Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
ilustraciones, diagramas, tablas
- Autores:
-
Tenorio Albañil, Johnny Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79392
- Palabra clave:
- 620 - Ingeniería y operaciones afines::621 - Física aplicada
Laser
Pseudothermal Light
Coherence
Correlation Function
Quantum Information
Homodyne Detection
Ghost Imaging
Láser
Luz pseudotérmica
Coherencia
Función de correlación
Información Cuántica
Detección Homodina
Rayo láser
Luz
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6e53f8097f604d2857f2861918d9ce4c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79392 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
dc.title.translated.none.fl_str_mv |
Quantum information processing through the use of continuous variables of light |
title |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
spellingShingle |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz 620 - Ingeniería y operaciones afines::621 - Física aplicada Laser Pseudothermal Light Coherence Correlation Function Quantum Information Homodyne Detection Ghost Imaging Láser Luz pseudotérmica Coherencia Función de correlación Información Cuántica Detección Homodina Rayo láser Luz |
title_short |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
title_full |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
title_fullStr |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
title_full_unstemmed |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
title_sort |
Procesamiento de información cuántica mediante la utilización de variables continuas de la luz |
dc.creator.fl_str_mv |
Tenorio Albañil, Johnny Alberto |
dc.contributor.advisor.none.fl_str_mv |
Vargas Chaparro, Edgar Miguel Nuñez Portela, Mayerlin |
dc.contributor.author.none.fl_str_mv |
Tenorio Albañil, Johnny Alberto |
dc.contributor.subjectmatterexpert.none.fl_str_mv |
Valencia Gonzalez, Alejandra Catalina |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::621 - Física aplicada |
topic |
620 - Ingeniería y operaciones afines::621 - Física aplicada Laser Pseudothermal Light Coherence Correlation Function Quantum Information Homodyne Detection Ghost Imaging Láser Luz pseudotérmica Coherencia Función de correlación Información Cuántica Detección Homodina Rayo láser Luz |
dc.subject.proposal.eng.fl_str_mv |
Laser Pseudothermal Light Coherence Correlation Function Quantum Information Homodyne Detection Ghost Imaging |
dc.subject.proposal.spa.fl_str_mv |
Láser Luz pseudotérmica Coherencia Función de correlación Información Cuántica Detección Homodina |
dc.subject.unesco.none.fl_str_mv |
Rayo láser Luz |
description |
ilustraciones, diagramas, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-04-09T15:11:11Z |
dc.date.available.none.fl_str_mv |
2021-04-09T15:11:11Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79392 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional UN |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79392 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional UN |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010. [2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010. [3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996. [4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956. [5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006. [6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956. [7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975. [8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007. [9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008. [10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011. [11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015. [12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009. [13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015. [14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015. [15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009. [16] B. D. Guenther, Modern Optics. Oxford University Press, 2015. [17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017. [18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006. [19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006. [20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965. [21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971. [22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964. [23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008. [24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017. [25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005. [26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics|undergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996. [27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019. [28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002. [29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997. [30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993. [31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017. [32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013. [33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018. [34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017. [35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007. [36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011. [37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009. [38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015. [39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015. [40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010. [41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016. [42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004. [43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017. [44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004. [45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004. [46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004. [47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005. [48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005. [49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010. [50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004. [51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005. [52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005. [53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006. [54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008. [55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009. [56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010. [57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012. [58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016. [59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010. [60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013. [61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013. [62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018. [63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en linea (76 paginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79392/1/1032439330.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79392/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79392/3/1032439330.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
e4c94c75a935e73f2dea49e2086688b1 cccfe52f796b7c63423298c2d3365fc6 95437a91f5b8ecb8cf589e55e58737b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089800874983424 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Chaparro, Edgar Miguel5059caaded4ef43de9051959bb48a122Nuñez Portela, Mayerlin05e7739df9a186646617db73f76dc2b6Tenorio Albañil, Johnny Albertoca976476fb71b34d356046e239f39eb7Valencia Gonzalez, Alejandra Catalina2021-04-09T15:11:11Z2021-04-09T15:11:11Z2020https://repositorio.unal.edu.co/handle/unal/79392Universidad Nacional de ColombiaRepositorio Institucional UNhttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo se presenta una forma de transmitir información haciendo uso de las variables continuas de la luz. Se estudiaron las propiedades de coherencia de dos tipos de fuentes de luz, luz láser y luz pseudotérmica. Se midió, para cada fuente de luz, el grado de coherencia de segundo orden en las variables espaciales y temporales. A partir de las medidas de la función de correlación espacial de segundo orden de una fuente de luz pseudotérmica, g(2)(x1-x2), se caracterizó la longitud transversal de coherencia. Utilizando la propiedad de coherencia de este tipo de fuente de luz se implementó un experimento de imagen fantasma o Ghost Imaging en el que se puede recuperar la información del per fil espacial de un objeto a partir de la medida de correlación.This document presents a way to transmit information using the continuous variables of light. The coherence properties of two types of light sources, laser light and pseudo-thermal light, were studied. The degree of coherence in the spatial and temporal variables of the light was measured for each light source. From the measurements of the second-order spatial correlation function for a pseudo-thermal light source, g(2) (x1-x2), the coherence transverse length was characterized. Using the coherence property of this kind of light source, a Ghost Imaging experiment was implemented in which the spatial pro le information of an object can be retrieved from the correlation measure.MaestríaSeñales e Información1 recurso en linea (76 paginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - TelecomunicacionesDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaLaserPseudothermal LightCoherenceCorrelation FunctionQuantum InformationHomodyne DetectionGhost ImagingLáserLuz pseudotérmicaCoherenciaFunción de correlaciónInformación CuánticaDetección HomodinaRayo láserLuzProcesamiento de información cuántica mediante la utilización de variables continuas de la luzQuantum information processing through the use of continuous variables of lightTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010.[2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010.[3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996.[4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956.[5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006.[6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956.[7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975.[8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007.[9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008.[10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011.[11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.[12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009.[13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015.[14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015.[15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009.[16] B. D. Guenther, Modern Optics. Oxford University Press, 2015.[17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017.[18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006.[19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006.[20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965.[21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971.[22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964.[23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008.[24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017.[25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005.[26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics|undergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996.[27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019.[28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002.[29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997.[30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993.[31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017.[32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013.[33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018.[34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017.[35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007.[36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011.[37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009.[38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015.[39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015.[40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010.[41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016.[42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004.[43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017.[44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004.[45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004.[46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004.[47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005.[48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005.[49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010.[50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004.[51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005.[52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005.[53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006.[54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008.[55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009.[56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010.[57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012.[58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016.[59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010.[60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013.[61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013.[62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018.[63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018.ORIGINAL1032439330.2020.pdf1032439330.2020.pdfTesis de Maestría en Ingeniería - Telecomunicacionesapplication/pdf2729027https://repositorio.unal.edu.co/bitstream/unal/79392/1/1032439330.2020.pdfe4c94c75a935e73f2dea49e2086688b1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79392/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL1032439330.2020.pdf.jpg1032439330.2020.pdf.jpgGenerated Thumbnailimage/jpeg4550https://repositorio.unal.edu.co/bitstream/unal/79392/3/1032439330.2020.pdf.jpg95437a91f5b8ecb8cf589e55e58737b2MD53unal/79392oai:repositorio.unal.edu.co:unal/793922024-07-31 23:13:23.131Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |