Computational simulation and model of a generalized prototype of an ornamental root

ilustraciones, fotografías, graficas

Autores:
Moreno Chaparro, Daniela
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81727
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81727
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biological models
Plant physiology
Modelos biológicos
Fisiología vegetal
Growth algorithm
Root architecture
Growth plant model
Algoritmo de crecimiento
Arquitectura de raíz
Modelo de crecimiento de plantas
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_6db14ae0db183555386e9076af9f4d4f
oai_identifier_str oai:repositorio.unal.edu.co:unal/81727
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Computational simulation and model of a generalized prototype of an ornamental root
dc.title.translated.spa.fl_str_mv Simulación y modelo computacional de un prototipo de raíz ornamental generalizada
title Computational simulation and model of a generalized prototype of an ornamental root
spellingShingle Computational simulation and model of a generalized prototype of an ornamental root
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biological models
Plant physiology
Modelos biológicos
Fisiología vegetal
Growth algorithm
Root architecture
Growth plant model
Algoritmo de crecimiento
Arquitectura de raíz
Modelo de crecimiento de plantas
title_short Computational simulation and model of a generalized prototype of an ornamental root
title_full Computational simulation and model of a generalized prototype of an ornamental root
title_fullStr Computational simulation and model of a generalized prototype of an ornamental root
title_full_unstemmed Computational simulation and model of a generalized prototype of an ornamental root
title_sort Computational simulation and model of a generalized prototype of an ornamental root
dc.creator.fl_str_mv Moreno Chaparro, Daniela
dc.contributor.advisor.none.fl_str_mv Garzón Alvarado, Diego Alexander
Vargas Silva, Gustavo
dc.contributor.author.none.fl_str_mv Moreno Chaparro, Daniela
dc.contributor.researchgroup.spa.fl_str_mv Gnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Biological models
Plant physiology
Modelos biológicos
Fisiología vegetal
Growth algorithm
Root architecture
Growth plant model
Algoritmo de crecimiento
Arquitectura de raíz
Modelo de crecimiento de plantas
dc.subject.lemb.eng.fl_str_mv Biological models
Plant physiology
dc.subject.lemb.spa.fl_str_mv Modelos biológicos
Fisiología vegetal
dc.subject.proposal.eng.fl_str_mv Growth algorithm
Root architecture
Growth plant model
dc.subject.proposal.spa.fl_str_mv Algoritmo de crecimiento
Arquitectura de raíz
Modelo de crecimiento de plantas
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-22T14:09:28Z
dc.date.available.none.fl_str_mv 2022-07-22T14:09:28Z
dc.date.issued.none.fl_str_mv 2022-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81727
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81727
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Adu, M. O., Yawson, D. O., Bennett, M. J., Broadley, M. R., Dupuy, L. X., and White, P. J. (2017). A scanner-based rhizobox system enabling the quantification of root system development and response of brassica rapa seedlings to external p availability. Plant Root, 11, 16–32. https://doi.org/10.3117/plantroot.11.16.
Aziz, A. A., Lim, K. B., Rahman, E. K. A., Nurmawati, M. H., & Zuruzi, A. S. (2020). Agar with embedded channels to study root growth. Scientific Reports, 10(1), 1-12
Bentley, L. P., Stegen, J. C., Savage, V. M., Smith, D. D., von Allmen, E. I., Sperry, J. S., and Enquist, B. J. (2013). An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecology letters, 16(8), 1069-1078. https://doi.org/10.1111/ele.12127.
Bodner, G., Alsalem, M., Nakhforoosh, A., Arnold, T., and Leitner, D. (2017). RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols. Journal of Visualized Experiments, 2017(126). https://doi.org/10.3791/56251.
Bodner, G., Leitner, D., Nakhforoosh, A., Sobotik, M., Moder, K., and Kaul, H. P. (2013). A statistical approach to root system classification. Frontiers in Plant Science, 4(AUG). https://doi.org/10.3389/fpls.2013.00292.
Boudon, F., Chopard, J., Ali, O., Gilles, B., Hamant, O., Boudaoud, A., .and Godin, C. (2015). A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol, 11(1), e1003950. https://doi.org/10.1371/journal.pcbi.1003950.
Boyer, J. S., Silk, W. K., & Watt, M. (2010). Path of water for root growth. Functional Plant Biology, 37(12), 1105-1116. Bouma, T. J., Nielsen, K. L., & Koutstaal, B. A. S. (2000). Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and soil, 218(1), 185-196.
Cannon, W. A. (1949). A tentative classification of root systems. Ecology, 542-548. https://doi.org/10.2307/1932458
Clark, L. J., Whalley, W. R., and Barraclough, P. B. (2003). How do roots penetrate strong soil? Plant and Soil (Vol. 255). https://doi.org/10.1007/978-94-017-2923-9 10.
Courne`de, P. H., Kang, M. Z., Mathieu, A., Barczi, J. F., Yan, H. P., Hu, B. G., and De Reffye, P. (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82(7), 427-438. https://doi.org/10.1177/0037549706069341
de Moraes, M. T., Bengough, A. G., Debiasi, H., Franchini, J. C., Levien, R., Schnepf, A., and Leitner, D. (2018). Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant and Soil, 428(1–2), 67–92. https://doi.org/10.1007/s11104-018-3656-z
Doussan, C., Page`s, L., and Pierret, A. (2009). Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view. In Sustainable Agriculture (pp. 583–600). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8-36. Esau, K. (1965). Plant anatomy. Plant Anatomy., (2nd Edition).
Dowdy, R. H., Smucker, A. J. M., Dolan, M. S., & Ferguson, J. C. (1998). Automated Image Analysis for Separating Plant Roots from Soil Debris Elutriated from Soil Cores. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems (pp. 737-744). Springer, Dordrecht.
Eshel, A., and Beeckman, T. (Eds.). (2013). Plant roots: the hidden half. CRC press.
Esmon, C. A., Pedmale, U. V., and Liscum, E. (2005). Plant tropisms: Providing the power of movement to a sessile organism. International Journal of Developmental Biology. https://doi.org/10.1387/ijdb.052028ce
Fang, S., Clark, R. T., Zheng, Y., Iyer-Pascuzzi, A. S., Weitz, J. S., Kochian, L. V., . . Benfey, P. N. (2013). Genotypic recognition and spatial responses by rice roots. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2670–2675. https://doi.org/10.1073/pnas.1222821110.
Fitter, A. H. (1987). An architectural approach to the comparative ecology of plant root systems. New phytologist, 106, 61-77. https://doi.org/10.1111/j.1469-8137.1987.tb04683.x
French, A., Ubeda-Toma´s, S., Holman, T. J., Bennett, M. J., and Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiol- ogy, 150(4), 1784-1795. https://doi.org/10.1104/pp.109.140558
Glin´ski, J., and Lipiec, J. (2018). Soil physical conditions and plant roots. CRC press.
Godin, C., Costes, E., and Sinoquet, H. (1999). A method for describing plant architec- ture which integrates topology and geometry. Annals of botany, 84(3), 343-357
Gregory, P. J. (2008). Plant roots: growth, activity and interactions with the soil. John Wiley & Sons. Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in plant science, 23(1), 79-88.
Hodge, A., Berta, G., Doussan, C., Merchan, F., and Crespi, M. (2009). Plant root growth, architecture and function. Plant and soil, 321(1), 153-187. https://doi.org/10.1007/s11104-009- 9929-9.
Leitner, D., Klepsch, S., Knieß, A., and Schnepf, A. (2010). The algorithmic beauty of plant roots–an L-System model for dynamic root growth simulation. Mathematical and Computer Modelling of Dynamical Systems, 16(6), 575-587. https://doi.org/10.1080/13873954.2010.491360
Lobet G, Koevoets IT, Noll M, Tocquin P, Meyer PE, Pagès L, et al. Using a structural root system model to evaluate and improve the accuracy of root image analysis pipelines. Front Plant Sci. Frontiers; 2017;8. doi:10.3389/fpls.2017.00447
Lynch, J. (1995). Root architecture and plant productivity. Plant physiology, 109(1), 7. https://doi.org/10.1104/pp.109.1.7
Miyazawa, Y., Yamazaki, T., Moriwaki, T., and Takahashi, H. (2011). Root Tropism. Its Mechanism and Possible Functions in Drought Avoidance. Advances in Botanical Research (Vol. 57). https://doi.org/10.1016/B978-0-12-387692- 8.00010-2.
Narisetti, N., Henke, M., Seiler, C., Shi, R., Junker, A., Altmann, T., & Gladilin, E. (2019). Semi-automated root image analysis (saRIA). Scientific reports, 9(1), 1-10.
Orman-Ligeza, B., Civava, R., de Dorlodot, S., and Draye, X. (2014). Root system architecture. In Root engineering (pp. 39-56). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 642-54276-3 3
Popova, L., Russino, A., Ascrizzi, A., and Mazzolai, B. (2012). Analysis of movement in primary maize roots. Biologia, 67(3), 517–524. https://doi.org/10.2478/s11756-012-0023-z.
Pornaro, Cristina & Macolino, Stefano & Menegon, Alessandro & Richardson, Mike. (2017). WinRHIZO Technology for Measuring Morphological Traits of Bermudagrass Stolons. Agronomy Journal. 109. 10.2134/agronj2017.03.0187.
Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J. (2015). A method- ology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105-117. https://doi.org/10.1016/j.cad.2014.01.005.
Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. bioRxiv.
Taiz, L. and Zeiger, E. (2003). Plant physiology. 3rd edn. Annals of Botany, 91(6), 750–751.
Walter, A., Silk, W. K., and Schurr, U. (2009). Environmental Effects on Spatial and Temporal Patterns of Leaf and Root Growth. Annual Review of Plant Biology, 60(1), 279–304. https://doi.org/10.1146/annurev.arplant.59.032607.092819
Yang, M., Defossez, P., Danjon, F., and Fourcaud, T. (2014). Tree stability under wind: simulating uprooting with root breakage using a finite element method. Annals of botany, 114(4), 695-709. https://doi.org/10.1093/aob/mcu122.
Youssef, R. A., and Chino, M. (1988). Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Science and Plant Nutrition, 34(3), 461–465. https://doi.org/10.1080/00380768.1988.10415701.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81727/5/1032460480.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81727/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81727/7/1032460480.2022.pdf.jpg
bitstream.checksum.fl_str_mv c2aec0394632c96ecf526ca2b6ddcfa8
8153f7789df02f0a4c9e079953658ab2
bbb5be6e9dc9fe5122ac92f45548fb97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089378969944064
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garzón Alvarado, Diego Alexandera780fc0a2dd14ac611c37bca9998c94bVargas Silva, Gustavoa356f7c4a307c20815c9d734d9c231a1Moreno Chaparro, Daniela55308a44a47c6fd63d0e6fa00c205653600Gnum Grupo de Modelado y Métodos Numericos en Ingeniería2022-07-22T14:09:28Z2022-07-22T14:09:28Z2022-07https://repositorio.unal.edu.co/handle/unal/81727Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasThe growth of a healthy and productive plant depends on the correct development of its roots and the surrounding environment. In this context, root growth is crucial because it provides support, anchoring, and feeding characteristics. Multiple reported studies have focused on interpreting and understanding the root behavior, providing different morphological and topological classifications of root archetypes. This document proposes and evaluates two computational models to simulate the root growth. The first model corresponds to the geometrical representation of root growth in 2D and 3D space. In this scheme, four common root archetypes were addressed and considered their tropisms: adventitious, primary root, napiform, and fasciculate. The visual inspection of different root plants such as beans, carrots, and orchids was considered to develop the algorithm. Then, computational simulations were carried out to obtain the desired root archetypes or morphologies. This model has a stochastic factor providing greater versatility in the simulations, similarly to actual roots. The second computational scheme used is Reaction-diffusion Root Branching (RDRB), which models the dynamic root growth using the finite element method (FEM) in 1D for the roots and 2D for the growing media. This model provides a more detailed and more complex description than the first one, considering the reaction-diffusion of the species, representing the biochemical search for nutrients. Additionally, it accounts for an elastic contribution to account for the mechanical effects of root growing and the media interaction. This model involves biochemical, biophysical, and tropism stimuli. The two proposed mathematical/computational models can correctly represent the plant root growth, incorporating geometrical aspects and biophysical and biochemical features. Furthermore, these models have the potential to be adopted to investigate other natural branching phenomena such as slime mold, fractures, circulatory systems, respiratory systems, and thunders.El crecimiento de una planta sana y productiva depende del correcto desarrollo de sus raíces y del entorno que la rodea. En este contexto, el crecimiento de las raíces es crucial porque proporciona características de soporte, anclaje y alimentación. Múltiples estudios se han centrado en interpretar y comprender el comportamiento de la raíz, proporcionando diferentes clasificaciones morfológicas y topológicas de los arquetipos de raíz. Este documento propone y evalúa dos modelos computacionales para simular el crecimiento de las raíces. El primer modelo corresponde a la representación geométrica del crecimiento de raíces en el espacio 2D y 3D. En este esquema, se abordaron cuatro arquetipos de raíces comunes como lo son: adventicia, raíz primaria, napiforme y fasciculada, adicionalmente se consideraron sus tropismos. Para desarrollar el algoritmo se consideró la inspección visual de diferentes plantas de raíz como frijoles, zanahorias y orquídeas. Seguido de esto, se realizaron simulaciones computacionales para obtener los arquetipos o morfologías de raíces deseadas. Este modelo tiene un factor estocástico que proporciona una mayor versatilidad en las simulaciones, de forma similar a las raíces reales. El segundo modelo computacional utilizado es Reaction-diffusion Root Branching (RDRB), que modela el crecimiento dinámico de raíces usando el método de elementos finitos (FEM) en 1D para las raíces y 2D para los medios de cultivo. Este modelo proporciona una descripción más detallada y compleja que el primero, considerando la reacción-difusión de las especies, representando la búsqueda bioquímica de nutrientes. Además, explica los efectos mecánicos del crecimiento de las raíces y la interacción con el medio de crecimiento. Este modelo involucra estímulos bioquímicos, biofísicos y de tropismo. Los dos modelos matemáticos/computacionales propuestos pueden representar correctamente el crecimiento de las raíces de las plantas, incorporando aspectos geométricos y características biofísicas y bioquímicas. Además, estos modelos tienen el potencial de ser adaptados para investigar otros fenómenos naturales de ramificación, como moho mucilaginoso, fracturas, sistema circulatorio, sistema respiratorio y relámpagos. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería MecánicaMecánica computacionalxiii, 59 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaBiological modelsPlant physiologyModelos biológicosFisiología vegetalGrowth algorithmRoot architectureGrowth plant modelAlgoritmo de crecimientoArquitectura de raízModelo de crecimiento de plantasComputational simulation and model of a generalized prototype of an ornamental rootSimulación y modelo computacional de un prototipo de raíz ornamental generalizadaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdu, M. O., Yawson, D. O., Bennett, M. J., Broadley, M. R., Dupuy, L. X., and White, P. J. (2017). A scanner-based rhizobox system enabling the quantification of root system development and response of brassica rapa seedlings to external p availability. Plant Root, 11, 16–32. https://doi.org/10.3117/plantroot.11.16.Aziz, A. A., Lim, K. B., Rahman, E. K. A., Nurmawati, M. H., & Zuruzi, A. S. (2020). Agar with embedded channels to study root growth. Scientific Reports, 10(1), 1-12Bentley, L. P., Stegen, J. C., Savage, V. M., Smith, D. D., von Allmen, E. I., Sperry, J. S., and Enquist, B. J. (2013). An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecology letters, 16(8), 1069-1078. https://doi.org/10.1111/ele.12127.Bodner, G., Alsalem, M., Nakhforoosh, A., Arnold, T., and Leitner, D. (2017). RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols. Journal of Visualized Experiments, 2017(126). https://doi.org/10.3791/56251.Bodner, G., Leitner, D., Nakhforoosh, A., Sobotik, M., Moder, K., and Kaul, H. P. (2013). A statistical approach to root system classification. Frontiers in Plant Science, 4(AUG). https://doi.org/10.3389/fpls.2013.00292.Boudon, F., Chopard, J., Ali, O., Gilles, B., Hamant, O., Boudaoud, A., .and Godin, C. (2015). A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol, 11(1), e1003950. https://doi.org/10.1371/journal.pcbi.1003950.Boyer, J. S., Silk, W. K., & Watt, M. (2010). Path of water for root growth. Functional Plant Biology, 37(12), 1105-1116. Bouma, T. J., Nielsen, K. L., & Koutstaal, B. A. S. (2000). Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and soil, 218(1), 185-196.Cannon, W. A. (1949). A tentative classification of root systems. Ecology, 542-548. https://doi.org/10.2307/1932458Clark, L. J., Whalley, W. R., and Barraclough, P. B. (2003). How do roots penetrate strong soil? Plant and Soil (Vol. 255). https://doi.org/10.1007/978-94-017-2923-9 10.Courne`de, P. H., Kang, M. Z., Mathieu, A., Barczi, J. F., Yan, H. P., Hu, B. G., and De Reffye, P. (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82(7), 427-438. https://doi.org/10.1177/0037549706069341de Moraes, M. T., Bengough, A. G., Debiasi, H., Franchini, J. C., Levien, R., Schnepf, A., and Leitner, D. (2018). Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant and Soil, 428(1–2), 67–92. https://doi.org/10.1007/s11104-018-3656-zDoussan, C., Page`s, L., and Pierret, A. (2009). Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view. In Sustainable Agriculture (pp. 583–600). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8-36. Esau, K. (1965). Plant anatomy. Plant Anatomy., (2nd Edition).Dowdy, R. H., Smucker, A. J. M., Dolan, M. S., & Ferguson, J. C. (1998). Automated Image Analysis for Separating Plant Roots from Soil Debris Elutriated from Soil Cores. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems (pp. 737-744). Springer, Dordrecht.Eshel, A., and Beeckman, T. (Eds.). (2013). Plant roots: the hidden half. CRC press.Esmon, C. A., Pedmale, U. V., and Liscum, E. (2005). Plant tropisms: Providing the power of movement to a sessile organism. International Journal of Developmental Biology. https://doi.org/10.1387/ijdb.052028ceFang, S., Clark, R. T., Zheng, Y., Iyer-Pascuzzi, A. S., Weitz, J. S., Kochian, L. V., . . Benfey, P. N. (2013). Genotypic recognition and spatial responses by rice roots. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2670–2675. https://doi.org/10.1073/pnas.1222821110.Fitter, A. H. (1987). An architectural approach to the comparative ecology of plant root systems. New phytologist, 106, 61-77. https://doi.org/10.1111/j.1469-8137.1987.tb04683.xFrench, A., Ubeda-Toma´s, S., Holman, T. J., Bennett, M. J., and Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiol- ogy, 150(4), 1784-1795. https://doi.org/10.1104/pp.109.140558Glin´ski, J., and Lipiec, J. (2018). Soil physical conditions and plant roots. CRC press.Godin, C., Costes, E., and Sinoquet, H. (1999). A method for describing plant architec- ture which integrates topology and geometry. Annals of botany, 84(3), 343-357Gregory, P. J. (2008). Plant roots: growth, activity and interactions with the soil. John Wiley & Sons. Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in plant science, 23(1), 79-88.Hodge, A., Berta, G., Doussan, C., Merchan, F., and Crespi, M. (2009). Plant root growth, architecture and function. Plant and soil, 321(1), 153-187. https://doi.org/10.1007/s11104-009- 9929-9.Leitner, D., Klepsch, S., Knieß, A., and Schnepf, A. (2010). The algorithmic beauty of plant roots–an L-System model for dynamic root growth simulation. Mathematical and Computer Modelling of Dynamical Systems, 16(6), 575-587. https://doi.org/10.1080/13873954.2010.491360Lobet G, Koevoets IT, Noll M, Tocquin P, Meyer PE, Pagès L, et al. Using a structural root system model to evaluate and improve the accuracy of root image analysis pipelines. Front Plant Sci. Frontiers; 2017;8. doi:10.3389/fpls.2017.00447Lynch, J. (1995). Root architecture and plant productivity. Plant physiology, 109(1), 7. https://doi.org/10.1104/pp.109.1.7Miyazawa, Y., Yamazaki, T., Moriwaki, T., and Takahashi, H. (2011). Root Tropism. Its Mechanism and Possible Functions in Drought Avoidance. Advances in Botanical Research (Vol. 57). https://doi.org/10.1016/B978-0-12-387692- 8.00010-2.Narisetti, N., Henke, M., Seiler, C., Shi, R., Junker, A., Altmann, T., & Gladilin, E. (2019). Semi-automated root image analysis (saRIA). Scientific reports, 9(1), 1-10.Orman-Ligeza, B., Civava, R., de Dorlodot, S., and Draye, X. (2014). Root system architecture. In Root engineering (pp. 39-56). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 642-54276-3 3Popova, L., Russino, A., Ascrizzi, A., and Mazzolai, B. (2012). Analysis of movement in primary maize roots. Biologia, 67(3), 517–524. https://doi.org/10.2478/s11756-012-0023-z.Pornaro, Cristina & Macolino, Stefano & Menegon, Alessandro & Richardson, Mike. (2017). WinRHIZO Technology for Measuring Morphological Traits of Bermudagrass Stolons. Agronomy Journal. 109. 10.2134/agronj2017.03.0187.Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J. (2015). A method- ology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105-117. https://doi.org/10.1016/j.cad.2014.01.005.Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. bioRxiv.Taiz, L. and Zeiger, E. (2003). Plant physiology. 3rd edn. Annals of Botany, 91(6), 750–751.Walter, A., Silk, W. K., and Schurr, U. (2009). Environmental Effects on Spatial and Temporal Patterns of Leaf and Root Growth. Annual Review of Plant Biology, 60(1), 279–304. https://doi.org/10.1146/annurev.arplant.59.032607.092819Yang, M., Defossez, P., Danjon, F., and Fourcaud, T. (2014). Tree stability under wind: simulating uprooting with root breakage using a finite element method. Annals of botany, 114(4), 695-709. https://doi.org/10.1093/aob/mcu122.Youssef, R. A., and Chino, M. (1988). Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Science and Plant Nutrition, 34(3), 461–465. https://doi.org/10.1080/00380768.1988.10415701.EstudiantesInvestigadoresPúblico generalORIGINAL1032460480.2022.pdf1032460480.2022.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf2219656https://repositorio.unal.edu.co/bitstream/unal/81727/5/1032460480.2022.pdfc2aec0394632c96ecf526ca2b6ddcfa8MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81727/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56THUMBNAIL1032460480.2022.pdf.jpg1032460480.2022.pdf.jpgGenerated Thumbnailimage/jpeg5309https://repositorio.unal.edu.co/bitstream/unal/81727/7/1032460480.2022.pdf.jpgbbb5be6e9dc9fe5122ac92f45548fb97MD57unal/81727oai:repositorio.unal.edu.co:unal/817272024-08-07 23:10:35.718Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK