Automatic retinopathy detection using Deep learning and medical findings

ilustraciones, gráficas, tablas

Autores:
de la Pava Rodriguez, Melissa
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81038
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81038
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Diabetic Retinopathy/diagnosis
Deep Learning
Machine learning
Retinopatía Diabética/diagnóstico
Aprendizaje Profundo
Aprendizaje Automático
Ocular lesions
Diabetic retinopathy
Convolutional neural networks
Transfer learning
Multitask models
Shallow machine learning classifiers
Lesiones oculares
Retinopatía diabética
Redes convolucionales
Transferecia de aprendizaje
Modelo multitarea
Clasificadores clásicos de aprendizaje de máquina
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6cd41491d403f8bad257974c226862ac
oai_identifier_str oai:repositorio.unal.edu.co:unal/81038
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Automatic retinopathy detection using Deep learning and medical findings
dc.title.translated.spa.fl_str_mv Detección automática de retinopatía diabética usando aprendizaje profundo y hallazgos médicos
title Automatic retinopathy detection using Deep learning and medical findings
spellingShingle Automatic retinopathy detection using Deep learning and medical findings
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Diabetic Retinopathy/diagnosis
Deep Learning
Machine learning
Retinopatía Diabética/diagnóstico
Aprendizaje Profundo
Aprendizaje Automático
Ocular lesions
Diabetic retinopathy
Convolutional neural networks
Transfer learning
Multitask models
Shallow machine learning classifiers
Lesiones oculares
Retinopatía diabética
Redes convolucionales
Transferecia de aprendizaje
Modelo multitarea
Clasificadores clásicos de aprendizaje de máquina
title_short Automatic retinopathy detection using Deep learning and medical findings
title_full Automatic retinopathy detection using Deep learning and medical findings
title_fullStr Automatic retinopathy detection using Deep learning and medical findings
title_full_unstemmed Automatic retinopathy detection using Deep learning and medical findings
title_sort Automatic retinopathy detection using Deep learning and medical findings
dc.creator.fl_str_mv de la Pava Rodriguez, Melissa
dc.contributor.advisor.spa.fl_str_mv González Osorio, Fabio Augusto
Perdomo Charry, Oscar Julián
dc.contributor.author.spa.fl_str_mv de la Pava Rodriguez, Melissa
dc.contributor.researchgroup.spa.fl_str_mv MindLab
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Diabetic Retinopathy/diagnosis
Deep Learning
Machine learning
Retinopatía Diabética/diagnóstico
Aprendizaje Profundo
Aprendizaje Automático
Ocular lesions
Diabetic retinopathy
Convolutional neural networks
Transfer learning
Multitask models
Shallow machine learning classifiers
Lesiones oculares
Retinopatía diabética
Redes convolucionales
Transferecia de aprendizaje
Modelo multitarea
Clasificadores clásicos de aprendizaje de máquina
dc.subject.decs.eng.fl_str_mv Diabetic Retinopathy/diagnosis
Deep Learning
Machine learning
dc.subject.decs.spa.fl_str_mv Retinopatía Diabética/diagnóstico
Aprendizaje Profundo
Aprendizaje Automático
dc.subject.proposal.eng.fl_str_mv Ocular lesions
Diabetic retinopathy
Convolutional neural networks
Transfer learning
Multitask models
Shallow machine learning classifiers
dc.subject.proposal.spa.fl_str_mv Lesiones oculares
Retinopatía diabética
Redes convolucionales
Transferecia de aprendizaje
Modelo multitarea
Clasificadores clásicos de aprendizaje de máquina
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-22T16:35:41Z
dc.date.available.none.fl_str_mv 2022-02-22T16:35:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81038
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81038
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13.
Abdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536
Abramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020]
Abràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352
Alaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711
Amin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions
Antal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051
Ashikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual Learning
Beagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227
Bhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593
Bresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420
Carvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020
Chen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203
Chen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216
Chudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565
Crawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796
Cun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404
Decencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmology
Ding, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827
Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713
Gayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108
Goldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975
Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598
Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316
Hassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437
He, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254X
Heijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System
Hoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062
Imaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019]
Imaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020]
James Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609
Kaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020]
Kauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15
Kauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdf
Lam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018)
Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322
Li, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255
Li, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020
Li, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377
Meriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98
Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825
(ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022]
Orlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565
Orlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565
Paing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401
Pandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905
Prentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716
Qiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536
Qummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536
Rajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence
Resnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079
Ruder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017)
Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329
Sengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163
Seoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254X
Sharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524
Son, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713
Staal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030
Symposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020]
Tajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302
Usman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825
Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337
Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111
Wan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906
Wang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208
Wang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165
Wang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797
Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420
Y., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444
Yang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524
Zago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534
Zander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161
Zeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network
Zhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659
Zhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771
Zhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254X
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 52 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81038/3/1053843012.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81038/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81038/4/1053843012.2022.pdf.jpg
bitstream.checksum.fl_str_mv 85839d65e7b861f65ef8b6f6b8f0d95a
8153f7789df02f0a4c9e079953658ab2
8cc251d1db045f381d923caf7e1cc632
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089564048850944
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Perdomo Charry, Oscar Julián0257d02fec95a5e32cb46abe673774b2de la Pava Rodriguez, Melissaeee6c1425b69725c95762d016ba68de7MindLab2022-02-22T16:35:41Z2022-02-22T16:35:41Z2021https://repositorio.unal.edu.co/handle/unal/81038Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasDiabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina. It can cause blindness if left undiagnosed and untreated. The ophthalmologist performs the diagnosis by screening each patient and detecting in ocular imaging the lesions caused by DR, namely, microaneurisms, hemorrhages, cotton wool spots, venous beading and neovascularization. However, the analysis of ocular findings is cumbersome, time-consuming, and demanding. Due to the insufficient amount of trained specialists to diagnose the illness, and the actual growing population with DR, it is important to develop a method to assist the DR diagnosis. This thesis presents two approaches for the automatic classification of DR using eye fundus images. The first one utilizes convolutional neural networks, transfer learning and shallow machine learning classifiers to identify the main ocular lesions related to DR and then use them to diagnose the illness. The second one is a multitask model which predicts simultaneously ocular lesions and DR. These approaches follow a similar workflow to that of clinicians, providing information that can be interpreted clinically to support the prediction. To achieve this goal a subset of the kaggle EyePACS and the Messidor-2 datasets, are labeled with ocular lesions by a certified opthalmologist. The kaggle EyePACS subset is used as training set and the Messidor-2 dataset is used as test set for both, the lesions and DR classification models. The results indicate that both methods achieve results comparable with state-of-the-art performances. The best results are obtained using the first approach with a multi layer perceptron as classifier for the automatic detection of DR, however, the multitask approach lead to similar results and has a simpler architecture.La retinopatía diabética (RD) es el resultado de una complicacion de la diabetes que afecta la retina. Puede causar ceguera si no se diagnostica ni se trata. El diagnóstico de esta enfermedad se hace mediante el escaneo de cada paciente y el análisis de imágenes oculares para detectar lesiones causadas por la RD, como microaneurismas, hemorragias, manchas algodonosas, arrosamiento venoso y neovascularización. Sin embargo, el análisis de las lesiones oculares es engorroso, lento y exigente. Debido a la cantidad insuficiente de especialistas capacitados para diagnosticar la enfermedad y al crecimiento actual de la población con RD, es importante desarrollar un método para ayudar en el diagnóstico de esta enfermedad. Esta tesis presenta dos enfoques para la clasificación automática de la RD utilizando imágenes de fondo de ojo. El primero utiliza redes neuronales convolucionales, transferencia de aprendizaje y clasificadores clásicos de aprendizaje de máquina para identificar las principales lesiones oculares relacionadas con la RD y luego usarlas para diagnosticar la enfermedad. El segundo es un modelo multitarea que predice simultáneamente lesiones oculares y RD. Estos enfoques siguen un flujo de trabajo similar al de los médicos, proporcionando información que puede interpretarse clínicamente para respaldar la predicción. Para lograr este objetivo, un subconjunto de las bases de datos kaggle EyePACS y Messidor-2 fueron etiquetados con lesiones oculares por un oftalmólogo certificado. El subconjunto de kaggle EyePACS se utiliza como conjunto de entrenamiento y el de Messidor-2 se utiliza como conjunto de prueba tanto para los modelos de detección de lesiones, como para los de clasificación de RD. Los resultados indican que ambos enfoques logran desempeños comparables con los métodos del estado del arte. Los mejores resultados se obtienen utilizando el primer enfoque con un perceptrón multicapa como clasificador para la detección automática de RD, sin embargo, el enfoque multitarea conduce a resultados similares y tiene una arquitectura más simple. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónApplied computingx, 52 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresDiabetic Retinopathy/diagnosisDeep LearningMachine learningRetinopatía Diabética/diagnósticoAprendizaje ProfundoAprendizaje AutomáticoOcular lesionsDiabetic retinopathyConvolutional neural networksTransfer learningMultitask modelsShallow machine learning classifiersLesiones ocularesRetinopatía diabéticaRedes convolucionalesTransferecia de aprendizajeModelo multitareaClasificadores clásicos de aprendizaje de máquinaAutomatic retinopathy detection using Deep learning and medical findingsDetección automática de retinopatía diabética usando aprendizaje profundo y hallazgos médicosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAutomatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13.Abdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536Abramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020]Abràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352Alaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711Amin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesionsAntal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051Ashikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual LearningBeagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227Bhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593Bresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420Carvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020Chen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203Chen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216Chudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565Crawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796Cun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404Decencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmologyDing, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713Gayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108Goldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316Hassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437He, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254XHeijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care SystemHoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062Imaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019]Imaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020]James Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609Kaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020]Kauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15Kauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdfLam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018)Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322Li, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255Li, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020Li, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377Meriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825(ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022]Orlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565Orlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565Paing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401Pandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905Prentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716Qiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536Qummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536Rajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligenceResnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079Ruder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017)Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329Sengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163Seoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254XSharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524Son, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713Staal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030Symposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020]Tajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302Usman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111Wan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906Wang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208Wang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165Wang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420Y., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444Yang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524Zago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534Zander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161Zeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural networkZhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659Zhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771Zhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254XCOLCIENCIASEstudiantesInvestigadoresMaestrosORIGINAL1053843012.2022.pdf1053843012.2022.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf3975172https://repositorio.unal.edu.co/bitstream/unal/81038/3/1053843012.2022.pdf85839d65e7b861f65ef8b6f6b8f0d95aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81038/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1053843012.2022.pdf.jpg1053843012.2022.pdf.jpgGenerated Thumbnailimage/jpeg4225https://repositorio.unal.edu.co/bitstream/unal/81038/4/1053843012.2022.pdf.jpg8cc251d1db045f381d923caf7e1cc632MD54unal/81038oai:repositorio.unal.edu.co:unal/810382023-08-01 23:04:09.8Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK