Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics

ilustraciones, gráficas

Autores:
Quintero Soto, Sebastian
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80836
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80836
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Cromodinámica cuántica
Particles (Nuclear physics)
Hadrons
Quantum chromodynamics
Hadrones
Partículas (Física nuclear)
Event shape variables
Infrared divergences
IBP
Reverse unitarity
Perturbative QCD
Energy-energy correlation
Variables de forma de evento
Correlación energía-energía
Divergencias Infrarojas
Unitariedad reversa
QCD perturbativo
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6e24c564879e6b69f41e9fe12f75eac5
oai_identifier_str oai:repositorio.unal.edu.co:unal/80836
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
dc.title.translated.spa.fl_str_mv Correlación energía-energía hadrónica de la aniquilación electrón-positrón a orden siguiente al principal en cromodinámica cuántica
title Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
spellingShingle Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
530 - Física::539 - Física moderna
Cromodinámica cuántica
Particles (Nuclear physics)
Hadrons
Quantum chromodynamics
Hadrones
Partículas (Física nuclear)
Event shape variables
Infrared divergences
IBP
Reverse unitarity
Perturbative QCD
Energy-energy correlation
Variables de forma de evento
Correlación energía-energía
Divergencias Infrarojas
Unitariedad reversa
QCD perturbativo
title_short Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
title_full Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
title_fullStr Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
title_full_unstemmed Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
title_sort Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics
dc.creator.fl_str_mv Quintero Soto, Sebastian
dc.contributor.advisor.spa.fl_str_mv Fazio, Angelo Raffaele
Reyes Rojas, Edilson Alfonso
dc.contributor.author.spa.fl_str_mv Quintero Soto, Sebastian
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Campos y Particulas
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Cromodinámica cuántica
Particles (Nuclear physics)
Hadrons
Quantum chromodynamics
Hadrones
Partículas (Física nuclear)
Event shape variables
Infrared divergences
IBP
Reverse unitarity
Perturbative QCD
Energy-energy correlation
Variables de forma de evento
Correlación energía-energía
Divergencias Infrarojas
Unitariedad reversa
QCD perturbativo
dc.subject.armarc.spa.fl_str_mv Cromodinámica cuántica
dc.subject.lem.eng.fl_str_mv Particles (Nuclear physics)
dc.subject.lemb.eng.fl_str_mv Hadrons
Quantum chromodynamics
dc.subject.lemb.spa.fl_str_mv Hadrones
Partículas (Física nuclear)
dc.subject.proposal.eng.fl_str_mv Event shape variables
Infrared divergences
IBP
Reverse unitarity
Perturbative QCD
Energy-energy correlation
dc.subject.proposal.spa.fl_str_mv Variables de forma de evento
Correlación energía-energía
Divergencias Infrarojas
Unitariedad reversa
QCD perturbativo
description ilustraciones, gráficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-01T16:27:21Z
dc.date.available.none.fl_str_mv 2022-02-01T16:27:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80836
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80836
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv C. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D 17 (1978)
G. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)
E. W. N. Glover y M. R. Sutton, Physics Letters B342 (1995)
D. Richards, W. Stirling y S. Ellis, Physics Letters B 119, 193 (1982)
Z. Kunszt, P. Nason, G. Marchesini y B. R. Webber, en LEP Physics Workshop (ago. de 1989)
S. Catani y M. Seymour, Physics Letters B 378, 287 (1996)
S. Catani y M. Seymour, Nuclear Physics B 485, 291 (1997)
K. A. Clay y S. D. Ellis, Physical Review Letters 74 (1995)
L. J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Physical Review Letters 120 (2018)
M. Born y N. Nagendra Nath, Proceedings Indian Academy of Science, 318 (1936)
E. Fermi y C. N. Yang, Physical Review 76, 1739 (1949)
M. Gell-Mann, Physics Letters 8, 214 (1964)
P. F. Smith, Annual Review of Nuclear and Particle Science 39, 73 (1989)
P. Langacker y H. Pagels, Physical Review D 19 (1979)
J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, 2011), pp. 12-13
J. Steinberger, Physical Review 76, 1180 (1949)
P. A. Zyla et al. (Particle Data Group), Progress of Theoretical and Experimental Physics 2020 (2020)
R. E. Taylor, Reviews of Modern Physics 63, 573 (1991)
H. W. Kendall, Review of Modern Physics 63, 597 (1991)
J. I. Friedman, Review of Modern Physics 63, 615 (1991)
L. Faddeev y V. Popov, Physics Letters B 25 (1967)
D. Gross y J. Smith, A review of asymptotic freedom (United Kingdom: Science Reasearch Council, Rutherford Laboratory, 1974)
F. Tkachov, Physics Letters B 100, 65 (1981)
K. Chetyrkin, A. Kataev y F. Tkachov, Nuclear Physics B 174, 345 (1980)
W. Celmaster y R. J. Gonsalves, Physical Review Letters 44, 560 (1980)
J. G. K orner, G. Schierholz y J. Willrodt, Nuclear Physics B 185, 365 (1981)
J. Campbell, J. Huston y F. Krauss, The black book of quantum chromodynamics: a primer for the LHC era (Oxford University Press, Oxford, 2018), pp. 25
J. Jauch y F. Rohrlich, Helvetiva Physica Acta 27, 613
L. Landau, Nuclear Physics 13, 181 (1959)
J. M. Jauch y F. Rohrlich, The Theory of Photons and Electrons: The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half, 2nd (Springer Publishing Company, Incorporated, 2012)
P. Nason, Lecture notes for the XI Jorge Andre Swieca Summer School, Particles and Fields (2001)
F. E. Low, Physical Review 110, 974 (1958)
F. Bloch y A. Nordsieck, Physical Review 52 (1937)
M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014), pp. 369-372
A. Khalil y W. A. Horowitz, Journal of Physics: Conference Series 889, 012002 (2017)
T. Kinoshita, Journal of Mathematical Physics 3 (1962)
T. D. Lee y M. Nauenberg, Physical Review 133 (1964)
G. Hanson et al, Physical Review Letters 35 (1975)
The cms detector j CMS Experiment - CERN Accelerating science (https://cms.cern/)
G. F. Sterman y S. Weinberg, Physical Review Letters 39 (1977)
G. Sterman, Physical Review D 17 (1978)
W. Bartel et al (JADE collaboration), Zeitschrift f ur Physik C 33, 23-31 (1986)
S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock y B. R. Webber, Physics Letters B269 (1991)
M. Cacciari, G. Salam y G. Soyez, Journal of High Energy Physics (2008)
S. Kluth, P. Movilla Fern andez, S. Bethke, C. Pahl y P. Pfeifenschneider, The European Physical Journal C 21 (2001)
R. Nisius, QCD results from the LHC, 2012 (Unpublished)
E. Farhi, Physical Review Letters 39 (1977)
S. Brandt, C. Peyrou, R. Sosnowski y A. Wroblewski, Physics Letters 12 (1964)
S. Bethke, Nuclear Physics B - Proceedings Supplements 121 (2003)
A. Kardos, S. Kluth, G. Somogyi, Z. Tulip ant y A. Verbytskyi, The European Physical Journal C 78 (2018)
G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour y B. R. Webber, Journal of High Energy Physics 01 (2001)
G. P. Korchemsky y G. F. Sterman, Nuclear Physics B437 (1995)
G. Luisoni y S. Marzani, Journal of Physics G 42, 103101 (2015)
R. K. Ellis, W. J. Stirling y B. R.Webber, QCD and collider physics, vol. 8 (Cambridge Monographs on Particle Physics, Nuclear Physics y Cosmology, 1996), pp. 72-73
C. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review Letters 41 (1978)
K. Fabricius, I. Schmitt, G. Kramer y G. Schierholz, Zeitschrift f ur Physik C11 (1981)
J. A. M. Vermaseren, K. J. F. Gaemers y S. J. Oldham, Nuclear Physics B187 (1981)
F. Csikor, G. P ocsik y A. T oth, Physical Review D 28 (1983)
C. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D19 (1979)
V. Del Duca, C. Duhr, A. Kardos, G. Somogyi y Z. Tr ocs anyi, Physical Review Letters 117 (2016)
Z. Tulip ant, A. Kardos y G. Somogyi, The European Physical Journal C 77 (2017)
G. F. Sterman, An Introduction to quantum  eld theory (Cambridge University Press, 1993)
D. G. Richards, W. J. Stirling y S. D. Ellis, Energy-energy correlations to second order in quantum chromodynamics, 1983 (unpublished)
T. Ziegenhagen, Deutsches Elektronen-Synchrotron (1997)
M. E. Peskin y D. V. Schroeder, An Introduction to quantum field theory (Addison- Wesley, 1995), pp. 377
R. Ellis, D. Ross y A. Terrano, Nuclear Physics B 178 (1981)
V. V. Sudakov, Journal of Experimental and Theoretical Physics 3, 65 (1956)
C. Anastasiou y K. Melnikov, Nuclear Physics B 646, 220 (2002)
C. Anastasiou, L. Dixon, K. Melnikov y F. Petriello, Physical Review Letters 91 (2003)
T. Hahn, Computer Physics Communications 140, 418 (2001)
R. Mertig, M. B ohm y A. Denner, Computer Physics Communications 64, 345 (1991)
V. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 207, 432 (2016)
V. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 256, 107478 (2020)
C. Studerus, Computer Physics Communications 181, 1293 (2010)
A. von Manteu el y C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, 2012 (unpublished)
R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, 2012 (Unpublished)
R. N. Lee, Journal of Physics: Conference Series 523, 012059 (2014)
O. Gituliar y V. Magerya, Computer Physics Communications 219, 329 (2017)
R. Cutkosky, Journal of Mathematical Physics 429 (1960)
J. Plemelj, Problems in the sense of Riemann and Klein (INTERSCIENCE PUBLUSHERS, 1964)
D. Radnell, E. Schippers y W. Staubach, Annales- Academiae Scientiarum Fennicae Mathematica 41 (2015)
A. Grozin, International Journal of Modern Physics A 26 (2011)
S. Laporta, International Journal of Modern Physics A15 (2000)
M.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Journal of High Energy Physics 2019 (2019)
L. J. Dixon, M.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Analytic calculation of Energy-Energy Correlation in e+e annihilation at NLO, 2018 (Unpublished)
A. Smirnov y F. Chukharev, Computer Physics Communications 247, 106877 (2020)
O. Gituliar y S. Moch, Acta Physica Polonica B48 (2017)
J. M. Henn, Physical Review Letters 110 (2013)
R. N. Lee, Journal of High Energy Physics 2015 (2015)
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), https://www.sagemath.org (2017)
V. A. Smirnov, Feynman integral calculus (Berlin, Germany: Springer (2006) 283 p, 2006)
E. Remiddi y J. A. M. Vermaseren, International Journal of Modern Physics A 15, 725 (2000)
E. Panzer, Computer Physics Communications 188, 148 (2015)
A. Ali, J. K orner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz y J. Willrodt, Nuclear Physics B 167 (1980)
G. Kramer y B. Lampe, Deutsches Elektronen-Synchrotron (1986)
G. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)
N. Falck y G. Kramer, Zeitschrift f ur Physik C (1989)
A. Ali y F. Barreiro, Physics Letters B 118, 155 (1982).
A. Banfi , Hadronic Jets (Morgan & Claypool Publishers, 2016), pp. 30-33.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv v, 107 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80836/1/1088310076.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80836/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80836/3/1088310076.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8e12f6f20fe814d3de78f252ef13c116
8153f7789df02f0a4c9e079953658ab2
46bb2eec7c33a115b0d85bd7abe0ef8a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089368236720128
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fazio, Angelo Raffaele5e872c0aa693752c73408eb06929167a600Reyes Rojas, Edilson Alfonso9aeaea55865f9293c230fef449563c2f600Quintero Soto, Sebastiane255fafe61a4b38f4db2a36f9fb777a8Grupo de Campos y Particulas2022-02-01T16:27:21Z2022-02-01T16:27:21Z2021https://repositorio.unal.edu.co/handle/unal/80836Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasIn this thesis, we study the energy-energy correlation event shape variable for the electron-positron annihilation in quantum chromodynamics. We begin with the computation of the distribution at leading order in the strong coupling constant $\alpha_s$. At this perturbative order, the observable is computed by the usual methods of the real corrections applied to the electron-positron annihilation into a quark and antiquark pair. We find a strongly peaking behaviour of the distribution for two limiting values of the angle between the jets. This occurs when two partons are collinear or one parton is soft. We also find that the distribution is not symmetrical between these two values. At next-to-leading order, we first show explicitly how the infrared divergences cancel, as expected from the Kinoshita-Lee-Nauenberg theorem. On the side of the virtual correction diagrams, we discuss infrared regularization and present the divergent part, which exhibits poles in the dimensional regularizer parameter $\epsilon$ up to order 2. For the real emission diagrams, we extract the most singular terms from the matrix elements of the corresponding processes involving four partons in the final state. These expressions diverge when more than one variable goes to zero. By most singular terms, we refer to those that diverge only when one Mandelstam variable vanishes. We isolate different divergent terms using partial fractioning. We add these singular terms with the divergent part of the virtual correction and show that they exactly cancel each other out. This implies that the observable is infrared finite when both corrections are included. With the aim of performing a more complete computation, the real corrections are calculated with reverse unitarity from three-loop diagrams. In order to get familiar with the available modern techniques for that, we considered one type of contributing diagram and obtained its analytic expression with the FeynArts code. Then we perform the Dirac and color algebra with the FeynCalc code, while reducing the Feynman integrals to scalar integrals and implementing the dimensional regularization scheme with Mathematica. We use Integration-by-Parts to reduce the integrals required for the calculation to a single master integral. This is done with the Reduze and LiteRed codes. Finally, we solve this master integral with the method of differential equations in conjunction with the help of the Fuchsia software, which automatically implements the solution of systems of Fuchsian differential equations. The contribution was calculated and it was found that the resulting expression presents the same characteristics as the leading order contribution, such as the strongly peaking behavior at the soft-collinear limits and the order two poles.En esta tesis, se estudia la variable de forma de evento conocida como la correlación energía-energía para la aniquilación electrón-positrón en cromodinámica cuántica. Se comienza con el cálculo de la distribución a orden principal en la constante de acople fuerte $\alpha_s$. A este orden perturbativo, el observable es calculado con los métodos usuales de las correcciones reales aplicado a la aniquilación electrón-positrón que va en una pareja de quark y antiquark. Encontramos un comportamiento que crece rápidamente para dos valores límites del ángulo entre los jets. Esto ocurre cuando dos partones son colineales o uno de ellos es suave. También encontramos que la distribución no es simétrica entre estos dos valores. Al siguiente orden del principal, primero mostramos explícitamente como las divergencias infrarrojas se cancelan, como es esperado por el teorema Kinoshita-Lee-Nauenberg. Del lado de los diagramas de las correcciones virtuales, discutimos la regularización infraroja y presentamos la parte divergente, la cual exhibe polos en el parámetro regularizador dimensional $\epsilon$ hasta orden 2. Para los diagramas de las emisiones reales, extraemos la parte más singular de los elementos de matriz de los correspondientes procesos que involucran cuatro partones en el estado final. Estas expresiones divergen cuando mas de una variable se va a cero. Con la parte mas divergente, nos referimos a esas que divergen solo cuando una variable de Mandelstam se va a cero. Aislamos los diferentes términos divergentes usando fracciones parciales. Agregamos estos términos singulares a la parte divergente de la corrección virtual y mostramos que ellos se cancelan exactamente. Esto implica que el observable es finito en el infrarrojo cuando ambas correcciones son incluidas. Con el objetivo de realizar un cálculo más completo, las contributiones reales fueron calculadas con unitariedad reversa desde diagramas a tres loops. Para familiarizarse con las técnicas modernas disponibles que hacen esto, consideramos un tipo de diagrama que contribuye y obtuvimos su expresión analítica con el código FeynArts. Después realizamos el álgebra de Dirac y de color con el código FeynCalc, mientras reducimos las integrales de Feynman a integrales escalares e implementamos el esquema de regularización dimensional con Mathematica. Usamos Integración-por-Partes para reducir las integrales requeridas para el cálculo a una sola integral maestra. Esto fue hecho con los códigos Reduze y LiteRed. Finalmente, solucionamos esta integral maestra con el método de ecuaciones diferenciales en conjunto con la ayuda del software Fuchsia, el cual implementa automáticamete soluciones de los sistemas de ecuaciones diferenciales Fuchsianas. La contribución fue calculada y se encontró que la expresión resultante presenta las mismas características que la contribución al orden principal, tales como el comportamiento rápidamente creciente en los límites suaves o colineales y los polos de orden 2. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ciencias - FísicaFísica de Altas Energias - Fenomenologíav, 107 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaCromodinámica cuánticaParticles (Nuclear physics)HadronsQuantum chromodynamicsHadronesPartículas (Física nuclear)Event shape variablesInfrared divergencesIBPReverse unitarityPerturbative QCDEnergy-energy correlationVariables de forma de eventoCorrelación energía-energíaDivergencias InfrarojasUnitariedad reversaQCD perturbativoHadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamicsCorrelación energía-energía hadrónica de la aniquilación electrón-positrón a orden siguiente al principal en cromodinámica cuánticaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMC. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D 17 (1978)G. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)E. W. N. Glover y M. R. Sutton, Physics Letters B342 (1995)D. Richards, W. Stirling y S. Ellis, Physics Letters B 119, 193 (1982)Z. Kunszt, P. Nason, G. Marchesini y B. R. Webber, en LEP Physics Workshop (ago. de 1989)S. Catani y M. Seymour, Physics Letters B 378, 287 (1996)S. Catani y M. Seymour, Nuclear Physics B 485, 291 (1997)K. A. Clay y S. D. Ellis, Physical Review Letters 74 (1995)L. J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Physical Review Letters 120 (2018)M. Born y N. Nagendra Nath, Proceedings Indian Academy of Science, 318 (1936)E. Fermi y C. N. Yang, Physical Review 76, 1739 (1949)M. Gell-Mann, Physics Letters 8, 214 (1964)P. F. Smith, Annual Review of Nuclear and Particle Science 39, 73 (1989)P. Langacker y H. Pagels, Physical Review D 19 (1979)J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, 2011), pp. 12-13J. Steinberger, Physical Review 76, 1180 (1949)P. A. Zyla et al. (Particle Data Group), Progress of Theoretical and Experimental Physics 2020 (2020)R. E. Taylor, Reviews of Modern Physics 63, 573 (1991)H. W. Kendall, Review of Modern Physics 63, 597 (1991)J. I. Friedman, Review of Modern Physics 63, 615 (1991)L. Faddeev y V. Popov, Physics Letters B 25 (1967)D. Gross y J. Smith, A review of asymptotic freedom (United Kingdom: Science Reasearch Council, Rutherford Laboratory, 1974)F. Tkachov, Physics Letters B 100, 65 (1981)K. Chetyrkin, A. Kataev y F. Tkachov, Nuclear Physics B 174, 345 (1980)W. Celmaster y R. J. Gonsalves, Physical Review Letters 44, 560 (1980)J. G. K orner, G. Schierholz y J. Willrodt, Nuclear Physics B 185, 365 (1981)J. Campbell, J. Huston y F. Krauss, The black book of quantum chromodynamics: a primer for the LHC era (Oxford University Press, Oxford, 2018), pp. 25J. Jauch y F. Rohrlich, Helvetiva Physica Acta 27, 613L. Landau, Nuclear Physics 13, 181 (1959)J. M. Jauch y F. Rohrlich, The Theory of Photons and Electrons: The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half, 2nd (Springer Publishing Company, Incorporated, 2012)P. Nason, Lecture notes for the XI Jorge Andre Swieca Summer School, Particles and Fields (2001)F. E. Low, Physical Review 110, 974 (1958)F. Bloch y A. Nordsieck, Physical Review 52 (1937)M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014), pp. 369-372A. Khalil y W. A. Horowitz, Journal of Physics: Conference Series 889, 012002 (2017)T. Kinoshita, Journal of Mathematical Physics 3 (1962)T. D. Lee y M. Nauenberg, Physical Review 133 (1964)G. Hanson et al, Physical Review Letters 35 (1975)The cms detector j CMS Experiment - CERN Accelerating science (https://cms.cern/)G. F. Sterman y S. Weinberg, Physical Review Letters 39 (1977)G. Sterman, Physical Review D 17 (1978)W. Bartel et al (JADE collaboration), Zeitschrift f ur Physik C 33, 23-31 (1986)S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock y B. R. Webber, Physics Letters B269 (1991)M. Cacciari, G. Salam y G. Soyez, Journal of High Energy Physics (2008)S. Kluth, P. Movilla Fern andez, S. Bethke, C. Pahl y P. Pfeifenschneider, The European Physical Journal C 21 (2001)R. Nisius, QCD results from the LHC, 2012 (Unpublished)E. Farhi, Physical Review Letters 39 (1977)S. Brandt, C. Peyrou, R. Sosnowski y A. Wroblewski, Physics Letters 12 (1964)S. Bethke, Nuclear Physics B - Proceedings Supplements 121 (2003)A. Kardos, S. Kluth, G. Somogyi, Z. Tulip ant y A. Verbytskyi, The European Physical Journal C 78 (2018)G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour y B. R. Webber, Journal of High Energy Physics 01 (2001)G. P. Korchemsky y G. F. Sterman, Nuclear Physics B437 (1995)G. Luisoni y S. Marzani, Journal of Physics G 42, 103101 (2015)R. K. Ellis, W. J. Stirling y B. R.Webber, QCD and collider physics, vol. 8 (Cambridge Monographs on Particle Physics, Nuclear Physics y Cosmology, 1996), pp. 72-73C. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review Letters 41 (1978)K. Fabricius, I. Schmitt, G. Kramer y G. Schierholz, Zeitschrift f ur Physik C11 (1981)J. A. M. Vermaseren, K. J. F. Gaemers y S. J. Oldham, Nuclear Physics B187 (1981)F. Csikor, G. P ocsik y A. T oth, Physical Review D 28 (1983)C. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D19 (1979)V. Del Duca, C. Duhr, A. Kardos, G. Somogyi y Z. Tr ocs anyi, Physical Review Letters 117 (2016)Z. Tulip ant, A. Kardos y G. Somogyi, The European Physical Journal C 77 (2017)G. F. Sterman, An Introduction to quantum  eld theory (Cambridge University Press, 1993)D. G. Richards, W. J. Stirling y S. D. Ellis, Energy-energy correlations to second order in quantum chromodynamics, 1983 (unpublished)T. Ziegenhagen, Deutsches Elektronen-Synchrotron (1997)M. E. Peskin y D. V. Schroeder, An Introduction to quantum field theory (Addison- Wesley, 1995), pp. 377R. Ellis, D. Ross y A. Terrano, Nuclear Physics B 178 (1981)V. V. Sudakov, Journal of Experimental and Theoretical Physics 3, 65 (1956)C. Anastasiou y K. Melnikov, Nuclear Physics B 646, 220 (2002)C. Anastasiou, L. Dixon, K. Melnikov y F. Petriello, Physical Review Letters 91 (2003)T. Hahn, Computer Physics Communications 140, 418 (2001)R. Mertig, M. B ohm y A. Denner, Computer Physics Communications 64, 345 (1991)V. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 207, 432 (2016)V. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 256, 107478 (2020)C. Studerus, Computer Physics Communications 181, 1293 (2010)A. von Manteu el y C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, 2012 (unpublished)R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, 2012 (Unpublished)R. N. Lee, Journal of Physics: Conference Series 523, 012059 (2014)O. Gituliar y V. Magerya, Computer Physics Communications 219, 329 (2017)R. Cutkosky, Journal of Mathematical Physics 429 (1960)J. Plemelj, Problems in the sense of Riemann and Klein (INTERSCIENCE PUBLUSHERS, 1964)D. Radnell, E. Schippers y W. Staubach, Annales- Academiae Scientiarum Fennicae Mathematica 41 (2015)A. Grozin, International Journal of Modern Physics A 26 (2011)S. Laporta, International Journal of Modern Physics A15 (2000)M.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Journal of High Energy Physics 2019 (2019)L. J. Dixon, M.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Analytic calculation of Energy-Energy Correlation in e+e annihilation at NLO, 2018 (Unpublished)A. Smirnov y F. Chukharev, Computer Physics Communications 247, 106877 (2020)O. Gituliar y S. Moch, Acta Physica Polonica B48 (2017)J. M. Henn, Physical Review Letters 110 (2013)R. N. Lee, Journal of High Energy Physics 2015 (2015)The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), https://www.sagemath.org (2017)V. A. Smirnov, Feynman integral calculus (Berlin, Germany: Springer (2006) 283 p, 2006)E. Remiddi y J. A. M. Vermaseren, International Journal of Modern Physics A 15, 725 (2000)E. Panzer, Computer Physics Communications 188, 148 (2015)A. Ali, J. K orner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz y J. Willrodt, Nuclear Physics B 167 (1980)G. Kramer y B. Lampe, Deutsches Elektronen-Synchrotron (1986)G. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)N. Falck y G. Kramer, Zeitschrift f ur Physik C (1989)A. Ali y F. Barreiro, Physics Letters B 118, 155 (1982).A. Banfi , Hadronic Jets (Morgan & Claypool Publishers, 2016), pp. 30-33.InvestigadoresORIGINAL1088310076.2021.pdf1088310076.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf2207730https://repositorio.unal.edu.co/bitstream/unal/80836/1/1088310076.2021.pdf8e12f6f20fe814d3de78f252ef13c116MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80836/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1088310076.2021.pdf.jpg1088310076.2021.pdf.jpgGenerated Thumbnailimage/jpeg5192https://repositorio.unal.edu.co/bitstream/unal/80836/3/1088310076.2021.pdf.jpg46bb2eec7c33a115b0d85bd7abe0ef8aMD53unal/80836oai:repositorio.unal.edu.co:unal/808362023-07-31 23:04:30.363Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK