Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo

Tesis doctoral.

Autores:
Madrid Garcés, Tomás Antonio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79600
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79600
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Extractos vegetales
Industria avícola
Avicultura
Fitobioticos
Microbioma
Aceite esencial de oregano
Dysbiosis
Growth promoters
Phytobiotics
Growth Promoting Antibiotics
Oregano essential oil
Antibióticos Promotores de Crecimiento
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6dbc7a926e483c96aae48f43dacac989
oai_identifier_str oai:repositorio.unal.edu.co:unal/79600
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
dc.title.translated.eng.fl_str_mv Microbiome and intestinal, metabolic and zootechnical parameters of chickens fed with oregano essential oil (Lippia origanoides) in a model of intestinal inflammation in vivo
title Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
spellingShingle Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
660 - Ingeniería química
Extractos vegetales
Industria avícola
Avicultura
Fitobioticos
Microbioma
Aceite esencial de oregano
Dysbiosis
Growth promoters
Phytobiotics
Growth Promoting Antibiotics
Oregano essential oil
Antibióticos Promotores de Crecimiento
title_short Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
title_full Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
title_fullStr Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
title_full_unstemmed Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
title_sort Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
dc.creator.fl_str_mv Madrid Garcés, Tomás Antonio
dc.contributor.advisor.none.fl_str_mv Parra Suescún, Jaime Eduardo
López Herrera, Albeiro
dc.contributor.author.none.fl_str_mv Madrid Garcés, Tomás Antonio
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Extractos vegetales
Industria avícola
Avicultura
Fitobioticos
Microbioma
Aceite esencial de oregano
Dysbiosis
Growth promoters
Phytobiotics
Growth Promoting Antibiotics
Oregano essential oil
Antibióticos Promotores de Crecimiento
dc.subject.lemb.none.fl_str_mv Extractos vegetales
Industria avícola
dc.subject.proposal.spa.fl_str_mv Avicultura
Fitobioticos
Microbioma
Aceite esencial de oregano
dc.subject.proposal.eng.fl_str_mv Dysbiosis
Growth promoters
Phytobiotics
Growth Promoting Antibiotics
Oregano essential oil
dc.subject.proposal.zho.fl_str_mv Antibióticos Promotores de Crecimiento
description Tesis doctoral.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-06-02T19:03:35Z
dc.date.available.none.fl_str_mv 2021-06-02T19:03:35Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79600
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79600
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302
Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508
Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258
Acosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045
Al-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249
Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454
Aldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdf
Alegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=pt
Arango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdf
Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdf
Armed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdf
Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010
Benedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819
Bengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093
Betancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002
Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
Bonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004
Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002
Bozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897
Broch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641
Bueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383
Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374
Chamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465K
Chávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441
Chavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf
Chávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441
Cho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182
Chowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
Chowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
Ciro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748
Ciro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648
Ciro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdf
Ciro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359
Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026
Crippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4
Cunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.html
Cuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739
Della-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576
Deng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976
Derache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005
Deriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007
Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07
Díaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticos
Díaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917
Drew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414
Ebert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442
Ecco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002
El-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946
Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002
Elokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896
Etxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.
FAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdf
FAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/es
Faseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-x
Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329
FENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/
Fernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17
Fernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039
Fontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772
Galeano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.
Gangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4
Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
García-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006
García-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935
Garcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228
Garrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004
Gaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001
Gómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENG
Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175
Gotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdf
Gualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.
Habib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062
Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005
Health, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCC
Hernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709
Hooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
Hu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008
Huamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009
Iclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf
Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.
Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354
Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009
Jha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.
Kachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585
Kalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376
Karimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013
Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235
Kheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2
Kiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019
Killer, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4
Kogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031
Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
Kollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &
Venkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36
Laniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297
Lawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09
Lázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057
Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1
LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005
Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12
Leiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102 Abbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302
Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508
Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258
Acosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045
Al-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249
Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454
Aldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdf
Alegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=pt
Arango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdf
Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdf
Armed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdf
Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010
Benedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819
Bengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093
Betancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002
Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
Bonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004
Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002
Bozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897
Broch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641
Bueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383
Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374
Chamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465K
Chávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441
Chavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf
Chávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441
Cho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182
Chowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
Chowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
Ciro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748
Ciro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648
Ciro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdf
Ciro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359
Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026
Crippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4
Cunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.html
Cuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739
Della-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576
Deng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976
Derache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005
Deriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007
Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07
Díaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticos
Díaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917
Drew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414
Ebert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442
Ecco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002
El-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946
Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002
Elokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896
Etxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.
FAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdf
FAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/es
Faseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-x
Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329
FENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/
Fernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17
Fernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039
Fontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772
Galeano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.
Gangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4
Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
García-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006
García-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935
Garcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228
Garrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004
Gaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001
Gómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENG
Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175
Gotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdf
Gualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.
Habib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062
Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005
Health, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCC
Hernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709
Hooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
Hu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008
Huamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009
Iclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf
Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.
Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354
Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009
Jha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.
Kachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585
Kalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376
Karimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013
Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235
Kheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2
Kiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019
Killer, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4
Kogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031
Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
Kollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &
Venkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36
Laniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297
Lawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09
Lázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057
Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1
LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005
Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12
Leiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79600/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79600/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79600/5/1035856496.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79600/7/1035856496.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
7cdd6681ece9ed70e1c081db6afa690a
3f02e3f620d48ee338dfb1550b368059
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089467715125248
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra Suescún, Jaime Eduardocab0d57f56ba12bfa3f0e75ea778fcf8López Herrera, Albeiro9b77ca9307c68dda3ffafbf09cfd2294Madrid Garcés, Tomás Antonio6f6c82db98adde3d9536618599f54f6e2021-06-02T19:03:35Z2021-06-02T19:03:35Z2020https://repositorio.unal.edu.co/handle/unal/79600Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Tesis doctoral.La producción agropecuaria actual es muy exigente en aspectos de calidad que se traduce en alimentos más seguros para los consumidores. En la avicultura se usan los antibióticos de manera profiláctica, conocidos como Antibióticos Promotores de Crecimiento (APC) con excelentes resultados productivos, pero con grandes dudas frente al tema de seguridad alimentaria por la proliferación de resistencia antimicrobiona y la llegada de estos microrganismos a la cadena alimenticia. Los fitobióticos se han presentado como una de las alternativas más efectivas a la hora de reemplazar los APC, dentro de estos extractos de plantas se encuentra el Aceite esencial de oregano (AEO) de Lippia origanoides, que viene demostrando sus propiedades en diferentes aspectos dentro de la producción avícola. El presente trabajo pretende estudiar el efecto de la adición de AEO sobre variables productivas, metabólicas, morfometría digestiva, células caliciformes, expresión molecular de enzimas y transportadores, y microbiota intestinal de pollos en un modelo de inflamación in vivo logrado mediante LPS de e coli. Se logró evidenciar que la adición de AEO mejora las variables zootécnicas (Ganancia acumulada de peso), metabolitos sanguíneos (glucosa, fosforo, calcio, colesterol, triglicéridos), morfometría digestiva (altura de vellosidades y profundad de criptas), células caliciformes (tipo de tinción), expresión molecular de enzimas y transportadores (MgA: maltasa-glucoamilasa; SI: sacarasa-isomaltasa; SGLT-1: sodium-glucose transporter; GLUT-5: glucose transporter-5; GLUT-2: glucose transporter-2) y modula positivamente la microbiota intestinal de pollos de engorde en un modelo inflación in vivo. El AEO se proyecta como un promotor nutricional de crecimiento con capacidad de reemplazar los APC.Current agricultural production is very demanding in terms of quality, which translates into safer food for consumers. In poultry, antibiotics are used prophylactically, known as Growth Promoting Antibiotics (GAP) with excellent productive results, but with great doubts regarding the issue of food safety due to the proliferation of antimicrobial resistance and the arrival of these microorganisms to the chain food. Phytobiotics have been presented as one of the most effective alternatives when it comes to replacing GAP, within these plant extracts is the Essential Oil of oregano (AEO) from Lippia origanoides, which has been demonstrating its properties in different aspects within poultry production. The present study aims to study the effect of the addition of AEO on productive and metabolic variables, digestive morphometry, goblet cells, molecular expression of enzymes and transporters, and intestinal microbiota of chickens in an in vivo model of inflammation achieved by e coli LPS. It was possible to show that the addition of AEO improves the zootechnical variables (accumulated weight gain), blood metabolites (glucose, phosphorus, calcium, cholesterol, triglycerides), digestive morphometry (height of villi and depth of crypts), goblet cells (type of staining), molecular expression of enzymes and transporters (MgA: maltaseglucoamylase; SI: sucrase-isomaltase; SGLT-1: sodium-glucose transporter; GLUT-5: glucose transporter-5; GLUT-2: glucose transporter-2) and positively modulates the gut microbiota of broilers in an in vivo inflation model. AEO is projected as a nutritional growth promoter with the ability to replace GAPsConvocatoria 757 de Colciencias operada por Colfuturo.DoctoradoDoctor en BiotecnologíaBiotecnología aplicada a la producción animal: microbioma intestinal.application/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Ciencias - Doctorado en BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaExtractos vegetalesIndustria avícolaAviculturaFitobioticosMicrobiomaAceite esencial de oreganoDysbiosisGrowth promotersPhytobioticsGrowth Promoting AntibioticsOregano essential oilAntibióticos Promotores de CrecimientoMicrobioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivoMicrobiome and intestinal, metabolic and zootechnical parameters of chickens fed with oregano essential oil (Lippia origanoides) in a model of intestinal inflammation in vivoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258Acosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045Al-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454Aldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdfAlegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=ptArango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdfArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdfArmed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdfBedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010Benedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819Bengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093Betancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3Bonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002Bozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897Broch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641Bueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374Chamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465KChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441Chavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdfChávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441Cho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182Chowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003Chowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003Ciro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748Ciro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648Ciro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdfCiro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026Crippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4Cunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.htmlCuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739Della-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576Deng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976Derache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005Deriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07Díaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticosDíaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917Drew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414Ebert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442Ecco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002El-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002Elokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896Etxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.FAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdfFAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/esFaseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-xFasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329FENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/Fernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17Fernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039Fontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772Galeano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.Gangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1García-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006García-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935Garcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228Garrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004Gaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001Gómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENGGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175Gotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdfGualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.Habib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005Health, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCCHernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709Hooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259Hu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008Huamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009Iclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdfIebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009Jha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.Kachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585Kalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376Karimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235Kheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2Kiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019Killer, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4Kogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008Kollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &Venkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36Laniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297Lawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09Lázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12Leiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102 Abbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258Acosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045Al-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454Aldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdfAlegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=ptArango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdfArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdfArmed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdfBedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010Benedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819Bengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093Betancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3Bonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002Bozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897Broch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641Bueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374Chamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465KChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441Chavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdfChávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441Cho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182Chowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003Chowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003Ciro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748Ciro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648Ciro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdfCiro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026Crippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4Cunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.htmlCuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739Della-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576Deng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976Derache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005Deriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07Díaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticosDíaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917Drew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414Ebert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442Ecco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002El-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002Elokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896Etxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.FAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdfFAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/esFaseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-xFasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329FENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/Fernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17Fernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039Fontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772Galeano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.Gangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1García-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006García-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935Garcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228Garrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004Gaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001Gómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENGGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175Gotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdfGualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.Habib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005Health, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCCHernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709Hooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259Hu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008Huamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009Iclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdfIebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009Jha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.Kachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585Kalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376Karimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235Kheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2Kiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019Killer, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4Kogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008Kollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &Venkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36Laniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297Lawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09Lázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12Leiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102“Microbioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo”ColcienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79600/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79600/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56ORIGINAL1035856496.2021.pdf1035856496.2021.pdfTesis Doctorado en Biotecnologíaapplication/pdf2868374https://repositorio.unal.edu.co/bitstream/unal/79600/5/1035856496.2021.pdf7cdd6681ece9ed70e1c081db6afa690aMD55THUMBNAIL1035856496.2021.pdf.jpg1035856496.2021.pdf.jpgGenerated Thumbnailimage/jpeg4002https://repositorio.unal.edu.co/bitstream/unal/79600/7/1035856496.2021.pdf.jpg3f02e3f620d48ee338dfb1550b368059MD57unal/79600oai:repositorio.unal.edu.co:unal/796002024-07-20 23:11:23.725Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==