Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia

The principal target of this research is to focus on the study of the volumetric behavior of the eolian soil and the influence of the geology, the soil structure, and suction on possible collapse behaviour of the eolian soils. An experimental program of laboratory tests was designed including geotec...

Full description

Autores:
Teheran Ochoa, Kandy Manuela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79534
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79534
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Geología
Collapse
Strain
Eolian soils
Colapso
Suelos eólicos
Deformación
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6e4dc855d4b896da1b0a52bbd68f1e06
oai_identifier_str oai:repositorio.unal.edu.co:unal/79534
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
dc.title.translated.spa.fl_str_mv Investigación experimental del colapso en suelos eólicos: un caso de estudio en Mayapo Colombia
title Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
spellingShingle Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Geología
Collapse
Strain
Eolian soils
Colapso
Suelos eólicos
Deformación
title_short Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
title_full Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
title_fullStr Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
title_full_unstemmed Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
title_sort Experimental investigation of collapse in eolian soil: a case study in Mayapo, Colombia
dc.creator.fl_str_mv Teheran Ochoa, Kandy Manuela
dc.contributor.advisor.none.fl_str_mv Echeverri Ramirez, Oscar
Villarraga Herrera, Manuel Roberto (Thesis advisor)
dc.contributor.author.none.fl_str_mv Teheran Ochoa, Kandy Manuela
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Geología
Collapse
Strain
Eolian soils
Colapso
Suelos eólicos
Deformación
dc.subject.lemb.none.fl_str_mv Geología
dc.subject.proposal.eng.fl_str_mv Collapse
Strain
Eolian soils
dc.subject.proposal.spa.fl_str_mv Colapso
Suelos eólicos
Deformación
description The principal target of this research is to focus on the study of the volumetric behavior of the eolian soil and the influence of the geology, the soil structure, and suction on possible collapse behaviour of the eolian soils. An experimental program of laboratory tests was designed including geotechnical classification tests, Micro-structure tests, suction measurement, and oedometer tests included classical and unsaturated in order to know the characteristics and properties of the eolian soils. There are large and continuous macropores between grains and a low amount of micropores. The macropores could control the volumetric behaviour of the eolian soils. The salt concentration influences the osmotic suction and the total suction of the eolian soil, affecting its hydraulic condition. It can govern the water flow and attract more water to the soil, increasing the saturation degree, causing a decrease in total suction in the soil. The collapse potential of the eolian soils was classified as a moderated problem. The collapse potential increase with the increment of the initial void ratio. As suction decreases and soil wets, water menisci between liquid and vapour phase disappears, and the empty pores are flooded, and it causes a loss in the soil stiffness. The unsaturated oedometer tests allowed to understand the influence of suction on the volumetric behaviour of the eolian soils. A constitutive model was proposed to describe the volumetric behaviour of the eolian soil. The model is represented by a Loading Collapse (LC) curve, and to allow knowing the reversible compressive volumetric strains for any stress path of loading (L), collapse (C), or both in the elastic domain and to predict irreversible compressive volumetric strain for any stress loading or collapse paths. There is an important dependence of collapse and loading paths in the volumetric behaviour of the eolian soils. The deformations are very small at suction changes. The soils will suffer higher deformations in loading paths at low suction levels due to the soil stiffness is less.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-19T15:57:07Z
dc.date.available.none.fl_str_mv 2021-05-19T15:57:07Z
dc.date.issued.none.fl_str_mv 2021-05-17
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/PAU
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79534
dc.identifier.instname.spa.fl_str_mv Universidad Nacional - Sede Medellín
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79534
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional - Sede Medellín
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Arango, C., Dorado, J., Guzmán, D., & Ruiz, J. . (2014). Climatología trimestral de Colombia. In IDEAM. Camara de Comercio de La Guajira. (2017). Informe Socio-Economico Sector Turismo de La Guajira. Delage, P., Cui, Y. J., & Pereira, J. M. (2005). Geotechnical problems related with loess deposits in Northern France. Proceedings of International Conference on Problematic Soils, May, 517–540. FHWA. (2015). Soil Nail Walls Reference Manual. Geotechnical Engineering Circular NO. 7, 132085, 425. Gaaver, K. E. (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal, 51(3), 205–210. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Leng, Y., Peng, J., Wang, Q., Meng, Z., & Huang, W. (2018). A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland. Engineering Geology, 236(July 2016), 129–136. Mejia, L., & Bolaño, L. (2014). La calidad de las ofertas turisticas en el departamento de la guajira Colombia. Dimension Empresarial, 12, 139–149. Yates, K., Fenton, C. H., & Bell, D. H. (2018). A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology, 236(July 2017), 11–21. Abelev, Y. M. (1948). The essentials of Designing and Building on Microporous Soils. Stroital Naya Promyshlemast, 10, 127–130. Aitchison, G. D. (1965). Soil properties, shear strength and consolidation. 6th Int Cong. Soil Mechanics Found., 318–321. Aitchison, G. D., & Woodburn, J. A. (1969). Soil suction in foundation design. 7th ICSMFE. Alonso, E. E., Gens, A., & D., W. (1987). Groundwater Effects in Geotechnical Engineering. The Ninth European Conference on Soil Mechanics and Foundation Engineering, 3. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils G ”. Géotechnique, 40(3), 405–430. Assadi-Langroudi, A., Ng’ambi, S., & Smalley, I. (2018). Loess as a collapsible soil: Some basic particle packing aspects. Quaternary International, 469, 20–29. Basma, A. A., & Tuncer, E. R. (1993). Evaluation and control of collapaible soils. Journal of Geotechnical Engineering, 118(10), 1491–1504. Bell, F., & Bruyn, I. (1973). Sensitive, expansive, dispersive and collapsive soils. Bull Int Assoc Eng Geol. Booth, A. R. (1975). The factors influencing collapse settlement in compacted soils. 6th. Reg. Conf. for Africa on SMFE, 57–63. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Colorado state university. Clemence, S., & Finbarr, A. (1981). Considerations for collapsible soils. Geotechnical Engineering Division. Croney, D. (1952). The movement and distribution of water in soils. Geotechnique, 3(1), 1–16. Delage, P., & Cui, Y. J. (2008). An evaluation of the Osmotic Method of Controlling Suction. Geomechanics and Geoengineering, 3(1), 1–11. Delage, Pier, Cui, Y. J., & Pereira, J. M. (2005). Geotechnical problems related with loess deposits in Northern France. Proceedings of International Conference on Problematic Soils, May, 517–540. Derbyshire, E., Dijkstra, T., & Lan, S. (1995). Genesis and Properties of Collapsible Soils. Proceedings of the NATO Advanced Research. Duddley, J. H. (1980). Review of collapsing soils. ASCE, 925–947. Escario, V., & Saez, J. (1973). Measurement of the properties of swelling and collapsing soils under controlled suction. 3rd Int. Conf. Expansive Soils, 195–200. Feda, J. (1995). Mechanisms of Collapse of Soil Structure. Genesis and Properties of Collapsible Soils, 149–172. Fredlund, D. G. (1999). The emergence of unsaturated soils mechanics. Fredlund volume. In A. W. Clifton, G. W. Wilson, & S. L. Barbour (Eds.), NRC Research Press. Fredlund, D. G., & Morgenstern, N. R. (1976). Constitutive Relations for Volume Change in Unsaturated Soils. Canadian Geotechnical Journal, 13(3), 261–276. Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, Inc., 30(2), 113–123. Gaaver, K. E. (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal, 51(3), 205–210. Gardner, W. R. (1957). Some steady-state solutions of the unsaturated moisture flow eqaution with application to evaporation from a water table. Soil Science. Gens, A. (2010). Soil Environment Interactions in Geotechnical Engineering. Geotechnique, 60(1), 3–74. HILF, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils. United States Bureau of Reclamation. Holtz, R., & Kovacs, W. (1981). An Introduction to Geotehcnical Engineering. Prentice Hall. Howayek, A. El, Huang, P., Bisnett, R., & Santagata, M. C. (2011). Identification and Behavior of Collapsible Soils. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Klukanova, A., & Frankovska, J. (1995). The Slovak Carpathians Loess Sediments, their Fabric and Properties. Genesis and Porperties of Collpasible Soils, 129–147. Leroueil, S., & Vaughan†, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488. Li, P., Vanapalli, S., & Li, T. (2016). Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 256–274. https://doi.org/https://doi.org/10.1016/j.jrmge.2015.12.002 Lutenegger, A. J., & Saber, R. T. (1988). Determination of Collapse Potential of Soils. Geotechnical Testing Journal, 11(3), 173–178. Molina, G., & Alzate, A. (2018). Potencial de Colapso de Suelos Derivados de Cenizas Volcánicas de la Zona de Expansión Urbana de Pereira. Universidad Libre Seccional Pereira. Muñoz-Casteblanco, J. A., Pereira, J. M., Delage, P., & Cui, Y. J. (2012). The water retention properties of a natural unsaturated loess from northern France. Géotechnique, 62(2), 95–106. Nouaouria, M. S., Guenfoud, M., & Lafifi, B. (2008). Engineering properties of loess in Algeria. Engineering Geology, 99(1–2), 85–90. Olyansky, Y. I., Kuzmenko, I. Y., & Shchekochikhina, E. V. (2016). Features of Construction Buildings on the Loessial Soil of Central Moldova. Procedia Engineering, 150, 2208–2212. Orozco, J. M., Ramos, J., & Valencia, Y. (2010). Evaluación de la colapsabilidad de los suelos en la doble calzada Hatillo-Barbosa. XIII Congreso Colombiano de Geotecnia - VII Seminario Colombiano de Geotecnia, 1(March 2014), 101–107. Quijano Arias, D. A., & Tenjo Ramos, E. A. (2018). Análisis de efectividad en la estabilización de suelos colapsables en el tramo II de la transversal el bosque en el municipio de floridablanca, santander. 88. Richards, L. A. (1941). A Pressure-Membrane Extraction Apparatus for Soil Solution. Soil Science, 51(5), 377–386. Rogers, C. D. F. (1995). Types and Distribution of Collapsible Soils. 1–17. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. Toll, D. G., Asquith, J. D., Fraser, A., Hassan, A. A., Liu, G., Lourenço, S. D. N., Mendes, J., Noguchi, T., Osinski, P., & Stirling, R. (2015). Tensiometer techniques for determining soil water retention curves. Unsaturated Soil Mechanics from Theory to Practice - Proceedings of the 6th Asia-Pacific Conference on Unsaturated Soils, October, 15–22. van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. Vanapalli, S., Nicotera, M. V., & Sharma, R. (2008). Axis translation and Negative Water Column Techniques for Suction Control. Geotechnical and Geological Engineering, 26(6), 645–660. Xie, W. L., Li, P., Vanapalli, S. K., & Wang, J. D. (2018). Prediction of the wetting-induced collapse behaviour using the soil-water characteristic. Journal of Asian Earth Sciences, 151(October 2017), 259–268. Yates, K., Fenton, C. H., & Bell, D. H. (2018). A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology, 236(July 2017), 11–21. Yudhbir, Y. (1982). Collapsing behavior of collapsing soils. 7th Southeast Asia Geotechnical Conference, 915–930. Alcaldía de Riohacha. (2001). Plan De Ordenamiento Territorial Del Municipio De Riohacha, Guajira. Alcaldia Municipal de Riohacha. Arango, C., Dorado, J., Guzmán, D., & Ruiz, J. . (2014). Climatología trimestral de Colombia. Ideam, 19. Davies, J. L. (1980). Geographical variation in coastal development. IDEAM. (2005). Atlas climatológico de Colombia. Ingeominas. (2009a). Geología de las Planchas 7-8 Ranchería y Riohacha. Ingeominas, A. M. (2009b). Cartogafría Geológica de las Planchas 7-Rancheria 8-Riohacha, 9-Uribia- Dibulla, 14- 4- Albania y 15-15 bis Maicao. Lockwood, J. P. (1984). Geology of the serranía de Jarara Area. Guajira Peninsula, Colombia. Princeton University. Yaw, A. S. (2015). Alternate Methods To Determine the Microstructure of potentailly collapsible soils. ASTM D2216. (2019). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, January, 1–5. ASTM D2435. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using. ASTM Standards, 04(June), 1–10. ASTM D4318. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Report, 04(March 2010), 1–14. ASTM D5298. (2016). Standard Test Method for Measurement of Soil Potential (Suction) using filter paper. 1–6. ASTM D7015. (2018). Standard Practices for Obtaining Intact Block (Cubical and Cylindrical) Samples of Soil. 1–7. ASTM D7928. (2017). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International, West Conshohocken, PA., 1–25. ASTM D854. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854, 1–7. Constantin, D. g, Apreutesei, M., Arvinte, R., Marin, A., Andrei, O. C., & Munteanu, D. (2011). Magnetron Sputtering Technique Used for Coatings Deposition ; Technologies and Applications. 7 International Conference on Materials Science and Enginering, 12(March), 24–26. Delage, P., Romero, E., & Tarantino, A. (2008). Recent Developments in the Techniques of Controlling and Measuring Suction in Unsaturated Soils. Unsaturated Soils: Advances in Geo-Engineering - Proceedings of the 1st European Conference on Unsaturated Soils, E-UNSAT 2008, November, 33–52. Ferreira, T., & Rasband, W. (2012). ImageJ User Guide. XXVI Focus on Bioimage Informatics. Fisher, R. A. (1947). Design of experiments. In Society for Industrial and Applied Mathematics. Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, Inc., 30(2), 113–123. GDS. (n.d.-a). 164 Helpsheet Hardware Rowen and Barden Cell Removing the Old Top- Bag. GDS. (n.d.-b). The GDS Consolidation Testing System and Constant Rate of Strain Harware Handbook. Iyer, B. (1990). Pore water extraction. Comparison of saturation extract and high-pressure squeezing. ASTM Special Technical Publication, 1095, 159–170. Mitchell, R. J., & Sangrey, D. A. (1975). Soil Specimen Preparation for Laboratory testing. ASTM. Norme française. (1998). Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux. Norme Française. (2000). Particle size analysis-Laser Diffraction methods. Norme Française. (2017). Reconnaissance et essais géotechniques-Essais de laboratoire sur les sols-Partie 5: Essai de chargement par palier à l´oedomètre (ISO 17892-5). Article ISO 17892-5. Ridley, A. M., & Wray, W. K. (1996). Suction measurement: A review of current theory and practices. In E. E. Alonso & P. Delage (Eds.), 1st Int. Conf. on Unsaturated Soils. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. U.S.D.A. (1950). Diagnosis and Improvement of saline and alkali soils. Soil Science Society of America Journal, 18, 348. Vanapalli, S., Nicotera, M. V., & Sharma, R. (2008). Axis translation and Negative Water Column Techniques for Suction Control. Geotechnical and Geological Engineering, 26(6), 645–660. Alonso, E. E., Gens, A., & D., W. (1987). Groundwater Effects in Geotechnical Engineering. The Ninth European Conference on Soil Mechanics and Foundation Engineering, 3. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils G ”. Géotechnique, 40(3), 405–430. Araki, M. S. (1997). Aspectos Relativos às Propriedades dos Solos Porosos Colapsíveis do Distrito Federal. University of Brasília, College of Technology. Booth, A. R. (1975). The factors influencing collapse settlement in compacted soils. 6th. Reg. Conf. for Africa on SMFE, 57–63. Coduto, D. (1999). Geotechnical engineering principles and practices. In Engineers Australia (Vol. 73, Issue 4). https://doi.org/10.2113/gseegeosci.iii.1.156 Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 30(2), 211–223. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Classification des matériaux utilisables dans la construction des remblais et des couches de forme d´infrastructures routières, (1992). Reznik, Y. M. (2007). Influence of physical properties on deformation characteristics of collapsible soils. Engineering Geology, 92(1), 27–37. https://doi.org/https://doi.org/10.1016/j.enggeo.2007.03.001 Rogers, C. D. F. (1995). Types and Distribution of Collapsible Soils. 1–17. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. Wan, A. W. L., Gray, M. N., & Graham, J. (1995). On the relations of suction , moisture content and soil structure in compacted clays. In E. E. Alonso & P. Delage (Eds.), 1st. International Conference on Unsaturated Soils (Issue December, pp. 215–222). Yudhbir, Y. (1982). Collapsing behavior of collapsing soils. 7th Southeast Asia Geotechnical Conference, 915–930.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79534/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79534/4/1118858262.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79534/5/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79534/6/1118858262.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
c0050390d33acec326fa81e922b293c0
4460e5956bc1d1639be9ae6146a50347
e737fc6648f1e51515fa43093be0d26e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089582629617664
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Echeverri Ramirez, Oscar3a8043510e028c227f88a8de63907e81Villarraga Herrera, Manuel Roberto (Thesis advisor)86749462b4266608eccfce49934980fd600Teheran Ochoa, Kandy Manuela4afa5c3eb851a3364fd832870b0ccc202021-05-19T15:57:07Z2021-05-19T15:57:07Z2021-05-17https://repositorio.unal.edu.co/handle/unal/79534Universidad Nacional - Sede MedellínRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The principal target of this research is to focus on the study of the volumetric behavior of the eolian soil and the influence of the geology, the soil structure, and suction on possible collapse behaviour of the eolian soils. An experimental program of laboratory tests was designed including geotechnical classification tests, Micro-structure tests, suction measurement, and oedometer tests included classical and unsaturated in order to know the characteristics and properties of the eolian soils. There are large and continuous macropores between grains and a low amount of micropores. The macropores could control the volumetric behaviour of the eolian soils. The salt concentration influences the osmotic suction and the total suction of the eolian soil, affecting its hydraulic condition. It can govern the water flow and attract more water to the soil, increasing the saturation degree, causing a decrease in total suction in the soil. The collapse potential of the eolian soils was classified as a moderated problem. The collapse potential increase with the increment of the initial void ratio. As suction decreases and soil wets, water menisci between liquid and vapour phase disappears, and the empty pores are flooded, and it causes a loss in the soil stiffness. The unsaturated oedometer tests allowed to understand the influence of suction on the volumetric behaviour of the eolian soils. A constitutive model was proposed to describe the volumetric behaviour of the eolian soil. The model is represented by a Loading Collapse (LC) curve, and to allow knowing the reversible compressive volumetric strains for any stress path of loading (L), collapse (C), or both in the elastic domain and to predict irreversible compressive volumetric strain for any stress loading or collapse paths. There is an important dependence of collapse and loading paths in the volumetric behaviour of the eolian soils. The deformations are very small at suction changes. The soils will suffer higher deformations in loading paths at low suction levels due to the soil stiffness is less.El objetivo principal de esta investigación es centrarse en el estudio del comportamiento volumétrico del suelo eólico y la influencia de la geología, la estructura del suelo y la succión en el posible colapso de los suelos eólicos. Se diseñó un programa experimental de ensayos de laboratorio que incluye ensayos de clasificación geotécnica, ensayos de visualización de la microestructura, medición de succión y ensayos edométricos convencionales realizados con el procedimiento clásico de la norma y ensayos edométricos no saturados, para conocer las características y propiedades de los suelos eólicos. La investigación experimental se realizó sobre muestras inalteradas del suelo eólico de Mayapo, Colombia. La geología se estudió mediante secciones delgadas y DRX, y la estructura del suelo de los suelos eólicos se caracterizó mediante un microscopio electrónico de barrido. La distribución de los elementos se analiza mediante EDS por difracción de energía dispersiva. La succión y succión total se mide por el método de filtro de papel y la succión osmótica por la conductividad eléctrica del agua de los poros del suelo. El comportamiento volumétrico se estudia mediante edómetro doble y edómetro a diferentes esfuerzos verticales efectivos para conocer el potencial de colapso y la carga donde el suelo sufre más colapso. Se desarrollaron pruebas de edómetro controladas por succión. Las pruebas experimentales incluyeron un aumento en la tensión neta vertical a niveles de succión constantes y variaciones en las trayectorias de tensión y succión. El principal aspecto analizado fue el comportamiento volumétrico a los niveles de succión, el límite elástico generado por el aumento de la tensión neta vertical o el aumento de los niveles de succión. El suelo eólico fue clasificado como arena limosa (SM) pobremente graduada, con muy bajo porcentaje de finos. Los principales minerales del suelo eólico de Mayapo son el cuarzo, las plagioclasas y los feldespatos. Además, hay partículas de sal en el suelo y materiales de unión de óxido de hierro y aluminio que bordean los granos. El suelo presenta gran cantidad de macroporos entre los granos y una pequeña cantidad de microporos. Los macroporos podrían controlar el comportamiento volumétrico de los suelos XXI eólicos. la presencia de estos se demuestra en la doble curva de retención de agua (WRC), donde se demuestra que el suelo presenta bajos niveles de succión y su comportamiento está controlado por macroporos del suelo. La concentración de sal influye en la succión osmótica y la succión total del suelo eólico, afectando su condición hidráulica. Puede gobernar el flujo de agua y atraer más agua al suelo, aumentando el grado de saturación, provocando una disminución de la succión total en el suelo. Este cambio en el componente de succión influye en el comportamiento de colapso de los suelos eólicos estudiados, aumentando la deformación al disminuir la succión. El potencial de colapso de los suelos eólicos se clasificó como un problema moderado. El potencial de colapso aumenta con el incremento de la proporción de vacíos inicial. La succión también juega un papel importante en el potencial de colapso. A medida que la succión disminuye y el suelo se humedece, los meniscos de agua desaparecen y los poros vacíos se inundan, lo que provoca una pérdida de rigidez del suelo. Las pruebas en el edómetro no saturado permitieron comprender la influencia de la succión en el comportamiento volumétrico de los suelos eólicos. El componente de succión en el suelo hace que este soporte una mayor tensión aplicada: cuanto mayor es la succión, mayor es la tensión que se puede sostener antes del rendimiento. La succión aumenta la rigidez de los suelos eólicos. Se utilizó el Modelo Básico de Barcelona, propuesto por Alonso et al, 1999, para describir el comportamiento volumétrico de los suelos eólicos de Mayapo, Colombia. El modelo está representado por una curva de colapso de carga (LC) y permite conocer las deformaciones volumétricas compresivas reversibles para cualquier trayectoria de carga (L), colapso (C) o ambos en el dominio elástico y para predecir deformaciones volumétricas compresivas irreversibles. para cualquier carga de tensión o rutas de colapso. Existe una dependencia importante de las rutas de colapso y carga en el comportamiento volumétrico de los suelos eólicos. Las deformaciones son muy pequeñas en los cambios de succión. Los suelos sufrirán mayores deformaciones en los caminos de carga a bajos niveles de succión debido a que la rigidez del suelo es menor. Finalmente, se propuso un procedimiento experimental para el muestreo y caracterización del comportamiento volumétrico de suelos eólicos no perturbados.MaestríaMagister en ingeniería geotecniaSuelos no saturados147 páginasapplication/pdfengUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería CivilFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaGeologíaCollapseStrainEolian soilsColapsoSuelos eólicosDeformaciónExperimental investigation of collapse in eolian soil: a case study in Mayapo, ColombiaInvestigación experimental del colapso en suelos eólicos: un caso de estudio en Mayapo ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/PAUArango, C., Dorado, J., Guzmán, D., & Ruiz, J. . (2014). Climatología trimestral de Colombia. In IDEAM. Camara de Comercio de La Guajira. (2017). Informe Socio-Economico Sector Turismo de La Guajira. Delage, P., Cui, Y. J., & Pereira, J. M. (2005). Geotechnical problems related with loess deposits in Northern France. Proceedings of International Conference on Problematic Soils, May, 517–540. FHWA. (2015). Soil Nail Walls Reference Manual. Geotechnical Engineering Circular NO. 7, 132085, 425. Gaaver, K. E. (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal, 51(3), 205–210. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Leng, Y., Peng, J., Wang, Q., Meng, Z., & Huang, W. (2018). A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland. Engineering Geology, 236(July 2016), 129–136. Mejia, L., & Bolaño, L. (2014). La calidad de las ofertas turisticas en el departamento de la guajira Colombia. Dimension Empresarial, 12, 139–149. Yates, K., Fenton, C. H., & Bell, D. H. (2018). A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology, 236(July 2017), 11–21. Abelev, Y. M. (1948). The essentials of Designing and Building on Microporous Soils. Stroital Naya Promyshlemast, 10, 127–130. Aitchison, G. D. (1965). Soil properties, shear strength and consolidation. 6th Int Cong. Soil Mechanics Found., 318–321. Aitchison, G. D., & Woodburn, J. A. (1969). Soil suction in foundation design. 7th ICSMFE. Alonso, E. E., Gens, A., & D., W. (1987). Groundwater Effects in Geotechnical Engineering. The Ninth European Conference on Soil Mechanics and Foundation Engineering, 3. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils G ”. Géotechnique, 40(3), 405–430. Assadi-Langroudi, A., Ng’ambi, S., & Smalley, I. (2018). Loess as a collapsible soil: Some basic particle packing aspects. Quaternary International, 469, 20–29. Basma, A. A., & Tuncer, E. R. (1993). Evaluation and control of collapaible soils. Journal of Geotechnical Engineering, 118(10), 1491–1504. Bell, F., & Bruyn, I. (1973). Sensitive, expansive, dispersive and collapsive soils. Bull Int Assoc Eng Geol. Booth, A. R. (1975). The factors influencing collapse settlement in compacted soils. 6th. Reg. Conf. for Africa on SMFE, 57–63. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Colorado state university. Clemence, S., & Finbarr, A. (1981). Considerations for collapsible soils. Geotechnical Engineering Division. Croney, D. (1952). The movement and distribution of water in soils. Geotechnique, 3(1), 1–16. Delage, P., & Cui, Y. J. (2008). An evaluation of the Osmotic Method of Controlling Suction. Geomechanics and Geoengineering, 3(1), 1–11. Delage, Pier, Cui, Y. J., & Pereira, J. M. (2005). Geotechnical problems related with loess deposits in Northern France. Proceedings of International Conference on Problematic Soils, May, 517–540. Derbyshire, E., Dijkstra, T., & Lan, S. (1995). Genesis and Properties of Collapsible Soils. Proceedings of the NATO Advanced Research. Duddley, J. H. (1980). Review of collapsing soils. ASCE, 925–947. Escario, V., & Saez, J. (1973). Measurement of the properties of swelling and collapsing soils under controlled suction. 3rd Int. Conf. Expansive Soils, 195–200. Feda, J. (1995). Mechanisms of Collapse of Soil Structure. Genesis and Properties of Collapsible Soils, 149–172. Fredlund, D. G. (1999). The emergence of unsaturated soils mechanics. Fredlund volume. In A. W. Clifton, G. W. Wilson, & S. L. Barbour (Eds.), NRC Research Press. Fredlund, D. G., & Morgenstern, N. R. (1976). Constitutive Relations for Volume Change in Unsaturated Soils. Canadian Geotechnical Journal, 13(3), 261–276. Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, Inc., 30(2), 113–123. Gaaver, K. E. (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal, 51(3), 205–210. Gardner, W. R. (1957). Some steady-state solutions of the unsaturated moisture flow eqaution with application to evaporation from a water table. Soil Science. Gens, A. (2010). Soil Environment Interactions in Geotechnical Engineering. Geotechnique, 60(1), 3–74. HILF, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils. United States Bureau of Reclamation. Holtz, R., & Kovacs, W. (1981). An Introduction to Geotehcnical Engineering. Prentice Hall. Howayek, A. El, Huang, P., Bisnett, R., & Santagata, M. C. (2011). Identification and Behavior of Collapsible Soils. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Klukanova, A., & Frankovska, J. (1995). The Slovak Carpathians Loess Sediments, their Fabric and Properties. Genesis and Porperties of Collpasible Soils, 129–147. Leroueil, S., & Vaughan†, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488. Li, P., Vanapalli, S., & Li, T. (2016). Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 256–274. https://doi.org/https://doi.org/10.1016/j.jrmge.2015.12.002 Lutenegger, A. J., & Saber, R. T. (1988). Determination of Collapse Potential of Soils. Geotechnical Testing Journal, 11(3), 173–178. Molina, G., & Alzate, A. (2018). Potencial de Colapso de Suelos Derivados de Cenizas Volcánicas de la Zona de Expansión Urbana de Pereira. Universidad Libre Seccional Pereira. Muñoz-Casteblanco, J. A., Pereira, J. M., Delage, P., & Cui, Y. J. (2012). The water retention properties of a natural unsaturated loess from northern France. Géotechnique, 62(2), 95–106. Nouaouria, M. S., Guenfoud, M., & Lafifi, B. (2008). Engineering properties of loess in Algeria. Engineering Geology, 99(1–2), 85–90. Olyansky, Y. I., Kuzmenko, I. Y., & Shchekochikhina, E. V. (2016). Features of Construction Buildings on the Loessial Soil of Central Moldova. Procedia Engineering, 150, 2208–2212. Orozco, J. M., Ramos, J., & Valencia, Y. (2010). Evaluación de la colapsabilidad de los suelos en la doble calzada Hatillo-Barbosa. XIII Congreso Colombiano de Geotecnia - VII Seminario Colombiano de Geotecnia, 1(March 2014), 101–107. Quijano Arias, D. A., & Tenjo Ramos, E. A. (2018). Análisis de efectividad en la estabilización de suelos colapsables en el tramo II de la transversal el bosque en el municipio de floridablanca, santander. 88. Richards, L. A. (1941). A Pressure-Membrane Extraction Apparatus for Soil Solution. Soil Science, 51(5), 377–386. Rogers, C. D. F. (1995). Types and Distribution of Collapsible Soils. 1–17. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. Toll, D. G., Asquith, J. D., Fraser, A., Hassan, A. A., Liu, G., Lourenço, S. D. N., Mendes, J., Noguchi, T., Osinski, P., & Stirling, R. (2015). Tensiometer techniques for determining soil water retention curves. Unsaturated Soil Mechanics from Theory to Practice - Proceedings of the 6th Asia-Pacific Conference on Unsaturated Soils, October, 15–22. van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. Vanapalli, S., Nicotera, M. V., & Sharma, R. (2008). Axis translation and Negative Water Column Techniques for Suction Control. Geotechnical and Geological Engineering, 26(6), 645–660. Xie, W. L., Li, P., Vanapalli, S. K., & Wang, J. D. (2018). Prediction of the wetting-induced collapse behaviour using the soil-water characteristic. Journal of Asian Earth Sciences, 151(October 2017), 259–268. Yates, K., Fenton, C. H., & Bell, D. H. (2018). A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology, 236(July 2017), 11–21. Yudhbir, Y. (1982). Collapsing behavior of collapsing soils. 7th Southeast Asia Geotechnical Conference, 915–930. Alcaldía de Riohacha. (2001). Plan De Ordenamiento Territorial Del Municipio De Riohacha, Guajira. Alcaldia Municipal de Riohacha. Arango, C., Dorado, J., Guzmán, D., & Ruiz, J. . (2014). Climatología trimestral de Colombia. Ideam, 19. Davies, J. L. (1980). Geographical variation in coastal development. IDEAM. (2005). Atlas climatológico de Colombia. Ingeominas. (2009a). Geología de las Planchas 7-8 Ranchería y Riohacha. Ingeominas, A. M. (2009b). Cartogafría Geológica de las Planchas 7-Rancheria 8-Riohacha, 9-Uribia- Dibulla, 14- 4- Albania y 15-15 bis Maicao. Lockwood, J. P. (1984). Geology of the serranía de Jarara Area. Guajira Peninsula, Colombia. Princeton University. Yaw, A. S. (2015). Alternate Methods To Determine the Microstructure of potentailly collapsible soils. ASTM D2216. (2019). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, January, 1–5. ASTM D2435. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using. ASTM Standards, 04(June), 1–10. ASTM D4318. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Report, 04(March 2010), 1–14. ASTM D5298. (2016). Standard Test Method for Measurement of Soil Potential (Suction) using filter paper. 1–6. ASTM D7015. (2018). Standard Practices for Obtaining Intact Block (Cubical and Cylindrical) Samples of Soil. 1–7. ASTM D7928. (2017). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International, West Conshohocken, PA., 1–25. ASTM D854. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854, 1–7. Constantin, D. g, Apreutesei, M., Arvinte, R., Marin, A., Andrei, O. C., & Munteanu, D. (2011). Magnetron Sputtering Technique Used for Coatings Deposition ; Technologies and Applications. 7 International Conference on Materials Science and Enginering, 12(March), 24–26. Delage, P., Romero, E., & Tarantino, A. (2008). Recent Developments in the Techniques of Controlling and Measuring Suction in Unsaturated Soils. Unsaturated Soils: Advances in Geo-Engineering - Proceedings of the 1st European Conference on Unsaturated Soils, E-UNSAT 2008, November, 33–52. Ferreira, T., & Rasband, W. (2012). ImageJ User Guide. XXVI Focus on Bioimage Informatics. Fisher, R. A. (1947). Design of experiments. In Society for Industrial and Applied Mathematics. Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, Inc., 30(2), 113–123. GDS. (n.d.-a). 164 Helpsheet Hardware Rowen and Barden Cell Removing the Old Top- Bag. GDS. (n.d.-b). The GDS Consolidation Testing System and Constant Rate of Strain Harware Handbook. Iyer, B. (1990). Pore water extraction. Comparison of saturation extract and high-pressure squeezing. ASTM Special Technical Publication, 1095, 159–170. Mitchell, R. J., & Sangrey, D. A. (1975). Soil Specimen Preparation for Laboratory testing. ASTM. Norme française. (1998). Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux. Norme Française. (2000). Particle size analysis-Laser Diffraction methods. Norme Française. (2017). Reconnaissance et essais géotechniques-Essais de laboratoire sur les sols-Partie 5: Essai de chargement par palier à l´oedomètre (ISO 17892-5). Article ISO 17892-5. Ridley, A. M., & Wray, W. K. (1996). Suction measurement: A review of current theory and practices. In E. E. Alonso & P. Delage (Eds.), 1st Int. Conf. on Unsaturated Soils. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. U.S.D.A. (1950). Diagnosis and Improvement of saline and alkali soils. Soil Science Society of America Journal, 18, 348. Vanapalli, S., Nicotera, M. V., & Sharma, R. (2008). Axis translation and Negative Water Column Techniques for Suction Control. Geotechnical and Geological Engineering, 26(6), 645–660. Alonso, E. E., Gens, A., & D., W. (1987). Groundwater Effects in Geotechnical Engineering. The Ninth European Conference on Soil Mechanics and Foundation Engineering, 3. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils G ”. Géotechnique, 40(3), 405–430. Araki, M. S. (1997). Aspectos Relativos às Propriedades dos Solos Porosos Colapsíveis do Distrito Federal. University of Brasília, College of Technology. Booth, A. R. (1975). The factors influencing collapse settlement in compacted soils. 6th. Reg. Conf. for Africa on SMFE, 57–63. Coduto, D. (1999). Geotechnical engineering principles and practices. In Engineers Australia (Vol. 73, Issue 4). https://doi.org/10.2113/gseegeosci.iii.1.156 Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 30(2), 211–223. Jennings, J., & Knight, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sandy Subsoils on Wetting. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 316–319. Classification des matériaux utilisables dans la construction des remblais et des couches de forme d´infrastructures routières, (1992). Reznik, Y. M. (2007). Influence of physical properties on deformation characteristics of collapsible soils. Engineering Geology, 92(1), 27–37. https://doi.org/https://doi.org/10.1016/j.enggeo.2007.03.001 Rogers, C. D. F. (1995). Types and Distribution of Collapsible Soils. 1–17. Romero, E. (1999). Characterisation and thermo-hydromechanical behaviour of unsaturated boom clay: an experimental study. Univesitad Politecnica de Cataluna. van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. Wan, A. W. L., Gray, M. N., & Graham, J. (1995). On the relations of suction , moisture content and soil structure in compacted clays. In E. E. Alonso & P. Delage (Eds.), 1st. International Conference on Unsaturated Soils (Issue December, pp. 215–222). Yudhbir, Y. (1982). Collapsing behavior of collapsing soils. 7th Southeast Asia Geotechnical Conference, 915–930.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79534/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1118858262.2021.pdf1118858262.2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf6594155https://repositorio.unal.edu.co/bitstream/unal/79534/4/1118858262.2021.pdfc0050390d33acec326fa81e922b293c0MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79534/5/license_rdf4460e5956bc1d1639be9ae6146a50347MD55THUMBNAIL1118858262.2021.pdf.jpg1118858262.2021.pdf.jpgGenerated Thumbnailimage/jpeg5282https://repositorio.unal.edu.co/bitstream/unal/79534/6/1118858262.2021.pdf.jpge737fc6648f1e51515fa43093be0d26eMD56unal/79534oai:repositorio.unal.edu.co:unal/795342024-07-18 23:10:52.361Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==