A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques
Abstract. In this thesis work, the problem of applying active learning for a label efficient training of deep learning models is addressed. Firstly, in chapter one, the problem is introduced as well as the objectives and results of this thesis work. In chapter 2, a state of the art of active learnin...
- Autores:
-
Otálora Montenegro, Juan Sebastian
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/59995
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/59995
http://bdigital.unal.edu.co/57883/
- Palabra clave:
- 51 Matemáticas / Mathematics
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Deep Learning
Machine Learning
Eye Fundus imaging
Active Learning
Medical Imaging
Expected Gradient Length
On-line Learning
Aprendizaje de máquina
Redes Neuronales Profundas
Aprendizaje Activo
Aprendizaje de la Representación
Análisis de Imágenes Médicas
Aprendizaje en Linea
Longitud esperada del gradiente
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_6c582f2123d0b293ce9c1f045b8c07de |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/59995 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
title |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
spellingShingle |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques 51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Deep Learning Machine Learning Eye Fundus imaging Active Learning Medical Imaging Expected Gradient Length On-line Learning Aprendizaje de máquina Redes Neuronales Profundas Aprendizaje Activo Aprendizaje de la Representación Análisis de Imágenes Médicas Aprendizaje en Linea Longitud esperada del gradiente |
title_short |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
title_full |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
title_fullStr |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
title_full_unstemmed |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
title_sort |
A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques |
dc.creator.fl_str_mv |
Otálora Montenegro, Juan Sebastian |
dc.contributor.author.spa.fl_str_mv |
Otálora Montenegro, Juan Sebastian |
dc.contributor.spa.fl_str_mv |
González Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Deep Learning Machine Learning Eye Fundus imaging Active Learning Medical Imaging Expected Gradient Length On-line Learning Aprendizaje de máquina Redes Neuronales Profundas Aprendizaje Activo Aprendizaje de la Representación Análisis de Imágenes Médicas Aprendizaje en Linea Longitud esperada del gradiente |
dc.subject.proposal.spa.fl_str_mv |
Deep Learning Machine Learning Eye Fundus imaging Active Learning Medical Imaging Expected Gradient Length On-line Learning Aprendizaje de máquina Redes Neuronales Profundas Aprendizaje Activo Aprendizaje de la Representación Análisis de Imágenes Médicas Aprendizaje en Linea Longitud esperada del gradiente |
description |
Abstract. In this thesis work, the problem of applying active learning for a label efficient training of deep learning models is addressed. Firstly, in chapter one, the problem is introduced as well as the objectives and results of this thesis work. In chapter 2, a state of the art of active learning and deep learning models is presented with a particular emphasis on medical scenarios. In chapter three in active learning approach based on the expected gradient length is introduced for deep convolutional neural networks for applying in medical problems where data is scarce and train deep models could be unfeasible due to the lack of annotated samples. In chapter four an implemented framework for interactively training of deep learning models based on the previous discused algorithms is presented, where the active learning techniques improve the random selection strategy to classify between healthy eyes patches and patches that contain an early stage of diabetic retinopathy. Finally, in the last chapter, the conclusions of this thesis work are discussed as well as some promising lines of work for further research. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-03-06 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T17:17:06Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T17:17:06Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/59995 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/57883/ |
url |
https://repositorio.unal.edu.co/handle/unal/59995 http://bdigital.unal.edu.co/57883/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://sites.google.com/a/unal.edu.co/mindlab/ |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Otálora Montenegro, Juan Sebastian (2016) A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques. Maestría thesis, Universidad Nacional de Colombia-Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/59995/1/JuanS.Ot%c3%a1loraMontenegro.2016.pdf https://repositorio.unal.edu.co/bitstream/unal/59995/2/JuanS.Ot%c3%a1loraMontenegro.2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
81b9ef7790de3e007e693942c29c0745 50bf8d6a25280e5b2657ebe8b1ef707b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089650431590400 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio AugustoOtálora Montenegro, Juan Sebastiand6ad54a8-ead9-4eaa-98b8-2f974c7a71ca3002019-07-02T17:17:06Z2019-07-02T17:17:06Z2016-03-06https://repositorio.unal.edu.co/handle/unal/59995http://bdigital.unal.edu.co/57883/Abstract. In this thesis work, the problem of applying active learning for a label efficient training of deep learning models is addressed. Firstly, in chapter one, the problem is introduced as well as the objectives and results of this thesis work. In chapter 2, a state of the art of active learning and deep learning models is presented with a particular emphasis on medical scenarios. In chapter three in active learning approach based on the expected gradient length is introduced for deep convolutional neural networks for applying in medical problems where data is scarce and train deep models could be unfeasible due to the lack of annotated samples. In chapter four an implemented framework for interactively training of deep learning models based on the previous discused algorithms is presented, where the active learning techniques improve the random selection strategy to classify between healthy eyes patches and patches that contain an early stage of diabetic retinopathy. Finally, in the last chapter, the conclusions of this thesis work are discussed as well as some promising lines of work for further research.En ésta tesis, se estudia el problema del entrenamiento eficiente de modelos de aprendizaje automático basados en redes neuronales profundas para el caso en el que se cuenta con pocos ejemplos anotados para su entrenamiento. Para esto se presentara una estrategia de aprendizaje activo la cual hace mas eficiente el aprendizaje de una representación profunda utilizando los ejemplos que mas cambios aportan al modelo. En el primer capítulo, se introduce el problema así como los objetivos y resultados de este trabajo de tesis. Una revisión de los trabajos recientes en el área de aprendizaje activo y modelos de aprendizaje profundo, con énfasis en escenarios médicos se presenta en el capítulo 2. En el capítulo 3, se presenta el enfoque propuesto de aprendizaje activo para modelos de aprendizaje profundos basado en la longitud esperada del gradiente, el cual resulta útil para la solución de problemas de imágenes médicas donde no se cuenta con la suficiente cantidad de ejemplos anotados. En el capítulo 4, un marco experimental es implementado para el entrenamiento de modelos basados en redes neuronales profundas, se muestra la aplicación de esta estrategía para clasificar parches de imágenes de fondo de ojo con pacientes sanos y en una etapa temprana de retinopatía diabética. Se muestra que el algoritmo propuesto mejora el desempeño del modelo comparandolo con la estrategía clásica de selección aleatoria de ejemplos. Finalmente en el último capítulo se discuten las concluciones de este trabajo y también se esbozan algunas lineas de trabajo prometedoras para el futuro.Maestríaapplication/pdfspahttps://sites.google.com/a/unal.edu.co/mindlab/Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialOtálora Montenegro, Juan Sebastian (2016) A framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniques. Maestría thesis, Universidad Nacional de Colombia-Sede Bogotá.51 Matemáticas / Mathematics6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringDeep LearningMachine LearningEye Fundus imagingActive LearningMedical ImagingExpected Gradient LengthOn-line LearningAprendizaje de máquinaRedes Neuronales ProfundasAprendizaje ActivoAprendizaje de la RepresentaciónAnálisis de Imágenes MédicasAprendizaje en LineaLongitud esperada del gradienteA framework for interactive training of automatic image analysis models based on learned image representations, active learning, and visualization techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALJuanS.OtáloraMontenegro.2016.pdfapplication/pdf6709212https://repositorio.unal.edu.co/bitstream/unal/59995/1/JuanS.Ot%c3%a1loraMontenegro.2016.pdf81b9ef7790de3e007e693942c29c0745MD51THUMBNAILJuanS.OtáloraMontenegro.2016.pdf.jpgJuanS.OtáloraMontenegro.2016.pdf.jpgGenerated Thumbnailimage/jpeg4931https://repositorio.unal.edu.co/bitstream/unal/59995/2/JuanS.Ot%c3%a1loraMontenegro.2016.pdf.jpg50bf8d6a25280e5b2657ebe8b1ef707bMD52unal/59995oai:repositorio.unal.edu.co:unal/599952023-04-04 23:06:40.029Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |