Modelo matemático como soporte para la planificación del transporte masivo de pasajeros aplicando una estrategia de cambio de resolución
En esta tesis se formula un modelo matemático de optimización para resolver de manera integrada las etapas de diseño de itinerarios y asignación de flota en un sistema de transporte aéreo de pasajeros utilizando una estrategia de cambio de resolución para disminuir el tamaño del problema resultante,...
- Autores:
-
Henao Arango, Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/68685
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/68685
http://bdigital.unal.edu.co/69798/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
Clusterización
Diseño de itinerarios
Asignación de flota
Clustering
Itinerary design
Fleet assignment
Scheduling
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | En esta tesis se formula un modelo matemático de optimización para resolver de manera integrada las etapas de diseño de itinerarios y asignación de flota en un sistema de transporte aéreo de pasajeros utilizando una estrategia de cambio de resolución para disminuir el tamaño del problema resultante, en términos de la cantidad de variables de decisión y ecuaciones, así como del tiempo y de la cantidad de iteraciones requeridas para resolverlo. Para reducir el tamaño del modelo de optimización resultante se implementa una estrategia de clusterización de datos utilizando algoritmos de Aprendizaje de Máquina e Inteligencia Artificial. Estos algoritmos permiten agrupar datos en clústers de manera no trivial, de manera que los elementos pertenecientes a cada clúster son homogéneos entre sí, y los clústers contienen elementos heterogéneos entre ellos. Así, un conjunto original de datos pasa a ser reemplazado por los centroides de los clústers encontrados. Se desarrolla un caso de aplicación en el que, usando el modelo de optimización y la estrategia de cambio de resolución propuesta, se resuelven las dos etapas de la planeación mencionadas. Se plantea el modelo con y sin clusterización de datos y se concluye que la estrategia de clusterización, además de disminuir drásticamente el tiempo de resolución del modelo, mejora la calidad de la solución encontrada, ya que se obtiene una combinación de vuelos incluidos en el itinerario operada con un costo menor que el óptimo encontrado sin aplicar la clusterización de datos y con mejor conectividad entre ellos. |
---|