Procesamiento de información cuántica mediante la utilización de variables continuas de la luz

ilustraciones, diagramas, tablas

Autores:
Tenorio Albañil, Johnny Alberto
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79392
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79392
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Laser
Pseudothermal Light
Coherence
Correlation Function
Quantum Information
Homodyne Detection
Ghost Imaging
Láser
Luz pseudotérmica
Coherencia
Función de correlación
Información Cuántica
Detección Homodina
Rayo láser
Luz
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6e53f8097f604d2857f2861918d9ce4c
oai_identifier_str oai:repositorio.unal.edu.co:unal/79392
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
dc.title.translated.none.fl_str_mv Quantum information processing through the use of continuous variables of light
title Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
spellingShingle Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
620 - Ingeniería y operaciones afines::621 - Física aplicada
Laser
Pseudothermal Light
Coherence
Correlation Function
Quantum Information
Homodyne Detection
Ghost Imaging
Láser
Luz pseudotérmica
Coherencia
Función de correlación
Información Cuántica
Detección Homodina
Rayo láser
Luz
title_short Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
title_full Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
title_fullStr Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
title_full_unstemmed Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
title_sort Procesamiento de información cuántica mediante la utilización de variables continuas de la luz
dc.creator.fl_str_mv Tenorio Albañil, Johnny Alberto
dc.contributor.advisor.none.fl_str_mv Vargas Chaparro, Edgar Miguel
Nuñez Portela, Mayerlin
dc.contributor.author.none.fl_str_mv Tenorio Albañil, Johnny Alberto
dc.contributor.subjectmatterexpert.none.fl_str_mv Valencia Gonzalez, Alejandra Catalina
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Laser
Pseudothermal Light
Coherence
Correlation Function
Quantum Information
Homodyne Detection
Ghost Imaging
Láser
Luz pseudotérmica
Coherencia
Función de correlación
Información Cuántica
Detección Homodina
Rayo láser
Luz
dc.subject.proposal.eng.fl_str_mv Laser
Pseudothermal Light
Coherence
Correlation Function
Quantum Information
Homodyne Detection
Ghost Imaging
dc.subject.proposal.spa.fl_str_mv Láser
Luz pseudotérmica
Coherencia
Función de correlación
Información Cuántica
Detección Homodina
dc.subject.unesco.none.fl_str_mv Rayo láser
Luz
description ilustraciones, diagramas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-04-09T15:11:11Z
dc.date.available.none.fl_str_mv 2021-04-09T15:11:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79392
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional UN
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79392
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional UN
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010.
[2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010.
[3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996.
[4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956.
[5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006.
[6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956.
[7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975.
[8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007.
[9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008.
[10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011.
[11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.
[12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009.
[13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015.
[14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015.
[15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009.
[16] B. D. Guenther, Modern Optics. Oxford University Press, 2015.
[17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017.
[18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006.
[19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006.
[20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965.
[21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971.
[22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964.
[23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008.
[24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017.
[25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005.
[26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics|undergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996.
[27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019.
[28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002.
[29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997.
[30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993.
[31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017.
[32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013.
[33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018.
[34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017.
[35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007.
[36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011.
[37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009.
[38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015.
[39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015.
[40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010.
[41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016.
[42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004.
[43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017.
[44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004.
[45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004.
[46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004.
[47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005.
[48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005.
[49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010.
[50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004.
[51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005.
[52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005.
[53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006.
[54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008.
[55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009.
[56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010.
[57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012.
[58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016.
[59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010.
[60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013.
[61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013.
[62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018.
[63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en linea (76 paginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79392/1/1032439330.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79392/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79392/3/1032439330.2020.pdf.jpg
bitstream.checksum.fl_str_mv e4c94c75a935e73f2dea49e2086688b1
cccfe52f796b7c63423298c2d3365fc6
95437a91f5b8ecb8cf589e55e58737b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886396865019904
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Chaparro, Edgar Miguel5059caaded4ef43de9051959bb48a122Nuñez Portela, Mayerlin05e7739df9a186646617db73f76dc2b6Tenorio Albañil, Johnny Albertoca976476fb71b34d356046e239f39eb7Valencia Gonzalez, Alejandra Catalina2021-04-09T15:11:11Z2021-04-09T15:11:11Z2020https://repositorio.unal.edu.co/handle/unal/79392Universidad Nacional de ColombiaRepositorio Institucional UNhttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo se presenta una forma de transmitir información haciendo uso de las variables continuas de la luz. Se estudiaron las propiedades de coherencia de dos tipos de fuentes de luz, luz láser y luz pseudotérmica. Se midió, para cada fuente de luz, el grado de coherencia de segundo orden en las variables espaciales y temporales. A partir de las medidas de la función de correlación espacial de segundo orden de una fuente de luz pseudotérmica, g(2)(x1-x2), se caracterizó la longitud transversal de coherencia. Utilizando la propiedad de coherencia de este tipo de fuente de luz se implementó un experimento de imagen fantasma o Ghost Imaging en el que se puede recuperar la información del per fil espacial de un objeto a partir de la medida de correlación.This document presents a way to transmit information using the continuous variables of light. The coherence properties of two types of light sources, laser light and pseudo-thermal light, were studied. The degree of coherence in the spatial and temporal variables of the light was measured for each light source. From the measurements of the second-order spatial correlation function for a pseudo-thermal light source, g(2) (x1-x2), the coherence transverse length was characterized. Using the coherence property of this kind of light source, a Ghost Imaging experiment was implemented in which the spatial pro le information of an object can be retrieved from the correlation measure.MaestríaSeñales e Información1 recurso en linea (76 paginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - TelecomunicacionesDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaLaserPseudothermal LightCoherenceCorrelation FunctionQuantum InformationHomodyne DetectionGhost ImagingLáserLuz pseudotérmicaCoherenciaFunción de correlaciónInformación CuánticaDetección HomodinaRayo láserLuzProcesamiento de información cuántica mediante la utilización de variables continuas de la luzQuantum information processing through the use of continuous variables of lightTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010.[2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010.[3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996.[4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956.[5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006.[6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956.[7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975.[8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007.[9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008.[10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011.[11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.[12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009.[13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015.[14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015.[15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009.[16] B. D. Guenther, Modern Optics. Oxford University Press, 2015.[17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017.[18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006.[19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006.[20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965.[21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971.[22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964.[23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008.[24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017.[25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005.[26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics|undergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996.[27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019.[28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002.[29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997.[30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993.[31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017.[32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013.[33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018.[34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017.[35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007.[36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011.[37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009.[38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015.[39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015.[40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010.[41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016.[42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004.[43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017.[44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004.[45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004.[46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004.[47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005.[48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005.[49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010.[50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004.[51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005.[52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005.[53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006.[54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008.[55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009.[56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010.[57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012.[58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016.[59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010.[60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013.[61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013.[62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018.[63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018.ORIGINAL1032439330.2020.pdf1032439330.2020.pdfTesis de Maestría en Ingeniería - Telecomunicacionesapplication/pdf2729027https://repositorio.unal.edu.co/bitstream/unal/79392/1/1032439330.2020.pdfe4c94c75a935e73f2dea49e2086688b1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79392/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL1032439330.2020.pdf.jpg1032439330.2020.pdf.jpgGenerated Thumbnailimage/jpeg4550https://repositorio.unal.edu.co/bitstream/unal/79392/3/1032439330.2020.pdf.jpg95437a91f5b8ecb8cf589e55e58737b2MD53unal/79392oai:repositorio.unal.edu.co:unal/793922024-07-31 23:13:23.131Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==