Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque

ilustraciones, diagramas, mapas

Autores:
Reyes Palacios, Alejandra Cecilia
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84788
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84788
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
570 - Biología::577 - Ecología
580 - Plantas
Sanidad de los bosques
Forest health
Forest fires
Fuels
Incendios forestales
Combustibles
incendio forestal
combustible
rasgos funcionales
Forest Fire
Fuels
Functional traits
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6e42d23610aec816f67a4126d6ebc50c
oai_identifier_str oai:repositorio.unal.edu.co:unal/84788
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
dc.title.translated.eng.fl_str_mv Influence of forest fires on the composition and structure of vegetative fuels in burned areas of the Santuario de Fauna y Flora Iguaque
title Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
spellingShingle Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
570 - Biología::577 - Ecología
580 - Plantas
Sanidad de los bosques
Forest health
Forest fires
Fuels
Incendios forestales
Combustibles
incendio forestal
combustible
rasgos funcionales
Forest Fire
Fuels
Functional traits
title_short Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
title_full Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
title_fullStr Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
title_full_unstemmed Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
title_sort Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
dc.creator.fl_str_mv Reyes Palacios, Alejandra Cecilia
dc.contributor.advisor.none.fl_str_mv Armenteras Pascual, Dolors
dc.contributor.author.none.fl_str_mv Reyes Palacios, Alejandra Cecilia
dc.contributor.researcher.none.fl_str_mv Meza Elizalde María Constanza
dc.contributor.researchgroup.spa.fl_str_mv Ecología del Paisaje y Modelación de Ecosistemas
dc.contributor.orcid.spa.fl_str_mv 0000-0002-0540-080X
dc.contributor.researchgate.spa.fl_str_mv Alejandra Reyes Palacios
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
570 - Biología::577 - Ecología
580 - Plantas
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
570 - Biología::577 - Ecología
580 - Plantas
Sanidad de los bosques
Forest health
Forest fires
Fuels
Incendios forestales
Combustibles
incendio forestal
combustible
rasgos funcionales
Forest Fire
Fuels
Functional traits
dc.subject.agrovoc.none.fl_str_mv Sanidad de los bosques
dc.subject.agrovoc.eng.fl_str_mv Forest health
Forest fires
Fuels
dc.subject.agrovoc.spa.fl_str_mv Incendios forestales
Combustibles
dc.subject.proposal.spa.fl_str_mv incendio forestal
combustible
rasgos funcionales
dc.subject.proposal.eng.fl_str_mv Forest Fire
Fuels
Functional traits
description ilustraciones, diagramas, mapas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-09T15:02:53Z
dc.date.available.none.fl_str_mv 2023-10-09T15:02:53Z
dc.date.issued.none.fl_str_mv 2023-10
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84788
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84788
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ackerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10(2), 135–145. https://doi.org/10.1111/j.1461-0248.2006.01006.x
Ager, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017
Aguilar-garavito, M., Cortina-segarra, J., & Matoma, M. (2023). Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ) Forest Ecology and Management Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ). Forest Ecology and Management, April. https://doi.org/10.1016/j.foreco.2023.120937
Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E., & Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14556– 14561. https://doi.org/10.1073/pnas.0914471107
Albini, F. A., & Reinhardt, E. D. (1995). Modeling Ignition And Burning Rate Of Large Woody Natural Fuels. International Journal of Wildland Fire, 5(2), 81–91. https://doi.org/10.1071/WF9950081
Albornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765–776. https://doi.org/10.1007/s11258-013-0206-x
Alcázar-Caicedo, C., & Ramíres-Hernandez, W. (2011). El Uso De Rasgos Funcionales En Flora Como Herramienta Para Establecer Prioridades De Conservación. Letras Biologicas, April, 215–222.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108
Anderson, H. (1982). Aids to determining fuel models for sstimating fire behavior. In United States Department of Agriculture Forest Service (Vol. 44, Issue 1, pp. 42–53).
Araujo-Murakami, A., Parada, A. G., Terán, J. J., Baker, T. R., Feldpausch, T. R., Phillips, O. L., & Brienen, R. J. W. (2011). Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Revista Peruana de Biología, 18(1), 113–118. https://doi.org/10.15381/rpb.v18i1.155
Armenteras, D., González, T. M., Ríos, O. V., Elizalde, M. C. M., & Oliveras, I. (2020). Fire in the ecosystems of northern south america: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353
Armenteras, D., González, T. M., Vargas Ríos, O., Meza Elizalde, M. C., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú . In Caldasia (Vol. 42, pp. 1–16). scieloco .
Armenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002
Avella, A., & Cardenas, L. (2010). Conservación y uso sostenible de los bosques de roble en el corredor de conservación guantiva - la Rusia - Iguaque, departamentos de santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a01
Babl, E., Alexander, H. D., Siegert, C. M., & Willis, J. L. (2020). Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests? Forest Ecology and Management, 458(September), 117731. https://doi.org/10.1016/j.foreco.2019.117731
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x
Balch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.x
Barlow, J., Berenguer, E., Carmenta, R., & França, F. (2020). Clarifying Amazonia’s burning crisis. Global Change Biology, 26(2), 319–321. https://doi.org/10.1111/gcb.14872
Barlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., Feldpausch, T. R., Gloor, E., Hall, A., Malhi, Y., Milliken, W., Mulligan, M., Parry, L., Pennington, T., Peres, C. A., Phillips, O. L., Roman-Cuesta, R. M., Tobias, J. A., & Gardner, T. A. (2011). Using learning networks to understand complex systems: A case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86(2), 457–474. https://doi.org/10.1111/j.1469-185X.2010.00155.x
Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787–1794. https://doi.org/10.1098/rstb.2007.0013
Berget, C., Duran, E., & Bray, D. B. (2015). Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Fern ( Pteridium aquilinum ) and Conservation in the Chinantla Region , Oaxaca , Mexico. April 2016. https://doi.org/10.1007/s10745-015-9762-0
Bianchi, L., Defosse, G., Dentoni, M., & Kunst, C. (2014). Dinámica de la humedad de los combustibles y su relación con la ecología y manejo de fuego, region chaqueña occidental (Argentina) II: Follaje y residuos de árboles y arbustos. Revista de Investigaciones Agropecuarias, 40(2), 165–181.
Biddulph, J., & Kellman, M. (1998). Fuels and fire at savanna-gallery forest boundaries in southeastern Venezuela. Journal of Tropical Ecology, 14(4), 445–461. https://doi.org/10.1017/S0266467498000339
Blackhall, M., Veblen, T. T., & Raffaele, E. (2015). Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. Journal of Vegetation Science, 26(1), 123– 133. https://doi.org/10.1111/jvs.12216
Blanquet, B. (1979). Plant Sociology: The study of plant communities.
Bond, W. J., & Midgley, J. J. (2012). Fire and the angiosperm revolutions. International Journal of Plant Sciences, 173(6), 569–583. https://doi.org/10.1086/665819
Bond, W. J., Woodward, F., & Midgley, G. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(1), 525–537. https://doi.org/10.1016/B978- 0-12-424255-5.50017-1
Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x
Brown, J. (1970). PHYSICAL FUEL PROPERTIES OF PONDEROSA PINE FOREST FLOORS AND CHEATGRASS. USDA Forest Service - Research Paper RMRS-RP, 84401.
Brown, J. K. (1971). A planar intersect method for sampling fuel volume and surface area.
Brown, J., & See, T. (1981). Downed dead woody fuel and biomass in the Northern Rocky Mountains.
Burrows, N. D. (1994). Experimental development of a fire management model for Jarrah (Eucalyptus marginata Donn ex Sm.) Forest. Australian National University.
Byram, G. (1959). Combustion of forest fuels. Forest Fire Control and Use, 42(3), 609–610. https://doi.org/10.2307/1932261
Cárdenas, C. (2013). El fuego y el pastoreo en el páramo húmedo de Chingaza (Colombia): efectos de la perturbación y respuestas de la vegetación. In Universitat Autónoma de Barcelona, Tesis Doctoral. http://www.tesisenxarxa.net/handle/10803/120219
Cavallero, L., Raffaele, E., & Aizen, M. A. (2013). Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation, 158, 342–350. https://doi.org/10.1016/j.biocon.2012.10.004
Cawson, J. G., Duff, T. J., Tolhurst, K. G., Baillie, C. C., & Penman, T. D. (2017). Fuel moisture in Mountain Ash forests with contrasting fire histories. Forest Ecology and Management, 400, 568–577. https://doi.org/10.1016/j.foreco.2017.06.046
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1
Chao, K J, Phillips, O. L., Baker, T. R., Peacock, J., Monteagudo, A., Resources, N., Hsing, N. C., & Vargas, H. (2009). After trees die : quantities and determinants of necromass across Amazonia. Biogeosciences, 1615–1626.
Chao, Kuo Jung, Phillips, O. L., & Baker, T. R. (2008). Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 38(4), 795–805. https://doi.org/10.1139/X07-163
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365
Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437
Cochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237
Cornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124
Cornwell, W. K., Ackerly, D. D., Cornwell, W. K., & Ackerly, D. D. (2016). Community Assembly and Shifts in Plant Trait Distributions across an Environmental Gradient in Coastal California Stable URL : http://www.jstor.org/stable/27646168 Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. 79(1), 109–126.
Dale, V., Joyce, L., Mcnulty, S., Neilson, R., Ayres, M., Flannigan, M., Hanson, P., Irland, L., Lugo, A., & Peterson, C. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723–734.
De Ruiz, M. L. V. (2006). Incendios Forestales. Ciencias, 60–66.
DeBano, L., Neary, D., & Ffolliott, P. (1998). Fire’s Effects on Ecosystems (John Wiley).
Di Bella, C. M., Jobbágy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15(2), 192–199. https://doi.org/10.1111/j.1466-822X.2006.00225.x
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958–2975. https://doi.org/10.1002/ece3.601
Douterlungne, D., Thomas, E., Levy-tacher, S. I., Sur, S. N., Box, P. O., & Auxiliadora, M. (2013). Fast-growing pioneer tree stands as a rapid and effective strategy for bracken elimination in the Neotropics. July, 1257–1265. https://doi.org/10.1111/1365- 2664.12077
Dufrene, M., & Legendre, P. (1997). Speccies assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.
Etter, A., & Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432
Feeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222. https://doi.org/10.1111/j.1365-2486.2010.02197.x
Fernández-garcía, V., Marcos, E., Fulé, P. Z., Reyes, O., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137
Fernández-méndez, F., Velasco-salcedo, V. M., Guerrero-contecha, J., Galvis, M., & Neri, A. V. (2016). RECUPERACIÓN ECOLÓGICA DE ÁREAS AFECTADAS POR UN INCENDIO FORESTAL EN LA MICROCUENCA TINTALES ( BOYACÁ , COLOMBIA ). Colombia Forestal, 19(2), 143–160.
Fetcher, N., Oberbauer, S. F., & Strain, B. R. (1985). Vegetation effects on microclimate in lowland forest in Costa Rica. January. https://doi.org/10.1007/BF02189035
Finol, H. (1971). Nuevos parametros a considerarse en el análisis estructural de las selvas virgenes tropicales.
Food and Agriculture Organization of the United, & Nations, I. (2009). Hacia una definición de degradación de los bosques: Análisis comparativo de las definiciones existentes. Evaluación de Los Recursos Forestales Mundiales (Documento de Trabajo 154).
Fosberg, M. (1971). Moisture content calculations for the 100-hour timelag fuel in fire danger rating. Forest Service, u.s. Department of Agriculture, usda Forest Service.
Fosberg, M. (1977). Forecasting the 10-Hour timelag fuel moisture (Vol. 7, Issue 1, pp. 541–559). Rocky Mountain Forest and Range Experiment Station, Forest Service.
Gamarra, Y., Restrepo, R., Cerón, A., Villamizar, M., Arenas, R., Vega, C. I., & Ávila, A. A. (2017). Aplicación del protocolo CERA-S para determinar la calidad ecológica de la microcuenca Mamarramos (cuenca Cane-Iguaque), Santuario de Fauna y Flora Iguaque (Boyacá), Colombia . Biota Colombiana, 18(2), 11–30. https://doi.org/10.21068/c2017.v18n02a02
Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., Roumet, C., & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69–83. https://doi.org/10.1046/j.0028-646X.2001.00239.x
Garnier, E., Navas, M., & Grigulis, K. (2015). Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. https://doi.org/10.1093/acprof:oso/9780198757368.003.0001
Ghermandi, L., Beletzky, N. A., de Torres Curth, M. I., & Oddi, F. J. (2016). From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas. Journal of Environmental Management, 183, 925–937. https://doi.org/10.1016/j.jenvman.2016.09.051
Gill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951
González, J. C. W., & De Ruiz, M. L. V. (2007). Evaluación de combustibles y su disponibilidad en incendios forestales: Un estudio en el Parque Nacional la Malinche. Investigaciones Geograficas, 62, 87–103.
Gonzalez, S., Alejandro, F., Guncay, T., & Sebastián, W. (2020). Estimación del carbono almacenado en la biomasa aérea, necromasa (hojarasca) y en el suelo en un bosque de pino en la comuna Paquizhapa (provincia de Loja).
González, T. M., Meza, M. C., Armenteras, D., & Vélez, J. (2018). Causas de Degradación Forestal en Colombia: una primera aproximación. In Journal of Materials Processing Technology (Vol. 1, Issue 1). http://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.powtec.20 16.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.10 16/j.matlet.2019.04.024%0Ahttps://doi.org/10.1016/j.matlet.2019.127252%0Ahttp://d x.doi.o
Gould, J. S., Lachlan McCaw, W., & Phillip Cheney, N. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262(3), 531–546. https://doi.org/10.1016/j.foreco.2011.04.022
Govender, N., Trollope, W. S. W., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4), 748–758. https://doi.org/10.1111/j.1365-2664.2006.01184.x
Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169–1194.
Hernández, H. (2019). Lo que usted debe saber sobre incendios de cobertura vegetal.
Hofstede, R. G., & Rossenaar, A. J. (1995). Biomass of grazed, burned, and undisturbed Paramo Grasslands, Colombia. II. Root mass and aboveground:belowground ratio. Arctic and Alpine Research, 27(1), 13–18. https://doi.org/10.2307/1552063
Hollis, J. J., Matthews, S., Anderson, W. R., Cruz, M. G., & Burrows, N. D. (2011). Behind the flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern Australia. Forest Ecology and Management, 261(11), 2049–2067. https://doi.org/10.1016/j.foreco.2011.02.031
Jaureguiberry, P., Bertone, G., & Díaz, S. (2011). Device for the standard measurement of shoot flammability in the field. Austral Ecology, 36(7), 821–829. https://doi.org/10.1111/j.1442-9993.2010.02222.x
Jolly, W. M. (2007). Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. International Journal of Wildland Fire, 16(4), 503–509. https://doi.org/10.1071/WF06077
Keane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301–319. http://www.publish.csiro.au/paper/WF01028
Kitzberger, T., Perry, G. L. W., Paritsis, J., Gowda, J. H., Tepley, A. J., Holz, A., & Veblen, T. T. (2016). Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 54(2), 247–272. https://doi.org/10.1080/0028825X.2016.1151903
Kitzberger, Thomas, Aráoz, E., Gowda, J. H., Mermoz, M., & Morales, J. M. (2012). Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems, 15(1), 97–112. https://doi.org/10.1007/s10021-011-9494-y
Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556.
López Hernández, J. M., , González Rodríguez, H., , Lozano, Ramírez, R. G., , Cantú Silva, I., , Gómez Meza, M. V., , Pando Moreno, M., & , Estrada Castillón, A. E. (2013). Producción De Hojarasca Y Retorno Potencial De Nutrientes En Tres Sitios Del Estado De Nuevo León, México. Polibotánica, 35(December 2009), 41–64.
Lund, H. G. (2009). What is a degraded forest?
Lutes, D. C. (2006). FIREMON : Fire Effects Monitoring and Inventory System Technical . In United States Departament of Agriculture. Forest Service Research Paper (Issue June 2014).
M. kellman, Tackaberry. R, Brokaw. N, M. J. (1994). Tropical Gallery forests. National Geographic Research & Exploration, 10, 92–103.
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the anthropocene. Annual Review of Environment and Resources, 39, 125– 159. https://doi.org/10.1146/annurev-environ-030713-155141
Mascaraque, Á. (2003). Índices De Causalidad Y Riesgo De Incendio En Los Espacios Protegidos De La Comunidad De Madrid. L.
Matthews, S. (2014). Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, 23(1), 78–92. https://doi.org/10.1071/WF13005
McArthur, A. G., & Cheney, N. P. (2015). The Characterization of Fires in Relation to Ecological Studies. Fire Ecology, 11(1), 3–9. https://doi.org/10.1007/bf03400629
Meyn, A., White, P. S., Buhk, C., & Jentsch, A. (2007). Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progress in Physical Geography, 31(3), 287–312. https://doi.org/10.1177/0309133307079365
Meza, M., Espelta, J. M., Gonzáles, T., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003
Miller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360
Montenegro, A. L., & Ríos, O. V. (2008). Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia). Revista de Biologia Tropical, 56(3), 1543–1556. https://doi.org/10.15517/rbt.v56i3.5728
Montorio, R., Pérez-Cabello, F., García-Martín, A., Vlassova, L., & De la Riva, J. (2014). La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. Geoecología, Cambio Ambiental y Paisaje: Homenaje Al Profesor José María García Ruiz, 427–440.
Mooney. H, Bonnicksen. T, Christensen. N, Lotan. J, R. W. (1981). Fire Regimes and Ecosystem Properties.
Moraga Peralta, J. (2010). Evaluación del riesgo ante incendios forestales en la cuenca del río Tempisque. Revista Geográfica de América Central, 2(45), 33–64.
Morales, J. M., Mermoz, M., Gowda, J. H., & Kitzberger, T. (2015). A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 300, 73–80. https://doi.org/10.1016/j.ecolmodel.2015.01.004
Mosquera, H. Q., Rengifo, R., & Ramos, Y. A. (2009). MORTALIDAD Y RECLUTAMIENTO DE ÁRBOLES EN UN BOSQUE PLUVIAL TROPICAL DE CHOCÓ (COLOMBIA). 62(1), 4855–4868.
Mutlu, M., Popescu, S. C., Stripling, C., & Spencer, T. (2008). Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sensing of Environment, 112(1), 274–285. https://doi.org/10.1016/j.rse.2007.05.005
Myers, N., Mittermeler, R., Mittermeler, C., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 468(7326), 895. https://doi.org/10.1038/468895a
Myers, R., O’Brien, J., & Morrison, S. (2006). Fire management overview of the Caribbean Pine (Pinus caribaea) savannas of Mosquitia, Honduras. June.
Najera, J., & Hernández, E. (n.d.). Estimación De La Carga De Combustibles Forestales En Un Bosque Coetáneo De La Región De El Salto, Durango. Produccionbovina.Com, 4–7. http://www.produccionbovina.com/produccion_y_manejo_pasturas/curso_fuego/44- durango.pdf
Naranjo-Esquivel, E. D. (2014). Evaluación De La Carga De Combustibles Forestales En Un Bosque Mixto De La Sierra De Coyuca De Benítez, Estado De Guerrero, México.
Ocampo-Zuleta, K., & Bravo, S. (2019). Recruitment of woody species in tropical forests exposed to wildlandfires: An overview. Ecosistemas, 28(1), 106–117. https://doi.org/10.7818/ECOS.1642
Odion, D. C., Moritz, M. A., & Dellasala, D. A. (2010). Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 98(1), 96–105. https://doi.org/10.1111/j.1365-2745.2009.01597.x
Olguín, L. (2017). “ Implicaciones sociales y ecológicas de la restauración de áreas degradadas por helecho invasivo ( Pteridium aquilinum ) en San Pedro Tlatepusco, Oaxaca , México .” Instituto Politécnico Nacional.
Oliveras, I., Malhi, Y., Salinas, N., Huaman, V., Urquiaga-Flores, E., Kala-Mamani, J., Quintano-Loaiza, J. A., Cuba-Torres, I., Lizarraga-Morales, N., & Román-Cuesta, R. M. (2013). Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 7(1–2), 329–340. https://doi.org/10.1080/17550874.2013.816800
Oliveras, I., Román-Cuesta, R. M., Urquiaga-Flores, E., Quintano Loayza, J. A., Kala, J., Huamán, V., Lizárraga, N., Sans, G., Quispe, K., Lopez, E., Lopez, D., Cuba Torres, I., Enquist, B. J., & Malhi, Y. (2017). Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Global Change Biology, 24(2), 758–772. https://doi.org/10.1111/gcb.13951
Paritsis, J., Holz, A., Veblen, T. T., & Kitzberger, T. (2013). Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 4(5), 1–20. https://doi.org/10.1890/ES12-00378.1
Paritsis, J., Veblen, T. T., & Holz, A. (2015). Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science, 26(1), 89–101. https://doi.org/10.1111/jvs.12225
Parra, C., & Bernal, A. (2010). Incendios de cobertura vegetal y biodiversidad: una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El Hombre y La Máquina, 35, 67–81. https://www.redalyc.org/articulo.oa?id=47817140008
Pasquis, R. G. (2016). Informe de comisión al Santuario de Flora y Fauna IGUAQUE - SFFI , Boyacá. April 2016.
Peet, G. B. (1971). Litter accumulation in jarrah and karri forests. Australian Forestry, 35(4), 258–262. https://doi.org/10.1080/00049158.1971.10675559
Peláez, B. C., López, B. L., González, J. M., Manuel, J., Camey, R., & Merino, G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57).
Podur, J. J., & Martell, D. L. (2009). The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006. Ecological Applications, 19(5), 1246–1252. https://doi.org/10.1890/08-0790.1
Porrero, M. (2001). Incendios forestales, investigación de causas (Mundi-Pren).
Quesada, C. A., Lloyd, J., Schwarz, M., Baker, T. R., Phillips, O. L., Patiño, S., Czimczik, C., Hodnett, M. G., Herrera, R., Arneth, A., Lloyd, G., Malhi, Y., Dezzeo, N., Luizão, F. J., Santos, A. J. B., Schmerler, J., Arroyo, L., Silveira, M., Priante Filho, N., … Ramírez, H. (2009). Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6(2), 3993–4057. https://doi.org/10.5194/bgd-6-3993- 2009
Quintero, S., Jardel, E., Cuevas, R., García, F., & Martínez, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25, 1–14. https://doi.org/10.21829/myb.2019.2531888
Ramos, M. P. (2010). Manejo del fuego. February, 240. https://www.researchgate.net/publication/313385091
Rangel-Ch, O. (2000). Colombia Diversidad Biótica III La región de vida paramuna. Igarss 2014, 1, 1–5.
Reich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119–129. https://doi.org/10.1071/WF02049
Rodrigo, A., Retana, J., & Picó, F. X. (2004). Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85(3), 716–729. https://doi.org/10.1890/02-0492
Rodríguez-Alarcón, S. J., Pinzón-Pérez, L., Cruz, J. L., & Amaya, D. C. (2020). Functional traits of woody plants at green spaces in Bogotá, Colombia. Biota Colombiana, 21(2), 108–133. https://doi.org/10.21068/C2020.V21N02A08
Rodriguez, W., & Vargas, O. (2002). Estrategias de regeneración postquema en áreas de vegetación altoandina tipo matorral. Perez-Arbelaezia, 13(May 2014), 26.
Romero-Mieres, M., González, M. E., & Lara, A. (2014). Recuperación natural del bosque siempreverde afectado por tala rasa y quema en la Reserva Costera Valdiviana, Chile. Bosque, 35(3), 257–267. https://doi.org/10.4067/S0717-92002014000300001
Rothmell, R. C. (1972). A Mathematical Model for Predicting Fire Spread. United States Departament of Agriculture. Forest Service Research Paper, 46.
Schwartzman, A. Moreira, D. N. (2000). Rethinking Tropical Forest Conservation: Perils in Parks. Conservation Forum, 12(1), 39–45. https://www.redalyc.org/articulo.oa?id=47817140008
Salazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22, e01021. https://doi.org/10.1016/j.gecco.2020.e01021
Salvador, R., & Lloret, F. (1995). Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura. Orsis: Organismes i Sistemes, 10, 25–34.
Santacruz-Garcia. (2020). Impacto del fuego en la defensa de las plantas: Rasgos funcionales y síntesis de metabolitos secundarios en especies leñosas del Chaco semiárido de Argentina. Facultad De Ciencias Agrarias Y Forestales Tesis Doctoral. Universidad Nacional De La Plata, Facultad De Ciencias Agrarias Y Forestales, 218.
Santacruz, A., Bravo, S., & F.Ojeda. (2015). Combustibles En Latifoliadas En El Chaco Semiárido (Vol. 4500950, Issue 0385).
Santamaría, C. T., & Rodríguez, W. A. (2017). Identificación de rasgos funcionales de especies vegetales del bosque alto andino y páramo relacionados con su respuesta regenerativa postfuego. https://repository.udistrital.edu.co/bitstream/handle/11349/7614/RodriguezDuarteWilli amAndres2017.pdf?sequence=1&isAllowed=y
Santana, V. M., & Marrs, R. H. (2014). Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management, 139, 88–96. https://doi.org/10.1016/j.jenvman.2014.02.027
Sasaki, N., & Putz, F. E. (2009). Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters, 2(5), 226– 232. https://doi.org/10.1111/j.1755-263x.2009.00067.x
Schaffhauser, A., Curt, T., Véla, E., & Tatoni, T. (2012). Forest Ecology and Management Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L . woodlands and maquis. Forest Ecology and Management, 282, 157–166. https://doi.org/10.1016/j.foreco.2012.06.047
Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676. https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2
Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service - Research Paper RMRS-RP, 29 RMRS-RP, 1–62. https://doi.org/10.2737/RMRS-RP-29
Secaira, S. C. (2020). El regimén de incendio y los rasgos funcionales de Quercus en los ecosistemas de montaña de Guatemala. CATIE.
Shlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., Swaty, R., Schmidt, D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith, J., & Zollner, D. (2007). Fire, ecosystems and people : threats and strategies for global biodiversity conservation. The Nature Conservancy Global Fire Initiative Technical Report, January, 17. http://mrcc.isws.illinois.edu/living_wx/wildfires/fire_ecosystems_and_people.pdf
Simpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E. R., Thomas, G. H., & Osborne, C. P. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104(1), 138–148. https://doi.org/10.1111/1365- 2745.12503
Simula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva 238, 62(2), 3–7. http://www.fao.org/docrep/015/i2560s/i2560s01.pdf
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889
Taber, E. M., & Mitchell, R. M. (2023). Rapid changes in functional trait expression and decomposition following high severity fire and experimental warming. Forest Ecology and Management, 541(May), 121019. https://doi.org/10.1016/j.foreco.2023.121019
Tejero, D., Mehltreter, K., Torres, A., & Kromer, T. (2011). Helechos y licopodios. La Biodiversidad En Veravruz Estudio de Caso, II(January).
Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. In Technical Series: Vol. no. 43 (Issue April 2014). http://www.cbd.int/doc/publications/cbd-ts-43-en.pdf
Tolhurst, K., & Cheney, N. P. (1999). Synopsis of the Knowledge Used in Prescribed Burning in Victoria. Victoria.
Uhl, C., & Buschbacher, R. (1985). A Disturbing Synergism Between Cattle Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon. Biotropica, 17(4), 265. https://doi.org/10.2307/2388588
Uhl, C., & Kauffman, B. (1990). Deforestation , Fire Susceptibility , and Potential Tree Responses to Fire in the Eastern Amazon. Ecological Society of America, 71(2), 437– 449. http://www.jstor.org/stable/1940299 DEFORESTATI
Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 283.
Vásquez, A., Donoso, P., & Gerding, V. (2018). Degradación de los bosques: Concepto, proceso y estado - Un ejemplo de aplicación en bosques adultos nativos de Chile. In Silvicultura en bosques nativos Experiencias en silvicultura y restauración en Chile, Argentina y el oeste de Estados Unidos (pp. 1–281). https://www.researchgate.net/profile/Marina_Caselli/publication/325848341_Propues tas_silviculturales_para_el_manejo_de_bosques_de_Austrocedrus_chilensis_sanos _y_afectados_por_el_mal_del_cipres_de_Argentina/links/5b28eb610f7e9b1d0034b0 0b/Propuestas-silvicu
Veblen, T. T. (1982). Growth patterns of Chusquea bamboos in the understory of Chilean Nothofagus forests and their influences in forest dynamics ( Andes) . Bulletin - Torrey Botanical Club, 109(4), 474–487. https://doi.org/10.2307/2996488
Vega, J. Cuiñas, P. Fontúrbel, M. F. C. (2000). PLANIFICAR LA PRESCRIPCIÓN PARA REDUCIR COMBUSTIBLES Y DISMINUIR EL IMPACTO SOBRE EL SUELO EN LAS QUEMAS PRESCRITAS. Cuadernos de La S.E.C.F., 189–198.
Vélez, R. (2000). La defensa contra los incendios forestales (McGraw-Hil).
Villarreal, H., Nuñez, M., Zorro, W., & Pacheco, C. (2017). Plan de Manejo del Santuario de Fauna y Flora Iguaque. Parques Nacionales Naturales de Colombia. Unidad Administrativa Especial Del Sistema de Parques Nacionales Naturales, 263.
Viney, N. R. (1991). A review of fine fuel moisture modelling. International Journal of Wildland Fire, 1(4), 215–234. https://doi.org/10.1071/WF9910215
Whelan, R. (1995). The Ecology of Fire.
Whelan, R. J. (2009). The ecology of fire-developments since 1995 and outstanding questions. Proceedings of the Royal Society of Queensland, 115, 59–68.
Williams, R., Cook, G., Gill, A., & Moore, P. (1999). Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology, 24(9), 50–59. https://doi.org/10.1890/12-0354.1
Xelhuantzi, J., Flores, J., & Chávez, Á. (2011). Análisis comparativo de cargas de combustibles en ecosistemas forestales afectados por incendios. Revista Mexicana de Ciencias Forestales, 2(3), 37–52.
Yebra, M., & Chuvieco, E. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. TELEDETECCIÓN - Hacia Un Mejor Entendimiento de La Dinámica Global y Regional.
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., De Oliveira, R. C., Vieira, I. C. G., & Barlow, J. (2014). A large scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713–3726. https://doi.org/10.1111/gcb.12627
Keeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fireprone ecosystems. International Journal of Wildland Fire, 28(4), 282–287. https://doi.org/10.1071/WF18203
Nepstad, D. C., Veríssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., & Brooks, V. (1999). Large scale impoverishment of amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066
Pérez, M., Lagunes-Espinoza, L. del C., López-Upton, J., Ramos-Juárez, J., & Aranda Ibáñez, E. M. (2013). Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro, 25(2), 101–108.
Ruiz-corzo, R., Aryal, D. R., Venegas-sandoval, A., Jerez-ramírez, D. O., Fernández zúñiga, K. S., López-cruz, S. C., López-hernández, J. C., Peña-alvarez, B., & Velázquez-sanabria, C. A. (2022). Temporal dynamics of forest fuels and effect of fire in cerro Nambiyugua , Chiapas , Mexico. Ecosistemas y Recursos Agropecuarios, 9(2), 1–12. https://doi.org/10.19136/era.a9n2.3253
Russell-Smith, J., Monagle, C., Jacobsohn, M., Beatty, R. L., Bilbao, B., Millán, A., Vessuri, H., & Sánchez-Rose, I. (2017). Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fireprone settings? Climatic Change, 140(1), 47–61. https://doi.org/10.1007/s10584-013- 0910-5
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 119 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Iguaque
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84788/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84788/4/1016022627.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84788/5/1016022627.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9b78830ba0e8b67c9f9b04c26bd71108
5792728fc2ce6d6382e55ef0e8fccc87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089414204194816
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Armenteras Pascual, Dolors1044389ab0f3e65ac61f1ef47f4eaf62Reyes Palacios, Alejandra Ceciliad11d1cdfbf740e4cdba6b7be1e55d688Meza Elizalde María ConstanzaEcología del Paisaje y Modelación de Ecosistemas0000-0002-0540-080XAlejandra Reyes Palacios2023-10-09T15:02:53Z2023-10-09T15:02:53Z2023-10https://repositorio.unal.edu.co/handle/unal/84788Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasLos bosques degradados en un escenario de condiciones climáticas extremas presentan mayor desecación y carga de combustibles. Estas condiciones aumentan la susceptibilidad a incendios forestales ya que la propagación del fuego depende de la disponibilidad del combustible, su disposición y su inflamabilidad. Este estudio tiene como objetivo analizar los impactos de los incendios forestales sobre las características del combustible vegetal en los bosques de robles del Santuario de Flora y Fauna de Iguaque. Para lograr esto, se establecieron doce parcelas de monitoreo, seis en bosques quemados y seis en bosques no quemados. El monitoreo se llevó a cabo en 2018 y 2019, recolectando información sobre troncos de árboles, vegetación del sotobosque y plántulas, además de emplear transectos de Brown para recolectar desechos y evaluar rasgos funcionales relacionados con hojas y corteza de la especie Quercus humboldtii. En cuanto a los resultados, se observan cambios en la estructura y composición del bosque en términos de diversidad y riqueza en la regeneración natural, así como la perdida de biomasa en los bosques quemados, para el segundo año, comienza a aparecer la presencia de especies herbáceas y helechos, y se registra la supervivencia de los individuos arbóreos en los bosques quemados, no obstante, con el tiempo, su mortalidad aumenta. Con relación a los rasgos funcionales, se encontró que contenido de humedad de las hojas es mayor en los bosques no quemados, mientras que el contenido foliar de materia seca y el espesor presentan mayores valores en los bosques quemados, respecto a la corteza se evidencio que la corteza interna en los bosques quemados es menor, mientras que la corteza externa tiende a tener mayor grosor. Las cargas de combustible en los bosques quemados son mayores en comparación con los bosques no quemados, principalmente debido a la acumulación de combustible que se asocia también a la composición de especies, a causa de la apertura de claros que crean condiciones favorables para el desarrollo de vegetación herbácea y arbustiva, y favorece la perdida de humedad lo cual contribuye a las cargas de combustible de los bosques afectados. (texto tomado de la fuente)Degraded forests in a scenario of extreme climatic conditions experience increased drying and fuel load. These conditions raise the susceptibility to wildfires, as fire propagation depends on fuel availability, arrangement, and flammability. This study aims to analyze the impacts of wildfires on the characteristics of vegetal fuel in the oak forests of the Iguaque Flora and Fauna Sanctuary. To achieve this, twelve monitoring plots were established, six in burned forests and six in unburned forests. Monitoring took place in 2018 and 2019, gathering information on tree trunks, understory vegetation, and saplings, as well as employing Brown transects to collect debris and assess functional traits related to leaves and bark of the Quercus humboldtii species. Regarding the results, changes have been in the structure and composition of the forest in terms of diversity and richness in natural regeneration, as well as the loss of biomass in burned forests. In the second year, the presence of herbaceous species and ferns begins to emerge, and there is survival of tree individuals in burned forests. However, over time, their mortality increases. Regarding the functional traits, it was found that the wet weight of the leaves is higher in the unburned forests, while the foliar dry matter content and the thickness present higher values in the burned forests, with respect to the bark it was evidenced that the inner crust in conserved forests is larger, while the outer crust tends to be ticker in fire affected forests. Burned forests exhibit higher fuel loads compared to unburned forests, primarily due to fuel accumulation and the opening of gaps that create favorable conditions for the development of herbaceous and shrubby vegetation, contributing to the fuel loads of affected forests.MaestríaMagíster en Ciencias - BiologíaEcología del fuego119 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur570 - Biología::577 - Ecología580 - PlantasSanidad de los bosquesForest healthForest firesFuelsIncendios forestalesCombustiblesincendio forestalcombustiblerasgos funcionalesForest FireFuelsFunctional traitsInfluencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de IguaqueInfluence of forest fires on the composition and structure of vegetative fuels in burned areas of the Santuario de Fauna y Flora IguaqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMIguaqueAckerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10(2), 135–145. https://doi.org/10.1111/j.1461-0248.2006.01006.xAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017Aguilar-garavito, M., Cortina-segarra, J., & Matoma, M. (2023). Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ) Forest Ecology and Management Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ). Forest Ecology and Management, April. https://doi.org/10.1016/j.foreco.2023.120937Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E., & Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14556– 14561. https://doi.org/10.1073/pnas.0914471107Albini, F. A., & Reinhardt, E. D. (1995). Modeling Ignition And Burning Rate Of Large Woody Natural Fuels. International Journal of Wildland Fire, 5(2), 81–91. https://doi.org/10.1071/WF9950081Albornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765–776. https://doi.org/10.1007/s11258-013-0206-xAlcázar-Caicedo, C., & Ramíres-Hernandez, W. (2011). El Uso De Rasgos Funcionales En Flora Como Herramienta Para Establecer Prioridades De Conservación. Letras Biologicas, April, 215–222.Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108Anderson, H. (1982). Aids to determining fuel models for sstimating fire behavior. In United States Department of Agriculture Forest Service (Vol. 44, Issue 1, pp. 42–53).Araujo-Murakami, A., Parada, A. G., Terán, J. J., Baker, T. R., Feldpausch, T. R., Phillips, O. L., & Brienen, R. J. W. (2011). Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Revista Peruana de Biología, 18(1), 113–118. https://doi.org/10.15381/rpb.v18i1.155Armenteras, D., González, T. M., Ríos, O. V., Elizalde, M. C. M., & Oliveras, I. (2020). Fire in the ecosystems of northern south america: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353Armenteras, D., González, T. M., Vargas Ríos, O., Meza Elizalde, M. C., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú . In Caldasia (Vol. 42, pp. 1–16). scieloco .Armenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002Avella, A., & Cardenas, L. (2010). Conservación y uso sostenible de los bosques de roble en el corredor de conservación guantiva - la Rusia - Iguaque, departamentos de santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a01Babl, E., Alexander, H. D., Siegert, C. M., & Willis, J. L. (2020). Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests? Forest Ecology and Management, 458(September), 117731. https://doi.org/10.1016/j.foreco.2019.117731Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.xBalch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.xBarlow, J., Berenguer, E., Carmenta, R., & França, F. (2020). Clarifying Amazonia’s burning crisis. Global Change Biology, 26(2), 319–321. https://doi.org/10.1111/gcb.14872Barlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., Feldpausch, T. R., Gloor, E., Hall, A., Malhi, Y., Milliken, W., Mulligan, M., Parry, L., Pennington, T., Peres, C. A., Phillips, O. L., Roman-Cuesta, R. M., Tobias, J. A., & Gardner, T. A. (2011). Using learning networks to understand complex systems: A case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86(2), 457–474. https://doi.org/10.1111/j.1469-185X.2010.00155.xBarlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787–1794. https://doi.org/10.1098/rstb.2007.0013Berget, C., Duran, E., & Bray, D. B. (2015). Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Fern ( Pteridium aquilinum ) and Conservation in the Chinantla Region , Oaxaca , Mexico. April 2016. https://doi.org/10.1007/s10745-015-9762-0Bianchi, L., Defosse, G., Dentoni, M., & Kunst, C. (2014). Dinámica de la humedad de los combustibles y su relación con la ecología y manejo de fuego, region chaqueña occidental (Argentina) II: Follaje y residuos de árboles y arbustos. Revista de Investigaciones Agropecuarias, 40(2), 165–181.Biddulph, J., & Kellman, M. (1998). Fuels and fire at savanna-gallery forest boundaries in southeastern Venezuela. Journal of Tropical Ecology, 14(4), 445–461. https://doi.org/10.1017/S0266467498000339Blackhall, M., Veblen, T. T., & Raffaele, E. (2015). Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. Journal of Vegetation Science, 26(1), 123– 133. https://doi.org/10.1111/jvs.12216Blanquet, B. (1979). Plant Sociology: The study of plant communities.Bond, W. J., & Midgley, J. J. (2012). Fire and the angiosperm revolutions. International Journal of Plant Sciences, 173(6), 569–583. https://doi.org/10.1086/665819Bond, W. J., Woodward, F., & Midgley, G. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(1), 525–537. https://doi.org/10.1016/B978- 0-12-424255-5.50017-1Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.xBrown, J. (1970). PHYSICAL FUEL PROPERTIES OF PONDEROSA PINE FOREST FLOORS AND CHEATGRASS. USDA Forest Service - Research Paper RMRS-RP, 84401.Brown, J. K. (1971). A planar intersect method for sampling fuel volume and surface area.Brown, J., & See, T. (1981). Downed dead woody fuel and biomass in the Northern Rocky Mountains.Burrows, N. D. (1994). Experimental development of a fire management model for Jarrah (Eucalyptus marginata Donn ex Sm.) Forest. Australian National University.Byram, G. (1959). Combustion of forest fuels. Forest Fire Control and Use, 42(3), 609–610. https://doi.org/10.2307/1932261Cárdenas, C. (2013). El fuego y el pastoreo en el páramo húmedo de Chingaza (Colombia): efectos de la perturbación y respuestas de la vegetación. In Universitat Autónoma de Barcelona, Tesis Doctoral. http://www.tesisenxarxa.net/handle/10803/120219Cavallero, L., Raffaele, E., & Aizen, M. A. (2013). Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation, 158, 342–350. https://doi.org/10.1016/j.biocon.2012.10.004Cawson, J. G., Duff, T. J., Tolhurst, K. G., Baillie, C. C., & Penman, T. D. (2017). Fuel moisture in Mountain Ash forests with contrasting fire histories. Forest Ecology and Management, 400, 568–577. https://doi.org/10.1016/j.foreco.2017.06.046Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1Chao, K J, Phillips, O. L., Baker, T. R., Peacock, J., Monteagudo, A., Resources, N., Hsing, N. C., & Vargas, H. (2009). After trees die : quantities and determinants of necromass across Amazonia. Biogeosciences, 1615–1626.Chao, Kuo Jung, Phillips, O. L., & Baker, T. R. (2008). Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 38(4), 795–805. https://doi.org/10.1139/X07-163Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437Cochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237Cornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124Cornwell, W. K., Ackerly, D. D., Cornwell, W. K., & Ackerly, D. D. (2016). Community Assembly and Shifts in Plant Trait Distributions across an Environmental Gradient in Coastal California Stable URL : http://www.jstor.org/stable/27646168 Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. 79(1), 109–126.Dale, V., Joyce, L., Mcnulty, S., Neilson, R., Ayres, M., Flannigan, M., Hanson, P., Irland, L., Lugo, A., & Peterson, C. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723–734.De Ruiz, M. L. V. (2006). Incendios Forestales. Ciencias, 60–66.DeBano, L., Neary, D., & Ffolliott, P. (1998). Fire’s Effects on Ecosystems (John Wiley).Di Bella, C. M., Jobbágy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15(2), 192–199. https://doi.org/10.1111/j.1466-822X.2006.00225.xDíaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958–2975. https://doi.org/10.1002/ece3.601Douterlungne, D., Thomas, E., Levy-tacher, S. I., Sur, S. N., Box, P. O., & Auxiliadora, M. (2013). Fast-growing pioneer tree stands as a rapid and effective strategy for bracken elimination in the Neotropics. July, 1257–1265. https://doi.org/10.1111/1365- 2664.12077Dufrene, M., & Legendre, P. (1997). Speccies assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.Etter, A., & Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432Feeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222. https://doi.org/10.1111/j.1365-2486.2010.02197.xFernández-garcía, V., Marcos, E., Fulé, P. Z., Reyes, O., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137Fernández-méndez, F., Velasco-salcedo, V. M., Guerrero-contecha, J., Galvis, M., & Neri, A. V. (2016). RECUPERACIÓN ECOLÓGICA DE ÁREAS AFECTADAS POR UN INCENDIO FORESTAL EN LA MICROCUENCA TINTALES ( BOYACÁ , COLOMBIA ). Colombia Forestal, 19(2), 143–160.Fetcher, N., Oberbauer, S. F., & Strain, B. R. (1985). Vegetation effects on microclimate in lowland forest in Costa Rica. January. https://doi.org/10.1007/BF02189035Finol, H. (1971). Nuevos parametros a considerarse en el análisis estructural de las selvas virgenes tropicales.Food and Agriculture Organization of the United, & Nations, I. (2009). Hacia una definición de degradación de los bosques: Análisis comparativo de las definiciones existentes. Evaluación de Los Recursos Forestales Mundiales (Documento de Trabajo 154).Fosberg, M. (1971). Moisture content calculations for the 100-hour timelag fuel in fire danger rating. Forest Service, u.s. Department of Agriculture, usda Forest Service.Fosberg, M. (1977). Forecasting the 10-Hour timelag fuel moisture (Vol. 7, Issue 1, pp. 541–559). Rocky Mountain Forest and Range Experiment Station, Forest Service.Gamarra, Y., Restrepo, R., Cerón, A., Villamizar, M., Arenas, R., Vega, C. I., & Ávila, A. A. (2017). Aplicación del protocolo CERA-S para determinar la calidad ecológica de la microcuenca Mamarramos (cuenca Cane-Iguaque), Santuario de Fauna y Flora Iguaque (Boyacá), Colombia . Biota Colombiana, 18(2), 11–30. https://doi.org/10.21068/c2017.v18n02a02Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., Roumet, C., & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69–83. https://doi.org/10.1046/j.0028-646X.2001.00239.xGarnier, E., Navas, M., & Grigulis, K. (2015). Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. https://doi.org/10.1093/acprof:oso/9780198757368.003.0001Ghermandi, L., Beletzky, N. A., de Torres Curth, M. I., & Oddi, F. J. (2016). From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas. Journal of Environmental Management, 183, 925–937. https://doi.org/10.1016/j.jenvman.2016.09.051Gill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951González, J. C. W., & De Ruiz, M. L. V. (2007). Evaluación de combustibles y su disponibilidad en incendios forestales: Un estudio en el Parque Nacional la Malinche. Investigaciones Geograficas, 62, 87–103.Gonzalez, S., Alejandro, F., Guncay, T., & Sebastián, W. (2020). Estimación del carbono almacenado en la biomasa aérea, necromasa (hojarasca) y en el suelo en un bosque de pino en la comuna Paquizhapa (provincia de Loja).González, T. M., Meza, M. C., Armenteras, D., & Vélez, J. (2018). Causas de Degradación Forestal en Colombia: una primera aproximación. In Journal of Materials Processing Technology (Vol. 1, Issue 1). http://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.powtec.20 16.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.10 16/j.matlet.2019.04.024%0Ahttps://doi.org/10.1016/j.matlet.2019.127252%0Ahttp://d x.doi.oGould, J. S., Lachlan McCaw, W., & Phillip Cheney, N. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262(3), 531–546. https://doi.org/10.1016/j.foreco.2011.04.022Govender, N., Trollope, W. S. W., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4), 748–758. https://doi.org/10.1111/j.1365-2664.2006.01184.xGrime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169–1194.Hernández, H. (2019). Lo que usted debe saber sobre incendios de cobertura vegetal.Hofstede, R. G., & Rossenaar, A. J. (1995). Biomass of grazed, burned, and undisturbed Paramo Grasslands, Colombia. II. Root mass and aboveground:belowground ratio. Arctic and Alpine Research, 27(1), 13–18. https://doi.org/10.2307/1552063Hollis, J. J., Matthews, S., Anderson, W. R., Cruz, M. G., & Burrows, N. D. (2011). Behind the flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern Australia. Forest Ecology and Management, 261(11), 2049–2067. https://doi.org/10.1016/j.foreco.2011.02.031Jaureguiberry, P., Bertone, G., & Díaz, S. (2011). Device for the standard measurement of shoot flammability in the field. Austral Ecology, 36(7), 821–829. https://doi.org/10.1111/j.1442-9993.2010.02222.xJolly, W. M. (2007). Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. International Journal of Wildland Fire, 16(4), 503–509. https://doi.org/10.1071/WF06077Keane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301–319. http://www.publish.csiro.au/paper/WF01028Kitzberger, T., Perry, G. L. W., Paritsis, J., Gowda, J. H., Tepley, A. J., Holz, A., & Veblen, T. T. (2016). Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 54(2), 247–272. https://doi.org/10.1080/0028825X.2016.1151903Kitzberger, Thomas, Aráoz, E., Gowda, J. H., Mermoz, M., & Morales, J. M. (2012). Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems, 15(1), 97–112. https://doi.org/10.1007/s10021-011-9494-yLaurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556.López Hernández, J. M., , González Rodríguez, H., , Lozano, Ramírez, R. G., , Cantú Silva, I., , Gómez Meza, M. V., , Pando Moreno, M., & , Estrada Castillón, A. E. (2013). Producción De Hojarasca Y Retorno Potencial De Nutrientes En Tres Sitios Del Estado De Nuevo León, México. Polibotánica, 35(December 2009), 41–64.Lund, H. G. (2009). What is a degraded forest?Lutes, D. C. (2006). FIREMON : Fire Effects Monitoring and Inventory System Technical . In United States Departament of Agriculture. Forest Service Research Paper (Issue June 2014).M. kellman, Tackaberry. R, Brokaw. N, M. J. (1994). Tropical Gallery forests. National Geographic Research & Exploration, 10, 92–103.Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the anthropocene. Annual Review of Environment and Resources, 39, 125– 159. https://doi.org/10.1146/annurev-environ-030713-155141Mascaraque, Á. (2003). Índices De Causalidad Y Riesgo De Incendio En Los Espacios Protegidos De La Comunidad De Madrid. L.Matthews, S. (2014). Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, 23(1), 78–92. https://doi.org/10.1071/WF13005McArthur, A. G., & Cheney, N. P. (2015). The Characterization of Fires in Relation to Ecological Studies. Fire Ecology, 11(1), 3–9. https://doi.org/10.1007/bf03400629Meyn, A., White, P. S., Buhk, C., & Jentsch, A. (2007). Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progress in Physical Geography, 31(3), 287–312. https://doi.org/10.1177/0309133307079365Meza, M., Espelta, J. M., Gonzáles, T., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003Miller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360Montenegro, A. L., & Ríos, O. V. (2008). Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia). Revista de Biologia Tropical, 56(3), 1543–1556. https://doi.org/10.15517/rbt.v56i3.5728Montorio, R., Pérez-Cabello, F., García-Martín, A., Vlassova, L., & De la Riva, J. (2014). La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. Geoecología, Cambio Ambiental y Paisaje: Homenaje Al Profesor José María García Ruiz, 427–440.Mooney. H, Bonnicksen. T, Christensen. N, Lotan. J, R. W. (1981). Fire Regimes and Ecosystem Properties.Moraga Peralta, J. (2010). Evaluación del riesgo ante incendios forestales en la cuenca del río Tempisque. Revista Geográfica de América Central, 2(45), 33–64.Morales, J. M., Mermoz, M., Gowda, J. H., & Kitzberger, T. (2015). A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 300, 73–80. https://doi.org/10.1016/j.ecolmodel.2015.01.004Mosquera, H. Q., Rengifo, R., & Ramos, Y. A. (2009). MORTALIDAD Y RECLUTAMIENTO DE ÁRBOLES EN UN BOSQUE PLUVIAL TROPICAL DE CHOCÓ (COLOMBIA). 62(1), 4855–4868.Mutlu, M., Popescu, S. C., Stripling, C., & Spencer, T. (2008). Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sensing of Environment, 112(1), 274–285. https://doi.org/10.1016/j.rse.2007.05.005Myers, N., Mittermeler, R., Mittermeler, C., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 468(7326), 895. https://doi.org/10.1038/468895aMyers, R., O’Brien, J., & Morrison, S. (2006). Fire management overview of the Caribbean Pine (Pinus caribaea) savannas of Mosquitia, Honduras. June.Najera, J., & Hernández, E. (n.d.). Estimación De La Carga De Combustibles Forestales En Un Bosque Coetáneo De La Región De El Salto, Durango. Produccionbovina.Com, 4–7. http://www.produccionbovina.com/produccion_y_manejo_pasturas/curso_fuego/44- durango.pdfNaranjo-Esquivel, E. D. (2014). Evaluación De La Carga De Combustibles Forestales En Un Bosque Mixto De La Sierra De Coyuca De Benítez, Estado De Guerrero, México.Ocampo-Zuleta, K., & Bravo, S. (2019). Recruitment of woody species in tropical forests exposed to wildlandfires: An overview. Ecosistemas, 28(1), 106–117. https://doi.org/10.7818/ECOS.1642Odion, D. C., Moritz, M. A., & Dellasala, D. A. (2010). Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 98(1), 96–105. https://doi.org/10.1111/j.1365-2745.2009.01597.xOlguín, L. (2017). “ Implicaciones sociales y ecológicas de la restauración de áreas degradadas por helecho invasivo ( Pteridium aquilinum ) en San Pedro Tlatepusco, Oaxaca , México .” Instituto Politécnico Nacional.Oliveras, I., Malhi, Y., Salinas, N., Huaman, V., Urquiaga-Flores, E., Kala-Mamani, J., Quintano-Loaiza, J. A., Cuba-Torres, I., Lizarraga-Morales, N., & Román-Cuesta, R. M. (2013). Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 7(1–2), 329–340. https://doi.org/10.1080/17550874.2013.816800Oliveras, I., Román-Cuesta, R. M., Urquiaga-Flores, E., Quintano Loayza, J. A., Kala, J., Huamán, V., Lizárraga, N., Sans, G., Quispe, K., Lopez, E., Lopez, D., Cuba Torres, I., Enquist, B. J., & Malhi, Y. (2017). Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Global Change Biology, 24(2), 758–772. https://doi.org/10.1111/gcb.13951Paritsis, J., Holz, A., Veblen, T. T., & Kitzberger, T. (2013). Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 4(5), 1–20. https://doi.org/10.1890/ES12-00378.1Paritsis, J., Veblen, T. T., & Holz, A. (2015). Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science, 26(1), 89–101. https://doi.org/10.1111/jvs.12225Parra, C., & Bernal, A. (2010). Incendios de cobertura vegetal y biodiversidad: una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El Hombre y La Máquina, 35, 67–81. https://www.redalyc.org/articulo.oa?id=47817140008Pasquis, R. G. (2016). Informe de comisión al Santuario de Flora y Fauna IGUAQUE - SFFI , Boyacá. April 2016.Peet, G. B. (1971). Litter accumulation in jarrah and karri forests. Australian Forestry, 35(4), 258–262. https://doi.org/10.1080/00049158.1971.10675559Peláez, B. C., López, B. L., González, J. M., Manuel, J., Camey, R., & Merino, G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57).Podur, J. J., & Martell, D. L. (2009). The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006. Ecological Applications, 19(5), 1246–1252. https://doi.org/10.1890/08-0790.1Porrero, M. (2001). Incendios forestales, investigación de causas (Mundi-Pren).Quesada, C. A., Lloyd, J., Schwarz, M., Baker, T. R., Phillips, O. L., Patiño, S., Czimczik, C., Hodnett, M. G., Herrera, R., Arneth, A., Lloyd, G., Malhi, Y., Dezzeo, N., Luizão, F. J., Santos, A. J. B., Schmerler, J., Arroyo, L., Silveira, M., Priante Filho, N., … Ramírez, H. (2009). Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6(2), 3993–4057. https://doi.org/10.5194/bgd-6-3993- 2009Quintero, S., Jardel, E., Cuevas, R., García, F., & Martínez, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25, 1–14. https://doi.org/10.21829/myb.2019.2531888Ramos, M. P. (2010). Manejo del fuego. February, 240. https://www.researchgate.net/publication/313385091Rangel-Ch, O. (2000). Colombia Diversidad Biótica III La región de vida paramuna. Igarss 2014, 1, 1–5.Reich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119–129. https://doi.org/10.1071/WF02049Rodrigo, A., Retana, J., & Picó, F. X. (2004). Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85(3), 716–729. https://doi.org/10.1890/02-0492Rodríguez-Alarcón, S. J., Pinzón-Pérez, L., Cruz, J. L., & Amaya, D. C. (2020). Functional traits of woody plants at green spaces in Bogotá, Colombia. Biota Colombiana, 21(2), 108–133. https://doi.org/10.21068/C2020.V21N02A08Rodriguez, W., & Vargas, O. (2002). Estrategias de regeneración postquema en áreas de vegetación altoandina tipo matorral. Perez-Arbelaezia, 13(May 2014), 26.Romero-Mieres, M., González, M. E., & Lara, A. (2014). Recuperación natural del bosque siempreverde afectado por tala rasa y quema en la Reserva Costera Valdiviana, Chile. Bosque, 35(3), 257–267. https://doi.org/10.4067/S0717-92002014000300001Rothmell, R. C. (1972). A Mathematical Model for Predicting Fire Spread. United States Departament of Agriculture. Forest Service Research Paper, 46.Schwartzman, A. Moreira, D. N. (2000). Rethinking Tropical Forest Conservation: Perils in Parks. Conservation Forum, 12(1), 39–45. https://www.redalyc.org/articulo.oa?id=47817140008Salazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22, e01021. https://doi.org/10.1016/j.gecco.2020.e01021Salvador, R., & Lloret, F. (1995). Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura. Orsis: Organismes i Sistemes, 10, 25–34.Santacruz-Garcia. (2020). Impacto del fuego en la defensa de las plantas: Rasgos funcionales y síntesis de metabolitos secundarios en especies leñosas del Chaco semiárido de Argentina. Facultad De Ciencias Agrarias Y Forestales Tesis Doctoral. Universidad Nacional De La Plata, Facultad De Ciencias Agrarias Y Forestales, 218.Santacruz, A., Bravo, S., & F.Ojeda. (2015). Combustibles En Latifoliadas En El Chaco Semiárido (Vol. 4500950, Issue 0385).Santamaría, C. T., & Rodríguez, W. A. (2017). Identificación de rasgos funcionales de especies vegetales del bosque alto andino y páramo relacionados con su respuesta regenerativa postfuego. https://repository.udistrital.edu.co/bitstream/handle/11349/7614/RodriguezDuarteWilli amAndres2017.pdf?sequence=1&isAllowed=ySantana, V. M., & Marrs, R. H. (2014). Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management, 139, 88–96. https://doi.org/10.1016/j.jenvman.2014.02.027Sasaki, N., & Putz, F. E. (2009). Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters, 2(5), 226– 232. https://doi.org/10.1111/j.1755-263x.2009.00067.xSchaffhauser, A., Curt, T., Véla, E., & Tatoni, T. (2012). Forest Ecology and Management Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L . woodlands and maquis. Forest Ecology and Management, 282, 157–166. https://doi.org/10.1016/j.foreco.2012.06.047Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676. https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service - Research Paper RMRS-RP, 29 RMRS-RP, 1–62. https://doi.org/10.2737/RMRS-RP-29Secaira, S. C. (2020). El regimén de incendio y los rasgos funcionales de Quercus en los ecosistemas de montaña de Guatemala. CATIE.Shlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., Swaty, R., Schmidt, D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith, J., & Zollner, D. (2007). Fire, ecosystems and people : threats and strategies for global biodiversity conservation. The Nature Conservancy Global Fire Initiative Technical Report, January, 17. http://mrcc.isws.illinois.edu/living_wx/wildfires/fire_ecosystems_and_people.pdfSimpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E. R., Thomas, G. H., & Osborne, C. P. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104(1), 138–148. https://doi.org/10.1111/1365- 2745.12503Simula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva 238, 62(2), 3–7. http://www.fao.org/docrep/015/i2560s/i2560s01.pdfStevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889Taber, E. M., & Mitchell, R. M. (2023). Rapid changes in functional trait expression and decomposition following high severity fire and experimental warming. Forest Ecology and Management, 541(May), 121019. https://doi.org/10.1016/j.foreco.2023.121019Tejero, D., Mehltreter, K., Torres, A., & Kromer, T. (2011). Helechos y licopodios. La Biodiversidad En Veravruz Estudio de Caso, II(January).Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. In Technical Series: Vol. no. 43 (Issue April 2014). http://www.cbd.int/doc/publications/cbd-ts-43-en.pdfTolhurst, K., & Cheney, N. P. (1999). Synopsis of the Knowledge Used in Prescribed Burning in Victoria. Victoria.Uhl, C., & Buschbacher, R. (1985). A Disturbing Synergism Between Cattle Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon. Biotropica, 17(4), 265. https://doi.org/10.2307/2388588Uhl, C., & Kauffman, B. (1990). Deforestation , Fire Susceptibility , and Potential Tree Responses to Fire in the Eastern Amazon. Ecological Society of America, 71(2), 437– 449. http://www.jstor.org/stable/1940299 DEFORESTATIVan Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 283.Vásquez, A., Donoso, P., & Gerding, V. (2018). Degradación de los bosques: Concepto, proceso y estado - Un ejemplo de aplicación en bosques adultos nativos de Chile. In Silvicultura en bosques nativos Experiencias en silvicultura y restauración en Chile, Argentina y el oeste de Estados Unidos (pp. 1–281). https://www.researchgate.net/profile/Marina_Caselli/publication/325848341_Propues tas_silviculturales_para_el_manejo_de_bosques_de_Austrocedrus_chilensis_sanos _y_afectados_por_el_mal_del_cipres_de_Argentina/links/5b28eb610f7e9b1d0034b0 0b/Propuestas-silvicuVeblen, T. T. (1982). Growth patterns of Chusquea bamboos in the understory of Chilean Nothofagus forests and their influences in forest dynamics ( Andes) . Bulletin - Torrey Botanical Club, 109(4), 474–487. https://doi.org/10.2307/2996488Vega, J. Cuiñas, P. Fontúrbel, M. F. C. (2000). PLANIFICAR LA PRESCRIPCIÓN PARA REDUCIR COMBUSTIBLES Y DISMINUIR EL IMPACTO SOBRE EL SUELO EN LAS QUEMAS PRESCRITAS. Cuadernos de La S.E.C.F., 189–198.Vélez, R. (2000). La defensa contra los incendios forestales (McGraw-Hil).Villarreal, H., Nuñez, M., Zorro, W., & Pacheco, C. (2017). Plan de Manejo del Santuario de Fauna y Flora Iguaque. Parques Nacionales Naturales de Colombia. Unidad Administrativa Especial Del Sistema de Parques Nacionales Naturales, 263.Viney, N. R. (1991). A review of fine fuel moisture modelling. International Journal of Wildland Fire, 1(4), 215–234. https://doi.org/10.1071/WF9910215Whelan, R. (1995). The Ecology of Fire.Whelan, R. J. (2009). The ecology of fire-developments since 1995 and outstanding questions. Proceedings of the Royal Society of Queensland, 115, 59–68.Williams, R., Cook, G., Gill, A., & Moore, P. (1999). Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology, 24(9), 50–59. https://doi.org/10.1890/12-0354.1Xelhuantzi, J., Flores, J., & Chávez, Á. (2011). Análisis comparativo de cargas de combustibles en ecosistemas forestales afectados por incendios. Revista Mexicana de Ciencias Forestales, 2(3), 37–52.Yebra, M., & Chuvieco, E. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. TELEDETECCIÓN - Hacia Un Mejor Entendimiento de La Dinámica Global y Regional.Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., De Oliveira, R. C., Vieira, I. C. G., & Barlow, J. (2014). A large scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713–3726. https://doi.org/10.1111/gcb.12627Keeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fireprone ecosystems. International Journal of Wildland Fire, 28(4), 282–287. https://doi.org/10.1071/WF18203Nepstad, D. C., Veríssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., & Brooks, V. (1999). Large scale impoverishment of amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066Pérez, M., Lagunes-Espinoza, L. del C., López-Upton, J., Ramos-Juárez, J., & Aranda Ibáñez, E. M. (2013). Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro, 25(2), 101–108.Ruiz-corzo, R., Aryal, D. R., Venegas-sandoval, A., Jerez-ramírez, D. O., Fernández zúñiga, K. S., López-cruz, S. C., López-hernández, J. C., Peña-alvarez, B., & Velázquez-sanabria, C. A. (2022). Temporal dynamics of forest fuels and effect of fire in cerro Nambiyugua , Chiapas , Mexico. Ecosistemas y Recursos Agropecuarios, 9(2), 1–12. https://doi.org/10.19136/era.a9n2.3253Russell-Smith, J., Monagle, C., Jacobsohn, M., Beatty, R. L., Bilbao, B., Millán, A., Vessuri, H., & Sánchez-Rose, I. (2017). Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fireprone settings? Climatic Change, 140(1), 47–61. https://doi.org/10.1007/s10584-013- 0910-5Degradation of tropical forest in Colombia: Impacts of fireUSAIDEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84788/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1016022627.2023.pdf1016022627.2023.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf1256824https://repositorio.unal.edu.co/bitstream/unal/84788/4/1016022627.2023.pdf9b78830ba0e8b67c9f9b04c26bd71108MD54THUMBNAIL1016022627.2023.pdf.jpg1016022627.2023.pdf.jpgGenerated Thumbnailimage/jpeg4714https://repositorio.unal.edu.co/bitstream/unal/84788/5/1016022627.2023.pdf.jpg5792728fc2ce6d6382e55ef0e8fccc87MD55unal/84788oai:repositorio.unal.edu.co:unal/847882024-08-18 23:13:33.007Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=