Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia

ilustraciones, diagramas, mapas, tablas

Autores:
Ochoa Beltrán, Angélica Liliana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81215
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81215
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Bosques Andinos - Colombia
Forests and forestry - Colombia
Community assemble
Functional traits
Environmental drivers
Andean Mountains
Ensamblaje comunitario
Rasgos funcionales
Impulsores ambientales
Andes
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6e1fb2b204edbb642523f8d70fc47491
oai_identifier_str oai:repositorio.unal.edu.co:unal/81215
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
dc.title.translated.spa.fl_str_mv Ensamblaje de rasgos funcionales en bosques biodiversos a lo largo de un gradiente de elevación en los Andes del noroeste de Colombia
title Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
spellingShingle Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
570 - Biología::577 - Ecología
Bosques Andinos - Colombia
Forests and forestry - Colombia
Community assemble
Functional traits
Environmental drivers
Andean Mountains
Ensamblaje comunitario
Rasgos funcionales
Impulsores ambientales
Andes
title_short Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
title_full Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
title_fullStr Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
title_full_unstemmed Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
title_sort Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
dc.creator.fl_str_mv Ochoa Beltrán, Angélica Liliana
dc.contributor.advisor.none.fl_str_mv Duque Montoya, Álvaro Javier
dc.contributor.author.none.fl_str_mv Ochoa Beltrán, Angélica Liliana
dc.contributor.researchgroup.spa.fl_str_mv Conservación, Uso y Biodiversidad
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Bosques Andinos - Colombia
Forests and forestry - Colombia
Community assemble
Functional traits
Environmental drivers
Andean Mountains
Ensamblaje comunitario
Rasgos funcionales
Impulsores ambientales
Andes
dc.subject.other.none.fl_str_mv Bosques Andinos - Colombia
dc.subject.lemb.none.fl_str_mv Forests and forestry - Colombia
dc.subject.proposal.eng.fl_str_mv Community assemble
Functional traits
Environmental drivers
Andean Mountains
Ensamblaje comunitario
dc.subject.proposal.spa.fl_str_mv Rasgos funcionales
Impulsores ambientales
Andes
description ilustraciones, diagramas, mapas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-03-15T13:50:34Z
dc.date.available.none.fl_str_mv 2022-03-15T13:50:34Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81215
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81215
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agudelo, C. M., Benavides, A. M., Taylor, T., Feeley, K. J., & Duque, A. (2019). Functional composition of epiphyte communities in the Colombian Andes. Ecology, 100(12), 1–11. https://doi.org/10.1002/ecy.2858
Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x
Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x
Alboukadel, K., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R package version 1.0.7.). https://cran.r-project.org/package=factoextra%0A
Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 4043–4051. https://doi.org/10.1073/pnas.1604863113
Baraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Hérault, B., Patiño, S., Roggy, J.-C., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x
Blonder, B., Salinas, N., Bentley, L. P., Shenkin, A., Chambi Porroa, P. O., Valdez Tejeira, Y., Cyrille, V., Fyllas, N. M., Goldsmith, G. R., Martin, R. E., Asner, G. P., Díaz, S., Enquist, B. J., & Malhi, Y. (2017). Predicting trait‐environment relationships for venation networks along an Andes‐Amazon elevation gradient. Ecology, 98(5), 1239–1255. https://doi.org/10.1111/ijlh.12426
Blundo, C., Malizia, L. R., & González-Espinosa, M. (2015). Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica, 69, 96–104. https://doi.org/10.1016/j.actao.2015.09.008
Booth, B. D., & Swanton, C. J. (2002). Assembly theory applied to weed communities. Weed Science, 50, 2–13. http://www.bioone.org/doi/abs/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2
Bunn, R. A., Simpson, D. T., Bullington, L. S., Lekberg, Y., & Janos, D. P. (2019). Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME Journal, 13(8), 1891–1898. https://doi.org/10.1038/s41396-019-0403-2
Camenzind, T., Hättenschwiler, S., Treseder, K., Lehmann, A., & Rillig, M. (2017). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21. https://doi.org/https://doi.org/10.1002/ecm.1279
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., & Steege, H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–338. https://doi.org/10.1071/BT02124
Ding, Y., Zang, R., Lu, X., Huang, J., & Xu, Y. (2019). The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973–983. https://doi.org/10.1111/jvs.12786
Dixon, R., Rao, M. . V. ., & Garg, V. . K. . (1994). Water relations and gas exchange of mycorrhizal leucaena leucocephala seedlings. Journal of Tropical Forest Science, 6(4), 542–552. https://www.jstor.org/stable/43581779
Dolédec, S., Chessel, D., Ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics, 3, 143–166. https://doi.org/10.1007/BF02427859
Dray, S., Dufour, A.-B., S, D., & A, D. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04.
Dray, S., & Legendre, P. (2008). Testing the species traits environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. https://doi.org/10.1890/08-0349.1
Duque, A., Peña, M. A., Cuesta, F., González-caro, S., Kennedy, P., Phillips, O. L., Calderón-loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-villa, J. A., … Saatchi, S. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12, 2138. https://doi.org/10.1038/s41467-021-22459-8
Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … Phillips, O. L. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618–629. https://doi.org/10.1111/ecog.01904
Fick, Steve, & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://doi.org/10.1002/joc.5086
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201. https://doi.org/10.1111/1365-2745.12346
Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889–902. https://doi.org/10.1007/s00442-012-2522-6
Götzenberger, L., de Bello, F., Brathen, K. A., Davison, J., Dubuis, A., Guisan, A., Leps, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, M. (2012). Ecological assembly rules in plant communities — approaches , patterns and prospects. Biological Reviews, 88, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550–1566. https://doi.org/10.1111/nph.16485
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. https://doi.org/10.2307/2346830
Hernández-Vargas, G., Perroni, Y., López-acosta, J. C., Noa-Carrazana, J. C., & Sánchez-velásquez, L. R. (2019). Do the distribution patterns of plant functional traits change during early secondary succession in tropical montane cloud forests? Acta Oecologica, 95, 26–35. https://doi.org/10.1016/j.actao.2019.01.003
Homeier, J., Seeler, T., Pierick, K., & Leuschner, C. (2021). Leaf trait variation in species ‑ rich tropical Andean forests. Scientific Reports, 11, 9993. https://doi.org/10.1038/s41598-021-89190-8
Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374–385. https://doi.org/10.1111/1365-2745.12366
Keddy, P. A. (1992). A Pragmatic Approach to Functional Ecology. Functional Ecology, 6, 621–626. https://doi.org/10.2307/2389954
Kerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: Why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3), 519–521. https://doi.org/10.1016/j.jtbi.2008.12.026
Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
Körner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional Morphology of Mountain Plants. Flora, 182, 353–383. https://doi.org/10.1016/s0367-2530(17)30426-7
Legendre, P., Galzin, R. G., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029
Liu, F., Zhang, M., Yang, W., Liu, Y., Wang, W., Zheng, J., & An, S. (2012). Leaf Functional Traits and Trait Relationships of Tropical Woody Vegetation in Relation to Successional Stage : Shifts in Understory and Canopy Layers Leaf functional traits and trait relationships of tropical woody vegetation in relation to successional. Ecoscience, 19(3), 198–208. https://doi.org/10.2980/19-3-3499
López Camacho, R., Quintero Gómez, A., & Amado Ariza, S. M. (2020). Rasgos funcionales de la madera de tres bosques en Colombia: Bosque Seco, Andino y Alto-Andino. Ciencia Florestal, 30(3), 856–872. https://doi.org/10.5902/1980509839184
Maherali, H. (2020). Mutualism as a plant functional trait: linking variation in the mycorrhizal symbiosis to climatic tolerance, geographic range and population dynamics. International Journal of Plant Sciences, 181(1), 1–30.
Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K., & McGlinn, D. J. (2016). Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. American Naturalist, 188(5), 113–125. https://doi.org/10.1086/688675
Malizia, A., Blundo, C., Carilla, J., Acosta, O. O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, H., Ríos, W. F., Feeley, K. J., Fuentes, A. F., Gámez Álvarez, L. E., … Young, K. R. (2020). Elevation and latitude drives structure and tree species composition in Andean forests : Results from a large-scale plot network. PLOS ONE, 14(4), e0231553. https://doi.org/10.1371/journal.pone.0231553
Mcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002
Muscarella, R., Uriarte, M., Erickson, D. L., Swenson, N. G., Kress, W. J., & Zimmerman, J. K. (2016). Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007
Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/468895a
Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4
Niinemets, Ü. (2016). Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. In Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes) (pp. 100–130). Springer. https://doi.org/10.1007/978-94-017-7291-4
Nuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881. https://doi.org/10.1111/1462-2920.12081
Ordoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits , climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x
Orme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., & Owens, I. P. F. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019. https://doi.org/10.1038/nature03850
Perez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. De, Buchmann, N., … Cornelissen, J. H. C. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715–716.
Phillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41–51. https://doi.org/10.1111/nph.12221
Pinho, B. X., Tabarelli, M., Engelbrecht, B. M. J., Sfair, J., & Melo, F. P. L. (2019). Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic and Applied Ecology, 40, 1–11. https://doi.org/10.1016/j.baae.2019.08.002
Poorter, L. (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890–900.
Poorter, L., Mcdonald, I., Alarco, A., Fichtler, E., Licona, J., Marielos, P.-C., Sterck, F., Villegas, Z., & Sass-klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481–492.
Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Funtional Ecology, 28, 37–45. https://doi.org/10.1111/1365-2435.12162
Reich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits manifesto. Journal of Ecology, 102, 275–301. https://doi.org/10.1111/1365-2745.12211
Reich, P., Wright, I., Bares, J. C., Craine, J. M., Oleksyn, J., Walters, M. B., Reich, P. B., Wright, I. J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The Evolution of Plant Functional Variation : Traits , Spectra , and Strategies. International Journal of Plant Sciences, 164(3), 143–164.
Rodríguez, N., Armenteras, D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. (Segunda ed). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Salgado-Luarte, C., & Gianoli, E. (2012). Herbivores Modify Selection on Plant Functional Traits in a Temperate Rainforest Understory. The American Naturalist, 180(2), 42–53. https://doi.org/10.1086/666612
Sánchez-Cuervo, A. M., & Aide, T. M. (2013). Consequences of the Armed Conflict, Forced Human Displacement, and Land Abandonment on Forest Cover Change in Colombia: A Multi-scaled Analysis. Ecosystems, 16, 1052–1070. https://doi.org/10.1007/s10021-013-9667-y
Santiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21(1), 19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.x
Shen, Y., Yu, S., Lian, J., Shen, H., Cao, H.-L., Lu, H.-P., & Ye, W.-H. (2016). Inferring community assembly processes from trait diversity across environmental gradients. Journal of Tropical Ecology, 32(4), 1–10. https://doi.org/10.1017/S0266467416000262
Shi, L., Wang, J., Liu, B., Nara, K., Lian, C., Shen, Z., Xia, Y., & Chen, Y. (2017). Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Mycorrhiza, 27(8), 823–830. https://doi.org/10.1007/s00572-017-0795-7
Shi, Z., Li, K., Zhu, X., & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 43, 100877. https://doi.org/10.1016/j.funeco.2019.100877
Shipley, B., Lechowicz, M. J., Wright, I., & Reich, P. B. (2006). Fundamental Trade-Offs Generating the Worldwide Leaf Economics Spectrum. Ecology, 87(3), 535–541. https://doi.org/10.1890/05-1051
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., De-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., GFBI Consortium, & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404–408. https://doi.org/10.1038/s41586-019-1128-0
Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains. Ecology, 79(1), 10–22. https://doi.org/10.2307/176860
Tedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627
Ter Braak, C. J. F., Cormont, A., & Dray, S. (2012). Improved testing of species traits--environment relationships in the fourth-corner problem. Ecology, 93(7), 1525–1526.
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.x
van de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045
Wang, J., Wen, X., Zhang, X., Li, S., & Zhang, D. Y. (2018). Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25839-1
Wieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., Kerkhoff, A. J., McCarthy, M. C., Michaletz, S. T., Swenson, N. G., Asner, G. P., Bentley, L. P., Enquist, B. J., & Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 587–592. https://doi.org/10.1073/pnas.1813723116
Worthy, S. J., & Swenson, N. G. (2019). Functional perspectives on tropical tree demography and forest dynamics. Ecological Processes, 8(1), 1–11. https://doi.org/10.1186/s13717-018-0154-4
Wright, I., Reich, P. B., Cornelissen, J. H. C. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., Westoby, M., & Wright, I. J. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x
Wright, I., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornellssen, J. H. ., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecography, 91(12), 3664–3674.
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H., & Davies, S. (2017). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Ecology, 98, 2538–2546. https://doi.org/10.1111/ijlh.12426
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 46 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Región Andina, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81215/1/1017165209.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81215/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81215/3/1017165209.2021.pdf.jpg
bitstream.checksum.fl_str_mv 7a2e4294955dc18dda654d3eae2ccfed
8153f7789df02f0a4c9e079953658ab2
9ac9b517488502d24a32c8e5febeae10
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089825661222912
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Montoya, Álvaro Javier749d6becedd1d80b24bcffd78d7e1ff3600Ochoa Beltrán, Angélica Liliana2a949ee63b4a1ece416d25ac62ff22eeConservación, Uso y Biodiversidad2022-03-15T13:50:34Z2022-03-15T13:50:34Z2021-12https://repositorio.unal.edu.co/handle/unal/81215Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasThe Andean forests harbor an astonishing plant diversity, which hampers the understanding of the main drivers of species assemblage along the elevational gradient. In this study, we used the multivariate methods RLQ and Fourth corner to identify the main determinants of plant trait assembly in the northwestern Andean forests of Colombia. We evaluated the relationship between six functional traits and three groups of environmental drivers: climate, soil fertility, and symbiotic root associations (mycorrhizae and nitrifying bacteria). Our findings showed that five functional groups represented the communities in the Andes, where two main axes explain 95.75% of the variability. The first is associated with the leaf economic spectrum and the second with the trade-off between survival/growth. Furthermore, we found that the interaction of regional (climatic variables) and local factors (soil fertility, symbiotic root associations), played a key role in determining the assembly of plant communities in our study area.Los bosques andinos albergan una amplia diversidad, lo que vuelve complejo el entendimiento del ensamblaje de las comunidades a lo largo de su gradiente altitudinal. En este estudio, usamos los métodos multivariados RLQ y Fourth corner para comprender el ensamblaje de los bosques andinos del noroeste de Colombia. Estos métodos evaluaron la relación entre seis rasgos funcionales y tres grupos de impulsores: ambientales (clima y fertilidad del suelo), asociaciones de raíces simbióticas (micorrizas y bacterias nitrificantes) y tamaño del árbol (grandes y pequeños). Nuestros resultados mostraron que las comunidades de los Andes están representado por cinco grupos funcionales, donde el 95,75% de la variabilidad es explicada por dos ejes principales. El primero está asociado con el espectro económico de la hoja y el segundo con el equilibrio entre supervivencia / crecimiento. Además, encontramos que la interacción de factores regionales (variables climáticas) y factores locales (fertilidad del suelo, asociaciones de raíces y tamaño de los árboles) determinaron el ensamblaje de las comunidades en nuestra área de estudio. (Texto tomado de la fuente)De este trabajo también se derivo un articulo: Ochoa-Beltrán, A.; Martínez-Villa, J.A.; Kennedy, P.G.; Salgado-Negret, B.; Duque, A. Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of ColombiaMaestríaMagíster en Medio Ambiente y DesarrolloCiencias Naturales - Ciencias Biológicas - EcologíaÁrea Curricular de Medio Ambientexii, 46 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaBosques Andinos - ColombiaForests and forestry - ColombiaCommunity assembleFunctional traitsEnvironmental driversAndean MountainsEnsamblaje comunitarioRasgos funcionalesImpulsores ambientalesAndesPlant trait assembly in species-rich forests along elevation in the northwest Andes of ColombiaEnsamblaje de rasgos funcionales en bosques biodiversos a lo largo de un gradiente de elevación en los Andes del noroeste de ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRegión Andina, ColombiaAgudelo, C. M., Benavides, A. M., Taylor, T., Feeley, K. J., & Duque, A. (2019). Functional composition of epiphyte communities in the Colombian Andes. Ecology, 100(12), 1–11. https://doi.org/10.1002/ecy.2858Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.xAlbert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.xAlboukadel, K., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R package version 1.0.7.). https://cran.r-project.org/package=factoextra%0AAsner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 4043–4051. https://doi.org/10.1073/pnas.1604863113Baraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Hérault, B., Patiño, S., Roggy, J.-C., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.xBlonder, B., Salinas, N., Bentley, L. P., Shenkin, A., Chambi Porroa, P. O., Valdez Tejeira, Y., Cyrille, V., Fyllas, N. M., Goldsmith, G. R., Martin, R. E., Asner, G. P., Díaz, S., Enquist, B. J., & Malhi, Y. (2017). Predicting trait‐environment relationships for venation networks along an Andes‐Amazon elevation gradient. Ecology, 98(5), 1239–1255. https://doi.org/10.1111/ijlh.12426Blundo, C., Malizia, L. R., & González-Espinosa, M. (2015). Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica, 69, 96–104. https://doi.org/10.1016/j.actao.2015.09.008Booth, B. D., & Swanton, C. J. (2002). Assembly theory applied to weed communities. Weed Science, 50, 2–13. http://www.bioone.org/doi/abs/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2Bunn, R. A., Simpson, D. T., Bullington, L. S., Lekberg, Y., & Janos, D. P. (2019). Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME Journal, 13(8), 1891–1898. https://doi.org/10.1038/s41396-019-0403-2Camenzind, T., Hättenschwiler, S., Treseder, K., Lehmann, A., & Rillig, M. (2017). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21. https://doi.org/https://doi.org/10.1002/ecm.1279Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.xCornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., & Steege, H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–338. https://doi.org/10.1071/BT02124Ding, Y., Zang, R., Lu, X., Huang, J., & Xu, Y. (2019). The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973–983. https://doi.org/10.1111/jvs.12786Dixon, R., Rao, M. . V. ., & Garg, V. . K. . (1994). Water relations and gas exchange of mycorrhizal leucaena leucocephala seedlings. Journal of Tropical Forest Science, 6(4), 542–552. https://www.jstor.org/stable/43581779Dolédec, S., Chessel, D., Ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics, 3, 143–166. https://doi.org/10.1007/BF02427859Dray, S., Dufour, A.-B., S, D., & A, D. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04.Dray, S., & Legendre, P. (2008). Testing the species traits environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. https://doi.org/10.1890/08-0349.1Duque, A., Peña, M. A., Cuesta, F., González-caro, S., Kennedy, P., Phillips, O. L., Calderón-loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-villa, J. A., … Saatchi, S. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12, 2138. https://doi.org/10.1038/s41467-021-22459-8Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … Phillips, O. L. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618–629. https://doi.org/10.1111/ecog.01904Fick, Steve, & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://doi.org/10.1002/joc.5086Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201. https://doi.org/10.1111/1365-2745.12346Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889–902. https://doi.org/10.1007/s00442-012-2522-6Götzenberger, L., de Bello, F., Brathen, K. A., Davison, J., Dubuis, A., Guisan, A., Leps, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, M. (2012). Ecological assembly rules in plant communities — approaches , patterns and prospects. Biological Reviews, 88, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.xGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550–1566. https://doi.org/10.1111/nph.16485Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. https://doi.org/10.2307/2346830Hernández-Vargas, G., Perroni, Y., López-acosta, J. C., Noa-Carrazana, J. C., & Sánchez-velásquez, L. R. (2019). Do the distribution patterns of plant functional traits change during early secondary succession in tropical montane cloud forests? Acta Oecologica, 95, 26–35. https://doi.org/10.1016/j.actao.2019.01.003Homeier, J., Seeler, T., Pierick, K., & Leuschner, C. (2021). Leaf trait variation in species ‑ rich tropical Andean forests. Scientific Reports, 11, 9993. https://doi.org/10.1038/s41598-021-89190-8Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374–385. https://doi.org/10.1111/1365-2745.12366Keddy, P. A. (1992). A Pragmatic Approach to Functional Ecology. Functional Ecology, 6, 621–626. https://doi.org/10.2307/2389954Kerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: Why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3), 519–521. https://doi.org/10.1016/j.jtbi.2008.12.026Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006Körner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional Morphology of Mountain Plants. Flora, 182, 353–383. https://doi.org/10.1016/s0367-2530(17)30426-7Legendre, P., Galzin, R. G., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029Liu, F., Zhang, M., Yang, W., Liu, Y., Wang, W., Zheng, J., & An, S. (2012). Leaf Functional Traits and Trait Relationships of Tropical Woody Vegetation in Relation to Successional Stage : Shifts in Understory and Canopy Layers Leaf functional traits and trait relationships of tropical woody vegetation in relation to successional. Ecoscience, 19(3), 198–208. https://doi.org/10.2980/19-3-3499López Camacho, R., Quintero Gómez, A., & Amado Ariza, S. M. (2020). Rasgos funcionales de la madera de tres bosques en Colombia: Bosque Seco, Andino y Alto-Andino. Ciencia Florestal, 30(3), 856–872. https://doi.org/10.5902/1980509839184Maherali, H. (2020). Mutualism as a plant functional trait: linking variation in the mycorrhizal symbiosis to climatic tolerance, geographic range and population dynamics. International Journal of Plant Sciences, 181(1), 1–30.Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K., & McGlinn, D. J. (2016). Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. American Naturalist, 188(5), 113–125. https://doi.org/10.1086/688675Malizia, A., Blundo, C., Carilla, J., Acosta, O. O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, H., Ríos, W. F., Feeley, K. J., Fuentes, A. F., Gámez Álvarez, L. E., … Young, K. R. (2020). Elevation and latitude drives structure and tree species composition in Andean forests : Results from a large-scale plot network. PLOS ONE, 14(4), e0231553. https://doi.org/10.1371/journal.pone.0231553Mcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002Muscarella, R., Uriarte, M., Erickson, D. L., Swenson, N. G., Kress, W. J., & Zimmerman, J. K. (2016). Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/468895aNiinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4Niinemets, Ü. (2016). Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. In Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes) (pp. 100–130). Springer. https://doi.org/10.1007/978-94-017-7291-4Nuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881. https://doi.org/10.1111/1462-2920.12081Ordoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits , climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.xOrme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., & Owens, I. P. F. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019. https://doi.org/10.1038/nature03850Perez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. De, Buchmann, N., … Cornelissen, J. H. C. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715–716.Phillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41–51. https://doi.org/10.1111/nph.12221Pinho, B. X., Tabarelli, M., Engelbrecht, B. M. J., Sfair, J., & Melo, F. P. L. (2019). Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic and Applied Ecology, 40, 1–11. https://doi.org/10.1016/j.baae.2019.08.002Poorter, L. (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890–900.Poorter, L., Mcdonald, I., Alarco, A., Fichtler, E., Licona, J., Marielos, P.-C., Sterck, F., Villegas, Z., & Sass-klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481–492.Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Funtional Ecology, 28, 37–45. https://doi.org/10.1111/1365-2435.12162Reich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits manifesto. Journal of Ecology, 102, 275–301. https://doi.org/10.1111/1365-2745.12211Reich, P., Wright, I., Bares, J. C., Craine, J. M., Oleksyn, J., Walters, M. B., Reich, P. B., Wright, I. J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The Evolution of Plant Functional Variation : Traits , Spectra , and Strategies. International Journal of Plant Sciences, 164(3), 143–164.Rodríguez, N., Armenteras, D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. (Segunda ed). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Salgado-Luarte, C., & Gianoli, E. (2012). Herbivores Modify Selection on Plant Functional Traits in a Temperate Rainforest Understory. The American Naturalist, 180(2), 42–53. https://doi.org/10.1086/666612Sánchez-Cuervo, A. M., & Aide, T. M. (2013). Consequences of the Armed Conflict, Forced Human Displacement, and Land Abandonment on Forest Cover Change in Colombia: A Multi-scaled Analysis. Ecosystems, 16, 1052–1070. https://doi.org/10.1007/s10021-013-9667-ySantiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21(1), 19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.xShen, Y., Yu, S., Lian, J., Shen, H., Cao, H.-L., Lu, H.-P., & Ye, W.-H. (2016). Inferring community assembly processes from trait diversity across environmental gradients. Journal of Tropical Ecology, 32(4), 1–10. https://doi.org/10.1017/S0266467416000262Shi, L., Wang, J., Liu, B., Nara, K., Lian, C., Shen, Z., Xia, Y., & Chen, Y. (2017). Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Mycorrhiza, 27(8), 823–830. https://doi.org/10.1007/s00572-017-0795-7Shi, Z., Li, K., Zhu, X., & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 43, 100877. https://doi.org/10.1016/j.funeco.2019.100877Shipley, B., Lechowicz, M. J., Wright, I., & Reich, P. B. (2006). Fundamental Trade-Offs Generating the Worldwide Leaf Economics Spectrum. Ecology, 87(3), 535–541. https://doi.org/10.1890/05-1051Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., De-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., GFBI Consortium, & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404–408. https://doi.org/10.1038/s41586-019-1128-0Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains. Ecology, 79(1), 10–22. https://doi.org/10.2307/176860Tedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627Ter Braak, C. J. F., Cormont, A., & Dray, S. (2012). Improved testing of species traits--environment relationships in the fourth-corner problem. Ecology, 93(7), 1525–1526.Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.xvan de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045Wang, J., Wen, X., Zhang, X., Li, S., & Zhang, D. Y. (2018). Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25839-1Wieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., Kerkhoff, A. J., McCarthy, M. C., Michaletz, S. T., Swenson, N. G., Asner, G. P., Bentley, L. P., Enquist, B. J., & Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 587–592. https://doi.org/10.1073/pnas.1813723116Worthy, S. J., & Swenson, N. G. (2019). Functional perspectives on tropical tree demography and forest dynamics. Ecological Processes, 8(1), 1–11. https://doi.org/10.1186/s13717-018-0154-4Wright, I., Reich, P. B., Cornelissen, J. H. C. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., Westoby, M., & Wright, I. J. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.xWright, I., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornellssen, J. H. ., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecography, 91(12), 3664–3674.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H., & Davies, S. (2017). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Ecology, 98, 2538–2546. https://doi.org/10.1111/ijlh.12426EstudiantesInvestigadoresMaestrosORIGINAL1017165209.2021.pdf1017165209.2021.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf1368128https://repositorio.unal.edu.co/bitstream/unal/81215/1/1017165209.2021.pdf7a2e4294955dc18dda654d3eae2ccfedMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81215/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1017165209.2021.pdf.jpg1017165209.2021.pdf.jpgGenerated Thumbnailimage/jpeg4985https://repositorio.unal.edu.co/bitstream/unal/81215/3/1017165209.2021.pdf.jpg9ac9b517488502d24a32c8e5febeae10MD53unal/81215oai:repositorio.unal.edu.co:unal/812152024-08-04 23:10:20.335Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK