Automatic retinopathy detection using Deep learning and medical findings
ilustraciones, gráficas, tablas
- Autores:
-
de la Pava Rodriguez, Melissa
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81038
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Diabetic Retinopathy/diagnosis
Deep Learning
Machine learning
Retinopatía Diabética/diagnóstico
Aprendizaje Profundo
Aprendizaje Automático
Ocular lesions
Diabetic retinopathy
Convolutional neural networks
Transfer learning
Multitask models
Shallow machine learning classifiers
Lesiones oculares
Retinopatía diabética
Redes convolucionales
Transferecia de aprendizaje
Modelo multitarea
Clasificadores clásicos de aprendizaje de máquina
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6cd41491d403f8bad257974c226862ac |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81038 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Automatic retinopathy detection using Deep learning and medical findings |
dc.title.translated.spa.fl_str_mv |
Detección automática de retinopatía diabética usando aprendizaje profundo y hallazgos médicos |
title |
Automatic retinopathy detection using Deep learning and medical findings |
spellingShingle |
Automatic retinopathy detection using Deep learning and medical findings 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Diabetic Retinopathy/diagnosis Deep Learning Machine learning Retinopatía Diabética/diagnóstico Aprendizaje Profundo Aprendizaje Automático Ocular lesions Diabetic retinopathy Convolutional neural networks Transfer learning Multitask models Shallow machine learning classifiers Lesiones oculares Retinopatía diabética Redes convolucionales Transferecia de aprendizaje Modelo multitarea Clasificadores clásicos de aprendizaje de máquina |
title_short |
Automatic retinopathy detection using Deep learning and medical findings |
title_full |
Automatic retinopathy detection using Deep learning and medical findings |
title_fullStr |
Automatic retinopathy detection using Deep learning and medical findings |
title_full_unstemmed |
Automatic retinopathy detection using Deep learning and medical findings |
title_sort |
Automatic retinopathy detection using Deep learning and medical findings |
dc.creator.fl_str_mv |
de la Pava Rodriguez, Melissa |
dc.contributor.advisor.spa.fl_str_mv |
González Osorio, Fabio Augusto Perdomo Charry, Oscar Julián |
dc.contributor.author.spa.fl_str_mv |
de la Pava Rodriguez, Melissa |
dc.contributor.researchgroup.spa.fl_str_mv |
MindLab |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Diabetic Retinopathy/diagnosis Deep Learning Machine learning Retinopatía Diabética/diagnóstico Aprendizaje Profundo Aprendizaje Automático Ocular lesions Diabetic retinopathy Convolutional neural networks Transfer learning Multitask models Shallow machine learning classifiers Lesiones oculares Retinopatía diabética Redes convolucionales Transferecia de aprendizaje Modelo multitarea Clasificadores clásicos de aprendizaje de máquina |
dc.subject.decs.eng.fl_str_mv |
Diabetic Retinopathy/diagnosis Deep Learning Machine learning |
dc.subject.decs.spa.fl_str_mv |
Retinopatía Diabética/diagnóstico Aprendizaje Profundo Aprendizaje Automático |
dc.subject.proposal.eng.fl_str_mv |
Ocular lesions Diabetic retinopathy Convolutional neural networks Transfer learning Multitask models Shallow machine learning classifiers |
dc.subject.proposal.spa.fl_str_mv |
Lesiones oculares Retinopatía diabética Redes convolucionales Transferecia de aprendizaje Modelo multitarea Clasificadores clásicos de aprendizaje de máquina |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-22T16:35:41Z |
dc.date.available.none.fl_str_mv |
2022-02-22T16:35:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81038 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81038 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13. Abdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536 Abramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020] Abràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352 Alaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711 Amin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions Antal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051 Ashikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual Learning Beagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227 Bhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593 Bresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420 Carvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020 Chen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203 Chen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216 Chudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565 Crawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796 Cun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404 Decencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmology Ding, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827 Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713 Gayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108 Goldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975 Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598 Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 Hassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437 He, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254X Heijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System Hoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062 Imaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019] Imaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020] James Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609 Kaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020] Kauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15 Kauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdf Lam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018) Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322 Li, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255 Li, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020 Li, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377 Meriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98 Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825 (ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022] Orlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565 Orlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565 Paing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401 Pandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905 Prentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716 Qiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536 Qummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536 Rajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence Resnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079 Ruder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017) Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329 Sengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163 Seoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254X Sharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524 Son, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713 Staal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030 Symposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020] Tajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302 Usman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825 Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337 Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111 Wan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906 Wang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208 Wang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165 Wang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797 Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420 Y., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444 Yang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524 Zago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534 Zander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161 Zeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network Zhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659 Zhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771 Zhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254X |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 52 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81038/3/1053843012.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81038/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81038/4/1053843012.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
85839d65e7b861f65ef8b6f6b8f0d95a 8153f7789df02f0a4c9e079953658ab2 8cc251d1db045f381d923caf7e1cc632 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089564048850944 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Perdomo Charry, Oscar Julián0257d02fec95a5e32cb46abe673774b2de la Pava Rodriguez, Melissaeee6c1425b69725c95762d016ba68de7MindLab2022-02-22T16:35:41Z2022-02-22T16:35:41Z2021https://repositorio.unal.edu.co/handle/unal/81038Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasDiabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina. It can cause blindness if left undiagnosed and untreated. The ophthalmologist performs the diagnosis by screening each patient and detecting in ocular imaging the lesions caused by DR, namely, microaneurisms, hemorrhages, cotton wool spots, venous beading and neovascularization. However, the analysis of ocular findings is cumbersome, time-consuming, and demanding. Due to the insufficient amount of trained specialists to diagnose the illness, and the actual growing population with DR, it is important to develop a method to assist the DR diagnosis. This thesis presents two approaches for the automatic classification of DR using eye fundus images. The first one utilizes convolutional neural networks, transfer learning and shallow machine learning classifiers to identify the main ocular lesions related to DR and then use them to diagnose the illness. The second one is a multitask model which predicts simultaneously ocular lesions and DR. These approaches follow a similar workflow to that of clinicians, providing information that can be interpreted clinically to support the prediction. To achieve this goal a subset of the kaggle EyePACS and the Messidor-2 datasets, are labeled with ocular lesions by a certified opthalmologist. The kaggle EyePACS subset is used as training set and the Messidor-2 dataset is used as test set for both, the lesions and DR classification models. The results indicate that both methods achieve results comparable with state-of-the-art performances. The best results are obtained using the first approach with a multi layer perceptron as classifier for the automatic detection of DR, however, the multitask approach lead to similar results and has a simpler architecture.La retinopatía diabética (RD) es el resultado de una complicacion de la diabetes que afecta la retina. Puede causar ceguera si no se diagnostica ni se trata. El diagnóstico de esta enfermedad se hace mediante el escaneo de cada paciente y el análisis de imágenes oculares para detectar lesiones causadas por la RD, como microaneurismas, hemorragias, manchas algodonosas, arrosamiento venoso y neovascularización. Sin embargo, el análisis de las lesiones oculares es engorroso, lento y exigente. Debido a la cantidad insuficiente de especialistas capacitados para diagnosticar la enfermedad y al crecimiento actual de la población con RD, es importante desarrollar un método para ayudar en el diagnóstico de esta enfermedad. Esta tesis presenta dos enfoques para la clasificación automática de la RD utilizando imágenes de fondo de ojo. El primero utiliza redes neuronales convolucionales, transferencia de aprendizaje y clasificadores clásicos de aprendizaje de máquina para identificar las principales lesiones oculares relacionadas con la RD y luego usarlas para diagnosticar la enfermedad. El segundo es un modelo multitarea que predice simultáneamente lesiones oculares y RD. Estos enfoques siguen un flujo de trabajo similar al de los médicos, proporcionando información que puede interpretarse clínicamente para respaldar la predicción. Para lograr este objetivo, un subconjunto de las bases de datos kaggle EyePACS y Messidor-2 fueron etiquetados con lesiones oculares por un oftalmólogo certificado. El subconjunto de kaggle EyePACS se utiliza como conjunto de entrenamiento y el de Messidor-2 se utiliza como conjunto de prueba tanto para los modelos de detección de lesiones, como para los de clasificación de RD. Los resultados indican que ambos enfoques logran desempeños comparables con los métodos del estado del arte. Los mejores resultados se obtienen utilizando el primer enfoque con un perceptrón multicapa como clasificador para la detección automática de RD, sin embargo, el enfoque multitarea conduce a resultados similares y tiene una arquitectura más simple. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónApplied computingx, 52 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresDiabetic Retinopathy/diagnosisDeep LearningMachine learningRetinopatía Diabética/diagnósticoAprendizaje ProfundoAprendizaje AutomáticoOcular lesionsDiabetic retinopathyConvolutional neural networksTransfer learningMultitask modelsShallow machine learning classifiersLesiones ocularesRetinopatía diabéticaRedes convolucionalesTransferecia de aprendizajeModelo multitareaClasificadores clásicos de aprendizaje de máquinaAutomatic retinopathy detection using Deep learning and medical findingsDetección automática de retinopatía diabética usando aprendizaje profundo y hallazgos médicosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAutomatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13.Abdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536Abramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020]Abràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352Alaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711Amin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesionsAntal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051Ashikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual LearningBeagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227Bhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593Bresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420Carvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020Chen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203Chen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216Chudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565Crawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796Cun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404Decencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmologyDing, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713Gayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108Goldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316Hassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437He, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254XHeijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care SystemHoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062Imaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019]Imaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020]James Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609Kaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020]Kauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15Kauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdfLam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018)Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322Li, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255Li, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020Li, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377Meriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825(ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022]Orlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565Orlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565Paing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401Pandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905Prentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716Qiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536Qummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536Rajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligenceResnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079Ruder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017)Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329Sengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163Seoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254XSharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524Son, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713Staal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030Symposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020]Tajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302Usman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111Wan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906Wang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208Wang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165Wang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420Y., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444Yang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524Zago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534Zander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161Zeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural networkZhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659Zhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771Zhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254XCOLCIENCIASEstudiantesInvestigadoresMaestrosORIGINAL1053843012.2022.pdf1053843012.2022.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf3975172https://repositorio.unal.edu.co/bitstream/unal/81038/3/1053843012.2022.pdf85839d65e7b861f65ef8b6f6b8f0d95aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81038/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1053843012.2022.pdf.jpg1053843012.2022.pdf.jpgGenerated Thumbnailimage/jpeg4225https://repositorio.unal.edu.co/bitstream/unal/81038/4/1053843012.2022.pdf.jpg8cc251d1db045f381d923caf7e1cc632MD54unal/81038oai:repositorio.unal.edu.co:unal/810382023-08-01 23:04:09.8Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |