recent Advances in Thermochemical Conversion of Biomass (pp. 251–267). https://doi.org/10.1016/B978-0-444-63289-0.00009-0Mauriello, F., Ariga, H., Musolino, M. G., Pietropaolo, R., Takakusagi, S., & Asakura, K. (2015). Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 166–167, 121–131. https://doi.org/10.1016/j.apcatb.2014.11.014Mavrikakis, M., & Barteau, M. A. (1998). Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis A: Chemical, 131(1–3), 135–147. https://doi.org/10.1016/S1381-1169(97)00261-6Mayorga, M. A., Cadavid, J. G., López, C. A., Suárez, O. Y., Bonilla, J. A., López, M., Trujillo, C. A., & Durán, H. A. (2020). Definition of the Catalyst Family for the Production of Green Diesel by Hydrotreatment In Situ of Triglycerides. Chemical Engineering Transactions, 80(June), 241–246. https://doi.org/10.3303/CET2080041Mayorga, M. A., Cadavid, J. G., Suárez, O. Y., Vargas, J. C., Castellanos, C. J., Suarez, L. A., & Narváez, P. C. (2020). Bio-hydrogen production using metallic catalysts. Revista Mexicana de Ingeniería Química, 19(3), 1103–1115. https://doi.org/10.24275/rmiq/Cat652 issn-e:Mayorga, M. A., Cadavid, J. G., Suárez Palacios, O. Y., Vargas, J. C., Narvaez, P. C., & Rodríguez, L. I. (2020). Selection of Hydrogen Donors for the Production of Renewable Diesel by In Situ Catalytic Deoxygenation of Palm Oil. Chemical Engineering Transactions, 80(June 2020), 61–66. https://doi.org/10.3303/CET2080011Mayorga, M. A., Cadavid, J. G., Suarez Palacios, O. Y., Vargas, J., González, J., & Narváez, P. C. (2019). Production of Renewable Diesel by Hydrotreating of Palm Oil with Noble Metallic Catalysts. Chemical Engineering Transactions, 74(June 2019), 7–12. https://doi.org/10.3303/CET1974002Mears, D. E. (1971). Tests for Transport limitations in Experimental Catalytic Reactors. Industrial & Engineering Chemistry Process Design and Development, 10(4), 541–547.Mekhaev, A. V., Butin, F. N., Pervova, M. G., Taran, O. P., Simakova, I. L., & Parmon, V. N. (2014). Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls. Russian Journal of Organic Chemistry, 50(6), 900–901. https://doi.org/10.1134/S1070428014060244Meller, E., Green, U., Aizenshtat, Z., & Sasson, Y. (2014). Catalytic deoxygenation of castor oil over Pd / C for the production of cost effective biofuel. FUEL, 133, 89–95. https://doi.org/10.1016/j.fuel.2014.04.094Miller, P., & Kumar, A. (2014). Techno-economic assessment of hydrogenation-derived renewable diesel production from canola and camelina. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 6, 105–115. https://doi.org/10.1016/j.seta.2014.01.008Mitra, J., Zhou, X., & Rauchfuss, T. (2015). Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chemistry, 17(1), 307–313. https://doi.org/10.1039/c4gc01520gMohammad, M., Kandaramath Hari, T., Yaakob, Z., Chandra Sharma, Y., & Sopian, K. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 22(X), 121–132. https://doi.org/10.1016/j.rser.2013.01.026Monnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176–180. https://doi.org/10.1016/j.apcata.2010.04.035Monteiro, R. R. C., Silvia, S. O., Cavalcante, L., Luna, F. M. T. De, Bolivar, J. M., Vieira, R. S., Fernandez-lafuente, R., & Pesquisa, G. De. (2022). Biosynthesis of alkanes / alkenes from fatty acids or derivatives ( triacylglycerols or fatty aldehydes ). 61(September). https://doi.org/10.1016/j.biotechadv.2022.108045Murata, K., Liu, Y., Inaba, M., & Takahara, I. (2010). Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy and Fuels, 24(4), 2404–2409. https://doi.org/10.1021/ef901607tMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2009). Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chemistry, 11, 1511–1513. https://doi.org/10.1039/b915745jMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2011). Glycerol hydrogenolysis promoted by supported palladium catalysts. ChemSusChem, 4(8), 1143–1150. https://doi.org/10.1002/cssc.201100063Nagpure, A. S., Venugopal, A. K., Lucas, N., Manikandan, M., Thirumalaiswamy, R., & Chilukuri, S. (2015). Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catalysis Science and Technology, 5(3), 1463–1472. https://doi.org/10.1039/c4cy01376jNakagoe, O., Furukawa, Y., & Tanabe, S. (2012). Hydrogen production from steam reforming of woody biomass with cobalt catalyst. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 2–5.Narváez, P. C., Rincón, S. M., Castañeda, L. Z., & Sánchez, F. J. (2008). Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters. Latin American Applied Research, 38, 1–6.Neste Oil. (2013a). Neste oil’s Singapore refinery – the world’s largest and most advanced. https://www.google.ca/url?sa¼t&rct¼j&q¼&esrc¼s&source¼ web&cd¼4&ved¼0CEMQFjAD&url¼http%253A%252F%252Fwww.nesteoil.com%25 2Fbinary.asp%253Fpath%253D1%253B41%253B540%253B2384%253B18010%253B21058%25Neste Oil. (2013b). Production capacity. http://www.nesteoil.com/default.asp?path¼ 1,41,11991,22708,22720⟩; [accessed October 2013].Neste Oil. (2016). No TitNeste oil’s renewable diesel plant in Rotterdam – the largest and most advanced in Europe.Nie, R., Peng, X., Zhang, H., Yu, X., Lu, X., Zhou, D., & Xia, Q. (2017). Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catalysis Science and Technology, 7(3), 627–634. https://doi.org/10.1039/c6cy02461kNie, R., Tao, Y., Nie, Y., Lu, T., Wang, J., Zhang, Y., Lu, X., & Xu, C. C. (2021). Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 11(3), 1071–1095. https://doi.org/10.1021/acscatal.0c04939Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003Nuñez Isaza, M. L., & ECOPETROL. (2009). Proceso para obtencion de Diesel a Partir de Aceites Vegetales o Animales por Hidrotratamiento con Tiempos de Residencia Reducidos y Productos Obtenidos a Partir del Mismo (Patent No. WO 2009068981 A1).OECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-enOh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257(December 2017), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089Ohta, H., Kobayashi, H., Hara, K., & Fukuoka, A. (2011). Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chemical Communications, 47(44), 12209–12211. https://doi.org/10.1039/c1cc14859aOi, L. E., Choo, M. Y., Lee, H. V., Taufiq-Yap, Y. H., Cheng, C. K., & Juan, J. C. (2020). Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 45(20), 11605–11614. https://doi.org/10.1016/j.ijhydene.2019.07.172Ondrey, G. (2014). Making renewable diesel and biopropane from vegetable oil. Chemical Engineering, 11. www.chemengonline.comOnishi, N., Laurenczy, G., Beller, M., & Himeda, Y. (2018). Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews, 373, 317–332. https://doi.org/10.1016/j.ccr.2017.11.021ONU. (2015). Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Objetivos y Metas de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energyONU. (2021). La COP26 termina con un acuerdo, pero se queda corta en acción climática. UNEP. https://www.unep.org/es/noticias-y-reportajes/reportajes/la-cop26-termina-con-un-acuerdo-pero-se-queda-corta-en-accionONU. (2022). Informe de los Objetivos de Desarrollo Sostenible 2022. https://acortar.link/ZD8YIDOudenhuijzen, M. K., Kooyman, P. J., Tappel, B., Van Bokhoven, J. A., & Koningsberger, D. C. (2002). Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combination of HRTEM, mass spectrometry, and quick EXAFS. Journal of Catalysis, 205(1), 135–146. https://doi.org/10.1006/jcat.2001.3433Pan, Z., Wang, R., & Chen, J. (2018). Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 224(October 2017), 88–100. https://doi.org/10.1016/j.apcatb.2017.10.040Pan, Z., Wang, R., Nie, Z., & Chen, J. (2015). Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. Journal of Energy Chemistry, 25, 418–426. https://doi.org/10.1016/j.jechem.2016.02.007Panagiotopoulou, P., Martin, N., & Vlachos, D. G. (2014). Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A: Chemical, 392, 223–228. https://doi.org/10.1016/j.molcata.2014.05.016Paryjczak, T., & Szymura, J. A. (1979). Electron Microscopic and Chemisorption Comparison Studies on the Metal Dispersion of Pd , Rh , and I r Supported Catalysts. Zeitschrift Für Anorganische Und Allgemeine Chemie (ZAAC), 449(1), 105–114.Patel, M., & Kumar, A. (2016). Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil : A review. Renewable and Sustainable Energy Reviews, 58, 1293–1307. https://doi.org/10.1016/j.rser.2015.12.146Patil, P. T., Armbruster, U., Richter, M., & Martin, A. (2011). Heterogeneously catalyzed hydroprocessing of organosolv lignin in sub- and supercritical solvents. Energy and Fuels, 25(10), 4713–4722. https://doi.org/10.1021/ef2009875Perego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52, 133–145.Pérez-cisneros, E. S., Sales-cruz, M., & Ochoa-tapia, A. (2016). A Systematic Approach For The Hydrotreating of Biodiesel and Petroleum-Diesel Blends. Computer Aided Process Engineering - ESCAPE 26, 38, 1756–1761. https://doi.org/10.1016/B978-0-444-63428-3.50297-6Perkins, G., Batalha, N., Kumar, A., Bhaskar, T., & Konarova, M. (2019). Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 115(March), 109400. https://doi.org/10.1016/j.rser.2019.109400Pestman, R., Koster, R. M., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde. Journal of Cataly, 168, 255–264Pipitone, G., Zoppi, G., Pirone, R., & Bensaid, S. (2022). A critical review on catalyst design for aqueous phase reforming. International Journal of Hydrogen Energy, 47(1), 151–180. https://doi.org/10.1016/j.ijhydene.2021.09.206Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). THE PROPERTIES OF GASES AND LIQUIDS (McGRAW-HILL (ed.); FifthPopov, S., & Kumar, S. (2015). Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process. Energy and Fuels, 29(5), 3377–3384. https://doi.org/10.1021/acs.energyfuels.5b00308Qin, Y., Chen, P., Duan, J., Han, J., Lou, H., Zheng, X., & Hong, H. (2013). Carbon Nanofibers Supported Molybdenum Carbide Catalysts for Hydrodeoxygenation of Vegetable Oils. RSC Advances, 3(38), 17485. https://doi.org/10.1039/c3ra42434kQuiroga, I. G. (2004). Introducción al Equilibrio Termodinámico y de Fases (U. N. de Colombia (ed.))Rabaev, M., Landau, M. V., Vidruk-Nehemya, R., Goldbourt, A., & Herskowitz, M. (2015). Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aromatization of vegetable oil. Journal of Catalysis, 332, 164–176. https://doi.org/10.1016/j.jcat.2015.10.005Rahman, M. M., Liu, R., & Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180(June), 32–46. https://doi.org/10.1016/j.fuproc.2018.08.002Raikova, S., Le, C. D., Wagner, J. L., Ting, V. P., & Chuck, C. J. (2016). Towards an Aviation Fuel Through the Hydrothermal Liquefaction of Algae. In Biofuels for Aviation (pp. 217–239). Elsevier. https://doi.org/10.1016/B978-0-12-804568-8.00009-3Rambabu, K., Bharath, G., Sivarajasekar, N., Velu, S., Sudha, P. N., Wongsakulphasatch, S., & Banat, F. (2023). Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel, 331(P1), 125688. https://doi.org/10.1016/j.fuel.2022.125688Ramirez-Corredores, M. M. (2013). Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 161–216. https://doi.org/10.1016/B978-0-444-56330-9.00006-1Rana, B. S., Kumar, R., Tiwari, R., Kumar, R., Joshi, R. K., Garg, M. O., & Sinha, A. K. (2013). Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures. Biomass and Bioenergy, 56, 43–52. https://doi.org/10.1016/j.biombioe.2013.04.029Richardson, J. T. (1992). Principles of Catalyst Development (Springer Science+Business (ed.); Second).Robin, T., Jones, J. M., & Ross, A. B. (2017). Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 98, 26–36. https://doi.org/10.1016/j.biombioe.2017.01.012Robinson, A. M., Hensley, J. E., & Will Medlin, J. (2016). Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 6(8), 5026–5043. https://doi.org/10.1021/acscatal.6b00923Roquero, P. (2011). Carbon-Supported Platinum Molybdenum Electro-Catalysts and Their Electro-Activity Toward Ethanol Oxidation. June.Ruddy, D. A., Schaidle, J. A., Ferrell III, J. R., Wang, J., Moens, L., & Hensley, J. E. (2014). Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem., 16(2), 454–490. https://doi.org/10.1039/C3GC41354CSaha, B., & Abu-Omar, M. M. (2015). Current Technologies, Economics, and Perspectives for 2,5-Dimethylfuran Production from Biomass-Derived Intermediates. ChemSusChem, 8(7), 1133–1142. https://doi.org/10.1002/cssc.201403329Sahu, R., Song, B. J., Im, J. S., Jeon, Y. P., & Lee, C. W. (2015). A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry, 27, 12–24. https://doi.org/10.1016/j.jiec.2015.01.011Santillan-Jimenez, E., & Crocker, M. (2012a). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775Santillan-Jimenez, E., & Crocker, M. (2012b). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775Santillan-jimenez, E., Morgan, T., Lacny, J., Mohapatra, S., & Crocker, M. (2013). Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel, 103, 1010–1017. https://doi.org/10.1016/j.fuel.2012.08.035Santis, L. (2017). Reformado catalítico en fase acuosa de glicerina, sobre catalizadores: Pt, Rh y Pt-Rh, soportados en óxidos mixtos Ce-Zr-Co. Universidad Nacional de Colombia.Sari, E., Kim, M., Salley, S. O., & Ng, K. Y. S. (2013). A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: Correlation of activity and catalyst properties. Applied Catalysis A: General, 467, 261–269. https://doi.org/10.1016/j.apcata.2013.07.053Satyarthi, J. K., Chiranjeevi, T., Gokak, D. T., & Viswanathan, P. S. (2013). An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catalysis Science & Technology, 3(70), 70–80. https://doi.org/10.1039/c2cy20415kSavage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 50(January 2011), 52–61.Sawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. https://doi.org/10.1016/j.rser.2013.04.007Scaldaferri, C. A., Márcia, V., & Pasa, D. (2019). Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel, 245(December 2018), 458–466. https://doi.org/10.1016/j.fuel.2019.01.179Scholz, D., Aellig, C., & Hermans, I. (2014). Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 7(1), 268–275. https://doi.org/10.1002/cssc.201300774Scott Fogler, H. (2021). Elements of chemical reaction engineering (Pearson (ed.); Sixth). https://doi.org/10.1016/0009-2509(87)80130-6Serrano-Ruiz, J. C., Luque, R., & Clark, J. H. (2013). Chapter 17 - The Role of Heterogeneous Catalysis in the Biorefinery of the Future. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals: Vol. #volume# (pp. 557–576). © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00017-6Shi, N., Liu, Q. Y., Jiang, T., Wang, T. J., Ma, L. L., Zhang, Q., & Zhang, X. H. (2012). Hydrodeoxygenation of vegetable oils to liquid alkane fuels over Ni/HZSM-5 catalysts: Methyl hexadecanoate as the model compound. Catalysis Communications, 20, 80–84. https://doi.org/10.1016/j.catcom.2012.01.007Simakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208–224. https://doi.org/10.1016/j.jechem.2016.01.004Singh, R., Prakash, A., Balagurumurthy, B., & Bhaskar, T. (2015). Hydrothermal Liquefaction of Biomass. In Elsevier B.V. (Ed.), Recent Advances in Thermochemical Conversion of Biomass (pp. 269–291). https://doi.org/10.1016/B978-0-444-63289-0.00010-7Sinha, A. K., Anand, M., & Farooqui, S. A. (2016). Chapter 5 – Aviation Biofuels Through Lipid Hydroprocessing. In Biofuels for Aviation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804568-8.00005-6Skoda, F., Astier, M. P., & Paj, G. M. (1994). Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159–168.Slinn, M., Kendall, K., Mallon, C., & Andrews, J. (2008). Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology, 99(13), 5851–5858. https://doi.org/10.1016/j.biortech.2007.10.003Smirnova, M. Y., Kikhtyanin, O. V., Smirnov, M. Y., Kalinkin, A. V., Titkov, A. I., Ayupov, A. B., & Ermakov, D. Y. (2015). Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Applied Catalysis A: General, 505, 524–531. https://doi.org/10.1016/j.apcata.2015.06.019Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., & Murzin, D. Y. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 45(16), 5708–5715. https://doi.org/10.1021/ie060334iSon, P. A., Nishimura, S., & Ebitani, K. (2014). Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances, 4(21), 10525–10530. https://doi.org/10.1039/c3ra47580hSotelo-boyás, R., Trejo-zárraga, F., & Hernández-loyo, F. D. J. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. In InTech (Ed.), Hydrogenation (pp. 187–216).Speight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628).Speight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628). Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Viriya-empikul, N. (2014). Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys. BIORESOURCE TECHNOLOGY, 158, 81–90. https://doi.org/10.1016/j.biortech.2014.01.100Suarez Palacios, O. Y. (2011). Producción y modelamiento de gliceril-ésteres como plastificantes para PVC. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0ASuárez Palacios, O. Y. (2011). Producción y Modelamiento de Gliceril-Ésteres como Plastificantes para PVC [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0ASun, H. J., Pan, Y. J., Jiang, H. B., Li, S. H., Zhang, Y. X., Liu, S. C., & Liu, Z. Y. (2013). Effect of transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst. Applied Catalysis A: General, 464–465, 464–465. https://doi.org/10.1016/j.apcata.2013.05.021Suresh, M., Jawahar, C. P., & Richard, A. (2018). A review on biodiesel production , combustion , performance , and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews, 92(March), 38–49. https://doi.org/10.1016/j.rser.2018.04.048Sutton, J. E., Panagiotopoulou, P., Verykios, X. E., & Vlachos, D. G. (2013). Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. 3.Szeto, W., & Leung, D. Y. C. (2022). Is hydrotreated vegetable oil a superior substitute for fossil diesel ? A comprehensive review on physicochemical properties , engine performance and emissions. Fuel, 327(July), 125065. https://doi.org/10.1016/j.fuel.2022.125065Tai, L., Caprariis, B. De, Filippis, P. De, & Hamidi, R. (2021). In Situ Hydrodeoxygenation of Guaiacol using Magnetic Catalysts and Heterogeneous Hydrogen Producer. 86(April), 85–90. https://doi.org/10.3303/CET2186015Tan, Z., Xu, X., Liu, Y., Zhang, C., Zhai, Y., Liu, P., Li, Y., & Zhang, R. (2014). Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environmental Progress and Sustainable Energy, 33(3), 751–755. https://doi.org/10.1002/ep.11915Tang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., & Lin, L. (2014). Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 40, 608–620. https://doi.org/10.1016/j.rser.2014.07.209Tazli, M., Ahmad, K., Husainni, M., & Ameen, M. (2016). Thermodynamic Equilibrium Analysis of Triolein Hydrodeoxygenation for Green Diesel Production. Procedia Engineering, 148, 1369–1376. https://doi.org/10.1016/j.proeng.2016.06.603Tedsree, K., Chan, C. W. A., Jones, S., Cuan, Q., Li, W.-K., Gong, X.-Q., & Tsang, S. C. E. (2014). 13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation in Liquid Phase. Sciencie, 332(2011), 224–228. https://doi.org/10.1126/science.1202364G. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302–307. https://doi.org/10.1038/nnano.2011.42Thananatthanachon, T., & Rauchfuss, T. B. (2010). Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angewandte Chemie, 122(37), 6766–6768. https://doi.org/10.1002/ange.201002267The European Parliament and the Council of the European Union. (2009). Directive 2009/28/EC. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:%0AL:2009:140:0016:0062:en:PDF.The European Parliament and the Council of the European Union. (2018). DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 2001, 82–209. https://eur-lex.europa.eu/%0Alegal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.%0AENG.The European Parliament and the Council of the European Union. (2019). Quality of petrol and diesel fuel used for road transport in the European Union (Vol. 15, Issue 2)The European Parliament and the Council of the European Union. (2021). European Climate Law. In Official Journal of the European Union (Vol. 2021, Issue June). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119Thomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (VCH (ed.); First).Tian, Q., Qiao, K., Zhou, F., Chen, K., Wang, T., Fu, J., Lu, X., & Ouyang, P. (2016). Direct Production of Aviation Fuel Range Hydrocarbons and Aromatics from Oleic Acid without an Added Hydrogen Donor. Energy and Fuels, 30(9), 7291–7297. https://doi.org/10.1021/acs.energyfuels.6b00978Tian, Q., Zhang, Z., Zhou, F., Chen, K., Fu, J., Lu, X., & Ouyang, P. (2017). Role of Solvent in Catalytic Conversion of Oleic Acid to Aviation Biofuels. Energy Fuels, 31, 6163−6172. https://doi.org/10.1021/acs.energyfuels.7b00586Timilsina, G. R., & Shrestha, A. (2011). How much hope should we have for biofuels? Energy, 36(4), 2055–2069. https://doi.org/10.1016/j.energy.2010.08.023Toba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., & Yoshimura, Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 164(1), 533–537. https://doi.org/10.1016/j.cattod.2010.11.049Toledano, A., Serrano, L., Labidi, J., Pineda, A., Balu, A. M., & Luque, R. (2013). Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogen-Donating Solvents. ChemCatChem, 5(4), 977–985. https://doi.org/10.1002/cctc.201200616Trimm, D. L. (1980). Design of Industrial Catalysts (E. S. P. Company (ed.); First)Tuteja, J., Choudhary, H., Nishimura, S., & Ebitani, K. (2014). Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem, 7(1), 96–100. https://doi.org/10.1002/cssc.201300832U.S. Congress. (2007). Energy independence and security act of 2007. In Public Law. https://doi.org/papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42U.S. Government Accountability Office. (2016). RENEWABLE FUEL STANDARD Program Unlikely to Meet Its Targets for Reducing Greenhouse Gas Emissions.UNEP. (2017). Resource Efficiency: Potential and Economic Implications. In P. Ekins, N. Hughes, S. Bringezu, C. Arden Clarke, M. Fischer-Kowalski, T. Graedel, M. Hajer, S. Hashimoto, S. Hatfield-Dodds, P. Havlik, E. Hertwich, J. Ingram, K. Kruit, B. Milligan, Y. Moriguchi, N. Nasr, D. Newth, M. Obersteiner, A. Ramaswami, … A. Pedroza (Eds.), A report of the International Resource Panel (UNEP). http://www.resourcepanel.org/sites/default/files/documents/document/media/resource_efficiency_report_march_2017_web_res.pdfUnited Nations Industrial Development Organization. (1976). Catalyst Manual : a User’s Guide to Calysts for the Petrochemical and Fertilizer Industrie (J. U.-R. Centre (ed.)).UPME. (2019). Plan Energético Nacional 2020-2050. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. PEN 2050 www.upme.gov.co /USDA. (2020). Biofuels Annual - Colombia. In CO2022-0012 (Issue August 01). https://www.fas.usda.gov/data/colombia-biofuels-annual-8USDA. (2021a). Biofuels Annual China. In United States Department of Agriculture: Foreign Agricultural Service.USDA. (2021b). Report Name : Biofuels Annual. In GAIN Global Agricultural Information Network. USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).USDA. (2022b). Biofuels Annual European Union (Vols. E42022-004).USDA. (2022c). Report Name : Biofuels Annual India. In Unites States Department of Agriculture Foreign Agriculture Service (Issue May). https://www.fas.usda.gov/data/malaysia-biofuels-annual-3Valencia, D., García-cruz, I., Hugo, V., Ramírez-verduzco, L. F., Amezcua-allieri, M. A., & Aburto, J. (2018). Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass and Bioenergy, 112(August 2017), 37–44. https://doi.org/10.1016/j.biombioe.2018.02.014Vallinayagam, R., Vedharaj, S., Yang, W. M., Lee, P. S., Chua, K. J. E., & Chou, S. K. (2014). Pine oil-biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Applied Energy, 130, 466–473. https://doi.org/10.1016/j.apenergy.2013.11.025Vannice, M. A. (2005). Kinetics of Catalytic Reactions (Springer Science+Business Media (ed.)).Vardon, D. R., Sharma, B. K., Jaramillo, H., Kim, D., Choe, J. K., Ciesielski, P. N., & Strathmann, T. J. (2014). Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 16(3), 1507. https://doi.org/10.1039/c3gc41798kVasiliadou, E., & Lemonidou, A. (2014). Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts, 4(4), 397–413. https://doi.org/10.3390/catal4040397Veriansyah, B., Young, J., Ki, S., Hong, S., Jun, Y., Sung, J., Shu, Y., Oh, S., & Kim, J. (2012). Production of renewable diesel by hydroprocessing of soybean oil : Effect of catalysts. Fuel, 94, 578–585. https://doi.org/10.1016/j.fuel.2011.10.057Viêgas, C. V., Hachemi, I., Freitas, S. P., Mäki-Arvela, P., Aho, A., Hemming, J., Smeds, A., Heinmaa, I., Fontes, F. B., Da Silva Pereira, D. C., Kumar, N., Aranda, D. A. G., & Murzin, D. Y. (2015). A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 155, 144–154. https://doi.org/10.1016/j.fuel.2015.03.064Villaverde, M. M., Garetto, T. F., & Marchi, A. J. (2015). Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis Communications, 58, 6–10. https://doi.org/10.1016/j.catcom.2014.08.021Vutolkina, A. V., Baigildin, I. G., Glotov, A. P., Pimerzin, A. A., Akopyan, A. V., Maximov, A. L., & Karakhanov, E. A. (2022). Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 312(April), 121403. https://doi.org/10.1016/j.apcatb.2022.121403Wai, K., Yusup, S., Chun, A., Loy, M., Shen, B., Skoulou, V., & Taylor, M. J. (2022). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds : Catalysis , process , and kinetics. Molecular Catalysis, 523(September 2020), 111469. https://doi.org/10.1016/j.mcat.2021.111469Wan, H., Chaudhari, R. V., & Subramaniam, B. (2012). Catalytic hydroprocessing of p-cresol: Metal, solvent and mass-transfer effects. Topics in Catalysis, 55(3–4), 129–139. https://doi.org/10.1007/s11244-012-9782-6Wan, H., Chaudhari, R. V., & Subramaniam, B. (2013). Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy and Fuels, 27(1), 487–493. https://doi.org/10.1021/ef301400cWang, B., Hou, H., & Gu, Y. (2000). New mechanism for the catalyzed thermal decomposition of formic acid. Journal of Physical Chemistry A, 104(45), 10526–10528. https://doi.org/10.1021/jp001173dWang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203Wang, F., Xu, H., Yu, S., Zhu, H., Du, Y., Zhang, Z., You, C., Jiang, X., & Jiang, J. (2022). Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel. Renewable Energy, 197(July), 40–49. https://doi.org/10.1016/j.renene.2022.07.079Wang, F., & Zhang, Z. (2017). Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS Sustainable Chemistry and Engineering, 5(1), 942–947. https://doi.org/10.1021/acssuschemeng.6b02272Wang, H., Chi, Y., Gao, D., Wang, Z., Wang, C., & Wang, L. (2019). Applied Catalysis B : Environmental Enhancing formic acid dehydrogenation for hydrogen production with the metal / organic interface. Applied Catalysis B: Environmental, 255(April), 117776. https://doi.org/10.1016/j.apcatb.2019.117776Wang, H., Male, J., & Wang, Y. (2013). Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis, 3(5), 1047–1070. https://doi.org/10.1021/cs400069zWang, H., Yan, S., Salley, S. O., & Ng, K. Y. S. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81–87. https://doi.org/10.1016/j.fuel.2013.04.066Wang, J., Li, X., Zheng, J., Cao, J., Hao, X., Wang, Z., Abudula, A., & Guan, G. (2018). Non-precious molybdenum-based catalyst derived from biomass: CO-free hydrogen production from formic acid at low temperature. Energy Conversion and Management, 164(December 2017), 122–131. https://doi.org/10.1016/j.enconman.2018.02.092Wang, J., Xu, L., Nie, R., Lyu, X., & Lu, X. (2020). Bifunctional CuNi / CoO x catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 265(December 2019), 116913. https://doi.org/10.1016/j.fuel.2019.116913Wang, L., Liu, Q., Jing, C., Mominou, N., Li, S., & Wang, H. (2018). In-situ hydrodeoxygenation of a mixture of oxygenated compounds with hydrogen donor over ZrNi / Ir-ZSM-5 þ Pd / C. Journal of Alloys and Compounds, 753, 664–672. https://doi.org/10.1016/j.jallcom.2018.03.356Wang, L., Zhang, B., Meng, X., Su, D. S., & Xiao, F. S. (2014). Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. ChemSusChem, 7(6), 1537–1541. https://doi.org/10.1002/cssc.201400039Wang, Q., Sun, G. Q., Jiang, L. H., Xin, Q., Sun, S. G., Jiang, Y. X., Chen, S. P., Jusysb, Z., & Behm, R. J. (2007). Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studiesw. Physical Chemistry Chemical Physics, 9, 2686–2696. https://doi.org/10.1039/b700676bWang, T., Du, J., Sun, Y., Tang, X., Wei, Z. J., Zeng, X., Liu, S. J., & Lin, L. (2021). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 32(3), 1186–1190. https://doi.org/10.1016/j.cclet.2020.07.044Wang, T., Zhang, J., Xie, W., Tang, Y., Guo, D., & Ni, Y. (2017). Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 7(3), 1–8. https://doi.org/10.3390/catal7030092Wang, W., Thapaliya, N., Campos, A., Stikeleather, L. F., & Roberts, W. L. (2012). Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel, 95, 622–629. https://doi.org/10.1016/j.fuel.2011.12.041Wang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146Wang, X., Qi, G., Tan, C., Li, Y., Guo, J., Pang, X., & Zhang, S. (2014). Pd/C nanocatalyst with high turnover frequency for hydrogen generation from the formic acid–formate mixtures. International Journal of Hydrogen Energy, 39(2), 837–843. https://doi.org/10.1016/j.ijhydene.2013.10.154Wang, X., Qiu, Z., Liu, Q., Chen, X., Tao, S., Shi, C., Pang, M., & Liang, C. (2017). Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catalysis Letters, 147(2), 517–524. https://doi.org/10.1007/s10562-016-1929-9Wang, Z. L., Yan, J. M., Wang, H. L., Ping, Y., & Jiang, Q. (2012). Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate. Scientific Reports, 2, 1–6. https://doi.org/10.1038/srep00598Wang, Z., Zeng, Y., Lin, W., & Song, W. (2017a). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053Wang, Z., Zeng, Y., Lin, W., & Song, W. (2017b). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053Watanabe, M., Iida, T., & Inomata, H. (2006). Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management, 47(18–19), 3344–3350. https://doi.org/10.1016/j.enconman.2006.01.009Wiener, H., Sasson, Y., & Blum, J. (1986). Palladium-catalyzed decomposition of aqueous alkali metal formate solutions. Journal of Molecular Catalysis, 35(3), 277–284. https://doi.org/10.1016/0304-5102(86)87075-4Wilches Flórez, Á. M. (2011). Biocombustibles: ¿son realmente amigables con el medio ambiente? Revista Colombiana de Bioética, 6(1), 89–102. http://www.redalyc.org/articulo.oa?id=55140109Williams, R., Crandall, R. S., & Bloom, A. (1978). Use of carbon dioxide in energy storage. Applied Physics Letters, 33(5), 381–383. https://doi.org/10.1063/1.90403Wind, J., Auckett, J. E., Withers, R. L., Piltz, R. O., & Ling, C. D. (2015). commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide. 679–687. https://doi.org/10.1107/S2052520615018351WMO. (2022). State of the Global Climate 2021 (Issue WMO-No. 1290). https://library.wmo.int/index.php?lvl=notice_display&id=21880#.YHg0ABMzZR0Wu, J., Wang, T., Fu, J., Hou, Z., & Lu, X. (2016). Mechanism for the Controllable Production of Heptadecane by Hydrothermal In-Situ Hydrogenation and Decarboxylation of Oleic Acid with Methanol. Energy and Environment Focus, 5(3), 163-168(6). https://doi.org/10.1166/eef.2016.1208Xia, S., Yuan, Z., Wang, L., Chen, P., & Hou, Z. (2011). Applied Catalysis A : General Hydrogenolysis of glycerol on bimetallic Pd-Cu / solid-base catalysts prepared via layered double hydroxides precursors. “Applied Catalysis A, General,” 403(1–2), 173–182. https://doi.org/10.1016/j.apcata.2011.06.026Xia, S., Zheng, L., Wang, L., Chen, P., & Hou, Z. (2013). Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu–Mg–Al catalysts. RSC Advances, 3(37), 16569. https://doi.org/10.1039/c3ra42543fXie, S., Jia, C., Prakash, A., Palafox, M. I., Pfaendtner, J., & Lin, H. (2019). Generic Biphasic Catalytic Approach for Producing Renewable Diesel from Fatty Acids and Vegetable Oils [Research-article]. ACS Catalysis, 9, 3753–3763. https://doi.org/10.1021/acscatal.9b00215Xiong, W., Fu, Y., Zeng, F., & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Processing Technology, 92(8), 1599–1605. https://doi.org/10.1016/j.fuproc.2011.04.005Xu, L., Nie, R., Lyu, X., Wang, J., & Lu, X. (2020). Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 197(May 2019), 106205. https://doi.org/10.1016/j.fuproc.2019.106205Xu, X., Luo, J., Li, L., Zhang, D., Wang, Y., & Li, G. (2018). Unprecedented catalytic performance in amine syntheses: Via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chemistry, 20(9), 2038–2046. https://doi.org/10.1039/c8gc00144hXu, Y., Li, Y., Wang, C., Wang, C., Ma, L., & Wang, T. (2017). In-situ hydrogenation of model compounds and raw bio-oil over Ni / CMK-3 catalyst. Fuel Processing Technology, 161, 226–231. https://doi.org/10.1016/j.fuproc.2016.08.018Xu, Y., Long, J., Liu, Q., Li, Y., Wang, C., Zhang, Q., Lv, W., Zhang, X., Qiu, S., Wang, T., & Ma, L. (2015). In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Conversion and Management, 89, 188–196. https://doi.org/10.1016/j.enconman.2014.09.017Yanase, S., & Oi, T. (2008). Lithium Isotope Effect Accompanying Electrochemical Insertion of Lithium into Liquid Gallium. May 2014. https://doi.org/10.1016/j.pnucene.2007.11.034Yang, C., Nie, R., Fu, J., Hou, Z., & Lu, X. (2013). Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresource Technology, 146, 569–573. https://doi.org/10.1016/j.biortech.2013.07.131Yang, P., Xia, Q., Liu, X., & Wang, Y. (2017). Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 187, 159–166. https://doi.org/10.1016/j.fuel.2016.09.026Yang, Y., Ochoa-Hernández, C., Pizarro, P., de la Peña O’Shea, V. A., Coronado, J. M., & Serrano, D. P. (2015). Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 144, 60–70. https://doi.org/10.1016/j.fuel.2014.12.008Yang, Y., Wang, Q., Chen, H., & Zhang, X. (2014). Enhancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors. FUEL, 133, 241–244. https://doi.org/10.1016/j.fuel.2014.05.044Yang, Z., Huang, Y. B., Guo, Q. X., & Fu, Y. (2013). Raney® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chemical Communications, 49(46), 5328–5330. https://doi.org/10.1039/c3cc40980eYeh, T. M., Dickinson, J. G., Franck, A., Linic, S., Thompson, L. T., & Savage, P. E. (2013). Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 88(1), 13–24. https://doi.org/10.1002/jctb.3933Yenumala, S. R., Maity, S. K., & Shee, D. (2017). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis, 120(1), 109–128. https://doi.org/10.1007/s11144-016-1098-2Yigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084You, S. J., Baek, I. G., & Park, E. D. (2013). Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts. Applied Catalysis A: General, 466, 161–168. https://doi.org/10.1016/j.apcata.2013.06.053Yu, J. L., & Savage, P. E. (1998). Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research, 37(1), 2–10. https://doi.org/10.1021/ie970182eYuan, J., Li, S. S., Yu, L., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2013). Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 6(11), 3308–3313. https://doi.org/10.1039/c3ee40857dYuan, J., Li, S., Yu, L., Liu, Y., & Cao, Y. (2013). Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Cuihua Xuebao/Chinese Journal of Catalysis, 34(11), 2066–2074. https://doi.org/10.1016/S1872-2067(12)60656-1Yuan, M., Long, Y., Yang, J., Hu, X., Xu, D., Zhu, Y., & Dong, Z. (2018). Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem, 11(23), 4156–4165. https://doi.org/10.1002/cssc.201802163Zarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M. V., & Herskowitz, M. (2015). Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 139, 684–691. https://doi.org/10.1016/j.fuel.2014.09.053Zeng, Y., Wang, Z., Lin, W., Song, W., Christensen, J. M., & Jensen, A. D. (2016). Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid. Catalysis Communications, 82, 46–49. https://doi.org/10.1016/j.catcom.2016.04.018Zhang, C., Leng, Y., Jiang, P., Li, J., & Du, S. (2017). Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect, 2(20), 5469–5474. https://doi.org/10.1002/slct.201701176Zhang, G., Peng, Z., & Li, C. (2016). A study of thermal behavior of cesium phosphate. Journal of Thermal Analysis and Calorimetry, 124(2), 1063–1070. https://doi.org/10.1007/s10973-015-5192-xZhang, H., Lin, H., Wang, W., Zheng, Y., & Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. https://doi.org/10.1016/j.apcatb.2013.12.006Zhang, J., Huo, X., Li, Y., & Strathmann, T. J. (2019). Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 7, 14400−14410. https://doi.org/10.1021/acssuschemeng.9b00215Zhang, J., & Zhao, C. (2015). A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 51(97), 17249–17252. https://doi.org/10.1039/c5cc06601hZhang, L., Wu, W., Jiang, Z., & Fang, T. (2018). A review on liquid ‑ phase heterogeneous dehydrogenation of formic acid : recent advances and perspectives. Chemical Papers. https://doi.org/10.1007/s11696-018-0469-8Zhang, S., Yan, Y., Li, T., & Ren, Z. (2005). Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology, 96(5), 545–550. https://doi.org/10.1016/j.biortech.2004.06.015Zhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019a). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0Zhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019b). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178, pp. 195–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0Zhang, Z., Chen, H., Wang, C., Chen, K., Lu, X., Ouyang, P., & Fu, J. (2018). Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 230(May), 211–217. https://doi.org/10.1016/j.fuel.2018.05.018Zhang, Z., Wang, F., Jiang, J., Zhu, H., Du, Y., Feng, J., Li, H., & Jiang, X. (2023). LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel. Fuel, 333(P1), 126341. https://doi.org/10.1016/j.fuel.2022.126341Zhang, Z., Yang, Q., Chen, H., Chen, K., Lu, X., Ouyang, P., Fu, J., & Chen, J. G. (2018). In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 20(1), 197–206. https://doi.org/10.1039/c7gc02774eZhao, C., He, J., Lemonidou, A. A., Li, X., & Lercher, J. A. (2011). Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 280(1), 8–16. https://doi.org/10.1016/j.jcat.2011.02.001Zhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2009). Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie - International Edition, 48(22), 3987–3990. https://doi.org/10.1002/anie.200900404Zhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2010). Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chemical Communications, 46(3), 412–414. https://doi.org/10.1039/b916822bZhao, C., & Lercher, J. A. (2013). Catalytic Depolymerization and Deoxygenation of Lignin. 289–320.Zhao, Z., Zhang, L., Tan, Q., Faria, J., & Resasco, D. (2019). Synergistic Bimetallic Ru – Pt Catalysts for the Low-Temperature Aqueous Phase Reforming of Ethanol. 65(1), 151–160. https://doi.org/10.1002/aic.16430Zhou, L., & Lawal, A. (2014). Evaluation of Presulfided NiMo/γ-Al2O3 for Hydrodeoxygenation of Microalgae Oil To Produce Green Diesel. Energy & Fuels, American Chemical Sociesty, xxx, xxx–xxx. https://doi.org/10.1021/ef502258qZhou, L., & Lawal, A. (2017). Kinetic study of hydrodeoxygenation of palmitic acid as a model compound for microalgae oil over Pt/γ-Al2O3. Applied Catalysis A: General, 532, 40–49. https://doi.org/10.1016/j.apcata.2016.12.014Zhou, M., Tian, L., Niu, L., Li, C., Xiao, G., & Xiao, R. (2014). Upgrading of liquid fuel from fast pyrolysis of biomass over modi fi ed Ni / CNT catalysts. Fuel Processing Technology, 126, 12–18. https://doi.org/10.1016/j.fuproc.2014.04.015Zhou, W., Xin, H., Yang, H., Du, X., Yang, R., Li, D., & Hu, C. (2018). The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts. Catalysts, 153(8), 1–20. https://doi.org/10.3390/catal8040153Zhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., & Lu, T. (2008). High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C. Chemical Communications (Cambridge, England), 30, 3540–3542. https://doi.org/10.1039/b803661fZhu, S., Qiu, Y., Zhu, Y., Hao, S., Zheng, H., & Li, Y. (2013). Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today, 212, 120–126. https://doi.org/10.1016/j.cattod.2012.09.011Zoppi, G., Pipitone, G., Pirone, R., & Bensaid, S. (2022). Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catalysis Today, 387, 224–236. https://doi.org/10.1016/j.cattod.2021.06.002Žula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444(February), 1–25. https://doi.org/10.1016/j.cej.2022.136564Producción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - Convocatoria Nacional de Proyectos para el Fortalecimiento de la Investigación, Creación e Innovación de la Universidad Nacional de Colombia 2016-20 (Código Hermes 37622)Producción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - crédito-beca de la Convocatoria Doctorado Nacional 647 de 2014 (asignado mediante la Resolución 23 de 2015 de la Vicerrectoría Académica de la Universidad Nacional de Colombia)Ministerio de Ciencia, Tecnología e InnovaciónUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84628/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL79729627.2023.pdf79729627.2023.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf5251969https://repositorio.unal.edu.co/bitstream/unal/84628/2/79729627.2023.pdfac77ba4b97843845619b88520b3322aeMD52THUMBNAIL79729627.2023.pdf.jpg79729627.2023.pdf.jpgGenerated Thumbnailimage/jpeg5606https://repositorio.unal.edu.co/bitstream/unal/84628/3/79729627.2023.pdf.jpg9bc7163a42503e9e3ff2e08175e757c9MD53unal/84628oai:repositorio.unal.edu.co:unal/846282024-08-14 23:42:04.301Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=