Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi
ilustraciones, diagramas
- Autores:
-
Pérez Mora, Walter Hernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85369
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/85369
- Palabra clave:
- 540 - Química y ciencias afines
570 - Biología::572 - Bioquímica
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Floricultura
Protección de las plantas
Vitamina B1
Floriculture
Plants, protection of
Vitamin B1
Clavel
Inductor de resistencia
Sensibilización
inmunidad innata en plantas
Tiamina
Resistance inductors
Carnation
Plant innate immunity
Priming
Resistance inductors
Thiamine
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6c08ba7081d74cfb02dfaab9c6f30881 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85369 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
dc.title.translated.eng.fl_str_mv |
Metabolomics and proteomics-based approach for studying mechanisms associated with resistance induction through the use of commercial inducing substances in carnation (Dianthus caryophyllus L) for the control of vascular wilt caused by Fusarium oxysporum f. sp. dianthi |
title |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
spellingShingle |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi 540 - Química y ciencias afines 570 - Biología::572 - Bioquímica 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales Floricultura Protección de las plantas Vitamina B1 Floriculture Plants, protection of Vitamin B1 Clavel Inductor de resistencia Sensibilización inmunidad innata en plantas Tiamina Resistance inductors Carnation Plant innate immunity Priming Resistance inductors Thiamine |
title_short |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
title_full |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
title_fullStr |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
title_full_unstemmed |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
title_sort |
Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi |
dc.creator.fl_str_mv |
Pérez Mora, Walter Hernando |
dc.contributor.advisor.none.fl_str_mv |
Melgarejo Muñoz, Luz Marina Ardila Barrantes, Harold Duban |
dc.contributor.author.none.fl_str_mv |
Pérez Mora, Walter Hernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos Estudio de Actividades Metabólicas Vegetales |
dc.contributor.orcid.spa.fl_str_mv |
Pérez Mora, Walter Hernando [0000000272901874] |
dc.contributor.cvlac.spa.fl_str_mv |
Pérez Mora, Walter Hernando [0001375535] |
dc.contributor.researchgate.spa.fl_str_mv |
Pérez Mora, Walter Hernando [https://www.researchgate.net/profile/Walter-Perez-Mora] |
dc.contributor.googlescholar.spa.fl_str_mv |
Pérez Mora, Walter Hernando [https://scholar.google.com/citations?user=hKtonb0AAAAJ&hl=es] |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines 570 - Biología::572 - Bioquímica 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales |
topic |
540 - Química y ciencias afines 570 - Biología::572 - Bioquímica 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales Floricultura Protección de las plantas Vitamina B1 Floriculture Plants, protection of Vitamin B1 Clavel Inductor de resistencia Sensibilización inmunidad innata en plantas Tiamina Resistance inductors Carnation Plant innate immunity Priming Resistance inductors Thiamine |
dc.subject.lemb.spa.fl_str_mv |
Floricultura Protección de las plantas Vitamina B1 |
dc.subject.lemb.eng.fl_str_mv |
Floriculture Plants, protection of Vitamin B1 |
dc.subject.proposal.spa.fl_str_mv |
Clavel Inductor de resistencia Sensibilización inmunidad innata en plantas Tiamina |
dc.subject.proposal.eng.fl_str_mv |
Resistance inductors Carnation Plant innate immunity Priming Resistance inductors Thiamine |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-18T20:05:54Z |
dc.date.available.none.fl_str_mv |
2024-01-18T20:05:54Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85369 |
url |
https://repositorio.unal.edu.co/handle/unal/85369 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/ajb.v2i4.14830 Abdel Monaim, M. F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10(53), 10842–10855. https://doi.org/10.5897/ajb11.253 Abdul Hasseb, H., Zhang, J., Guo, Y. shuang, Gao, M. xu, & Guo, W. (2022). Proteomic analysis of pathogen-responsive proteins from maize stem apoplast triggered by Fusarium verticillioides. Journal of Integrative Agriculture, 21(2), 446–459. https://doi.org/10.1016/S2095-3119(21)63657-2 Ahmad, M. Z., Li, P., Wang, J., Rehman, N. U., & Zhao, J. (2017). Isoflavone malonyltransferases GmiMaT1 and GmiMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Frontiers in Plant Science, 8, 1–17. https://doi.org/10.3389/fpls.2017.00735 Ahmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 3(3), 24–34. Ahn, I., Kim, S., & Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138, 1505–1515. https://doi.org/10.1104/pp.104.058693.cytosolic Ahn, I., Kim, S., Lee, Y. H., & Suh, S. C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in arabidopsis. Plant Physiology, 143, 838–848. https://doi.org/10.1104/pp.106.092627 Akram, W., Anjum, T., & Ali, B. (2016). Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Frontiers in Plant Science, 7, 1–12. https://doi.org/10.3389/fpls.2016.00498 Aleandri, M. P., Reda, R., Tagliavento, V., Magro, P., & Chilosi, G. (2010). Effect of chemical resistance inducers on the control of Monosporascus root rot and vine decline of melon. Phytopathologia Mediterranea, 49(1), 18–26. https://doi.org/10.14601/phytopathol_mediterr-3117 Alexandersson, E., Mulugeta, T., Lankinen, Å., & Liljeroth, E. (2016). Plant Resistance Inducers against Pathogens in Solanaceae Species — From Molecular Mechanisms to Field Application. International Journal of Molecular Sciences, 17(10), 1673. https://doi.org/10.3390/ijms17101673 Anup, C. P., Melvin, P., Shilpa, N., Gandhi, M. N., Jadhav, M., Ali, H., & Kini, K. R. (2015). Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. Journal of Proteomics, 120, 58–74. https://doi.org/10.1016/j.jprot.2015.02.013 Arbelaez G. y Calderon O.L. (1991). Determinacion de las razas fisiologicas de Fusarium oxysporum. Agronomía Colombiana, 8(2), 243–247. Ardila, Harold Duban, Baquero, B., & Martínez, S. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167. Ardila, Harold Duban, & Higuera, B. L. (2005). Induccion diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infeccion por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biologica Colombiana, 10(2), 61–74. Ardila, Harold Duban, Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35, 1233–1245. https://doi.org/10.1007/s11738-012-1162-0 Ardila, Harold Duban, Raquel, G. F., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein extraction and gel-based separation methods to analyze responses to pathogens in carnation (Dianthus caryophyllus L). In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 573–591). Humana Press - Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39 Ardila, Harold Duban, Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003 Ardila, Harold Duban. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia. Asensi-Fabado, M., & Munné-Bosch, S. (2010). Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15(10), 582–592. https://doi.org/10.1016/j.tplants.2010.07.003 Baayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.x Bahuguna, R. N., Joshi, R., Shukla, A., Pandey, M., & Kumar, J. (2012). Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 57, 159–167. https://doi.org/10.1016/j.plaphy.2012.05.003 Banasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kȩpczyńska, E., Figlerowicz, M., & Jasiński, M. (2013). A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. Journal of Experimental Botany, 64(4), 1005–1015. https://doi.org/10.1093/jxb/ers380 Basallote-Ureba, M. J., Vela-Delgado, M. D., Capote, N., Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., & Talavera-Rubia, M. F. (2016). Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Protection, 89, 184–192. https://doi.org/10.1016/j.cropro.2016.07.013 Behr, M., Neutelings, G., El Jaziri, M., & Baucher, M. (2020). You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.571399 Bertini, L., Palazzi, L., Proietti, S., Pollastri, S., Arrigoni, G., de Laureto, P. P., & Caruso, C. (2019). Proteomic analysis of MeJa-induced defense responses in rice against wounding. International Journal of Molecular Sciences, 20(2025), 1–24. https://doi.org/10.3390/ijms20102525 Bheri, M., M. Bhosle, S., & Makandar, R. (2019). Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiological Research, 222, 25–34. https://doi.org/10.1016/j.micres.2019.02.006 Boubakri, H. (2017). The Role of Ascorbic Acid in Plant – Pathogen Interactions The Role of Ascorbic Acid in Plant – Pathogen Interactions. In Hossain, M, S. Munné-Bosch, D. Burritt, P. Diaz-Vivancos, M. Fujita, & A. Lorence (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance (Issue January, pp. 255–271). Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7 Boubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds : Possible mechanisms. In M. A. Hossain, F. Liu, D. J. Burritt, M. Fujita, & B. Huang (Eds.), Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Academic Press Elsevier Inc. https://doi.org/10.1016/B978-0-12-817892-8.00005-2 Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0 Boubakri, H., Poutaraud, A., Wahab, M. A., Clayeux, C., Baltenweck-guyot, R., Steyer, D., Marcic, C., Mliki, A., & Soustre-gacougnolle, I. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13(1), 1. https://doi.org/10.1186/1471-2229-13-31 Boubakri, H., Wahab, M., Chong, J., Bertsch, C., Mliki, A., & Soustre, I. (2012). Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiology and Biochemistry, 57, 120–133. https://doi.org/10.1016/j.plaphy.2012.05.016 Camoni, L., Visconti, S., Aducci, P., & Marra, M. (2018). 14-3-3 proteins in plant hormone signaling: Doing several things at once. Frontiers in Plant Science, 9, 1–8. https://doi.org/10.3389/fpls.2018.00297 Carvalho, H. H., Silva, P. A., Mendes, G. C., Brustolini, O. J. B., Pimenta, M. R., Gouveia, B. C., Valente, M. A. S., Ramos, H. J. O., Soares-Ramos, J. R. L., & Fontes, E. P. B. (2014). The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiology, 164(2), 654–670. https://doi.org/10.1104/pp.113.231928 Castillejo, María Ángeles, Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1210/endo-22-1-92 Castillejo, Mariá Ángeles, Fondevilla, S., Fuentes, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance against Ascochyta Blight (Peyronellaea pinodes) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365 Chandrasekhar, B., Umesha, S., & Naveen Kumar, H. N. (2017). Proteomic analysis of salicylic acid enhanced disease resistance in bacterial wilt affected chilli (Capsicum annuum) crop. Physiological and Molecular Plant Pathology, 98, 85–96. https://doi.org/10.1016/j.pmpp.2017.04.002 Chiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169 Clematis, F., Tedeschini, J., Dolci, M., Lanzotti, V., & Cangelosi, B. (2011). Phenol Composition and Susceptibility to Fusarium oxysporum Dianthi in Carnation. Journal of Life Sciences, 5, 921–925. Cuervo, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia. Cuervo, D., Martinez, S., Ardila, H., & Higuera, B. (2009). Differential Induction of Peroxidase Enzyme and Its relationship with lignification in carnation defense (dianthus caryophyllus l.) mechanism against Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Quimica, 38(3), 379–393. Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achon, M. Á., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11. https://doi.org/10.1016/j.pmpp.2015.11.003 Curir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672 Curir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-X Darwesh, Y., Nour El-deen, A., & Fayad Eman, M. (2015). In-Vitro Investigation for Improving Secondary Metabolites in Origanum Vulgare Plants Using Tissue Culture Technique at Taif Governorate, KSA. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1117), 1117–1122. de Borba, M., Velho, A., Maia-Grondard, A., Baltenweck, R., Magnin, M., Randoux, B., Holvoet, M., Hilbert, J., Flahaut, C., Reignault, P., Hugueney, P., Stadnik, M., & Siah, A. (2021). The Algal Polysaccharide Ulvan Induces Resistance in Wheat Against Zymoseptoria tritici Without Major Alteration of Leaf Metabolome. Frontiers in Plant Science, 12, 703712. https://doi.org/10.3389/fpls.2021.703712 Dehestani, M., Gholamnezhad, J., Alizadeh, S., Meftahizadeh, H., & Ghorbanpour, M. (2022). Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flower. South African Journal of Botany, 150, 1192–1204. https://doi.org/10.1016/j.sajb.2022.09.028 Devi, B., Singh, G., Dash, A. K., & Gupta, S. K. (2020). Chemically induced systemic acquired resistance in the inhibition of French bean rust. Current Plant Biology, 23, 1–10. https://doi.org/10.1016/j.cpb.2020.100151 Días Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 257–267. Dong, W., Stockwell, V. O., & Goyer, A. (2015). Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering. Plant & Cell Physiology, 56(12), 2285–2296. https://doi.org/10.1093/pcp/pcv148 El Kasmi, F., Chung, E. H., Anderson, R. G., Li, J., Wan, L., Eitas, T. K., Gao, Z., & Dangl, J. L. (2017). Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 114(35), E7385–E7394. https://doi.org/10.1073/pnas.1708288114 Fernandes, L. B., & Ghag, S. B. (2022). Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. Plant Physiology and Biochemistry, 174(January), 22–34. https://doi.org/10.1016/j.plaphy.2022.01.032 Fernández-Cabanás, V. M., Borrero, C., Cozzolino, D., & Avilés, M. (2022). Feasibility of near infrared spectroscopy for estimating suppressiveness of carnation (Dianthus cariophyllus L.) fusarium wilt in different plant growth media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 280, 1–5. https://doi.org/10.1016/j.saa.2022.121528 Finkina, E. I., Melnikova, D. N., Bogdanov, I. V., & Ovchinnikova, T. V. (2017). Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Current Medicinal Chemistry, 24, 1772–1787. https://doi.org/10.2174/0929867323666161026154111 Galeotti, F., Barile, E., Lanzotti, V., Dolci, M., & Curir, P. (2008). Quantification of Major Flavonoids in Carnation Tissues. Z Naturforsch, 63, 161–168. Gao, H., Ma, K., Ji, G., Pan, L., Wang, Z., Cui, M., & Zhou, Q. (2022). Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. International Journal of Biological Macromolecules, 212, 381–392. https://doi.org/10.1016/j.ijbiomac.2022.05.126 Gao, H., Ma, K., Ji, G., Pan, L., & Zhou, Q. (2022). Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Molecular Plant Pathology, 23(12), 1815–1829. https://doi.org/10.1111/mpp.13264 Goellner, K., & Conrath, U. (2008). Priming: It’s all the world to induced disease resistance. Sustainable Disease Management in a European Context, 121, 233–242. https://doi.org/10.1007/978-1-4020-8780-6_3 Gómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34. González-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028 Goyer, A. (2010). Thiamine in plants : Aspects of its metabolism and functions. Phytochemistry, 71(14–15), 1615–1624. https://doi.org/10.1016/j.phytochem.2010.06.022 Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003 Gullner, G., Komives, T., Király, L., & Schröder, P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science, 871, 1–19. https://doi.org/10.3389/fpls.2018.01836 Hamada, A. M., Fatehi, J., & Jonsson, L. M. V. (2017). Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bulletin of Entomological Research, 108(1), 84–92. https://doi.org/10.1017/S0007485317000529 Hamada, Afaf M, & Jonsson, L. M. V. (2013). Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry, 94, 135–141. https://doi.org/10.1016/j.phytochem.2013.05.012 Higuera, B. L. (2001). Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia. Hirakawa, H. (2020). Draft genome sequence. In T. Onozaki & M. Yagi (Eds.), The carnation genome. Compendium of Plant Genomes (pp. 1–12). Springer Nature. Hönig, M., Roeber, V. M., Schmülling, T., & Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1–21. https://doi.org/10.3389/fpls.2023.1146577 Hosseinii Zarandi, M. M., Yali, M. P., & Ahmadi, K. (2022). Induction of Resistance to Macrosiphum rosae by Foliar Applicatrion of Salicylic Acid and Potassium Sulfate in Rose Plant. International Journal of Horticultural Science and Technology, 9(2), 227–236. https://doi.org/10.22059/ijhst.2021.305196.378 Huang, W. K., Ji, H. L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316 Ibraheem, F., Gaffoor, I., & Chopra, S. (2010). Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics, 184(4), 915–926. https://doi.org/10.1534/genetics.109.111831 International Trade Center. (2022). Lista de los mercados importadores para un producto exportado por Colombia en 2021 Producto : 060312 "Claveles" "flores y capullos" "cortados para ramos o adornos, frescos". Trade Map: Estadísticas Del Comercio Para El Desarrollo Internacional de Las Empresas. https://www.trademap.org Jain, A., Singh, H. B., & Das, S. (2021). Deciphering plant-microbe crosstalk through proteomics studies. Microbiological Research, 242, 126590. https://doi.org/10.1016/j.micres.2020.126590 Jawaharlal, M., Ganga, M., Padmadevi, K., Jegadeeswari, V., & Karthikeyan, S. (2010). A technical guide on carnation. College and Research Institute Tamil Nadu Agricultural University. Ji, H., Peng, Y., Meckes, N., Allen, S., Stewart, C. N., & Traw, M. B. (2014). ATP-dependent binding cassette transporter G family member 16 increases plant tolerance to abscisic acid and assists in basal resistance against Pseudomonas syringae DC3000. Plant Physiology, 166(2), 879–888. https://doi.org/10.1104/pp.114.248153 Jia, X., Qin, H., Bose, S. K., Liu, T., He, J., Xie, S., Ye, M., & Yin, H. (2020). Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. Plant Physiology and Biochemistry, 149, 301–312. https://doi.org/10.1016/j.plaphy.2020.01.037 Jorrín-novo, J. V, Maldonado, A. M., Echevarría-zomeño, S., Valledor, L., Castillejo, M. A., Curto, M., Valero, J., Sghaier, B., Donoso, G., & Redondo, I. (2009). Plant proteomics update ( 2007 – 2008): Second-generation proteomic techniques , an appropriate experimental design , and data analysis to fulfill MIAPE standards , increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72(3), 285–314. https://doi.org/10.1016/j.jprot.2009.01.026 Joshi, S. M., De Britto, S., & Jogaiah, S. (2021). Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. Journal of Biotechnology, 325, 196–206. https://doi.org/10.1016/j.jbiotec.2020.10.023 Kamarudin, A. N., Lai, K. S., Lamasudin, D. U., Idris, A. S., & Balia Yusof, Z. N. (2017). Enhancement of thiamine biosynthesis in oil palm seedlings by colonization of endophytic fungus hendersonia toruloidea. Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.01799 Karmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3 Katam, R., Lin, C., Grant, K., Katam, C. S., & Chen, S. (2022). Advances in Plant Metabolomics and Its Applications in Stress and Single‐Cell Biology. International Journal of Molecular Sciences, 23(13), 1–35. https://doi.org/10.3390/ijms23136985 Kheyri, F., Taheri, P., & Jafarinejad-Farsangi, S. (2022). Thiamine and Piriformospora indica induce bean resistance against Rhizoctonia solani: The role of polyamines in association with iron and reactive oxygen species. Biological Control, 172, 1–13. https://doi.org/10.1016/j.biocontrol.2022.104955 Kim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany, 65(9), 2295–2306. https://doi.org/10.1093/jxb/eru109 Kumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001 Kuźniak, E. (2010). The Ascorbate–Gluathione cycle and related redox signals in plant–pathogen interactions. In N. A. Anjum, S. Umar, & M. T. Chan (Eds.), Ascorbate-Glutathione Pathway and Stress Tolerance in Plants (1st ed., pp. 115–136). Springer Dordrecht. https://doi.org/10.1007/978-90-481-9404-9 Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(735), 1–19. https://doi.org/10.3389/fpls.2016.00735 Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004 Lee, I., Seo, Y., Coltrane, D., Hwang, S., Oh, T., & Marcotte, E. M. (2011). Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences, 108(45), 18548–18553. https://doi.org/10.1073/pnas.1110384108 Lemaître-Guillier, C., Hovasse, A., Schaeffer-Reiss, C., Recorbet, G., Poinssot, B., Trouvelot, S., Daire, X., Adrian, M., & Héloir, M. C. (2017). Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. Journal of Proteomics, 156, 113–125. https://doi.org/10.1016/j.jprot.2017.01.016 Li, Lin, Zhu, X. M., Zhang, Y. R., Cai, Y. Y., Wang, J. Y., Liu, M. Y., Wang, J. Y., Bao, J. D., & Lin, F. C. (2022). Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094658 Li, Linlin, Guo, P., Jin, H., & Li, T. (2016). Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato. Horticultural Plant Journal, 2(3), 154–162. https://doi.org/10.1016/j.hpj.2016.08.004 Li, X., Bai, T., Li, Y., Ruan, X., & Li, H. (2013). Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Science, 11(1), 1–14. https://doi.org/10.1186/1477-5956-11-41 Li, Y., Xiong, W., He, F., Qi, T., Sun, Z., Liu, Y., Bai, S., Wang, H., Wu, Z., & Fu, C. (2022). Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis, and improves cell wall digestibility in switchgrass. Journal of Experimental Botany, 73(12), 4157–4169. https://doi.org/10.1093/jxb/erac147 Lightfoot, D. J., Mcgrann, G., & Able, A. J. (2017). The role of a cytosolic superoxide dismutase in barley–pathogen interactions. Molecular Plant Pathology, 18(3), 323–335. https://doi.org/10.1111/mpp.12399 Lim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., & Wang-Pruski, G. (2013). Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. In Journal of Proteomics (Vol. 93). Elsevier B.V. https://doi.org/10.1016/j.jprot.2013.03.010 Lin, C. H., Pan, Y., Ye, N., Shih, Y., Liu, F. W., & Chen, C. Y. (2020). LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Molecular Plant Pathology, 21(9), 1149–1166. https://doi.org/10.1111/mpp.12968 Liu, B., Stevens-Green, R., Johal, D., Buchanan, R., & GeddeSMcAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. Journal of Plant Physiology, 269, 153593. https://doi.org/10.1016/j.jplph.2021.153593 Liu, Z., Zhang, M., Chen, P., Harnly, J. M., & Sun, J. (2022). Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. Journal of Agricultural and Food Chemistry, 70(36), 11138–11153. https://doi.org/10.1021/acs.jafc.2c01878 Llorens, E., García-Agustín, P., & Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Scientia Agricola, 74(1), 90–100. https://doi.org/10.1590/1678-992x-2016-0012 López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., Conejero, V., & Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8, 1–15. https://doi.org/10.3389/fpls.2017.01188 Lorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005 Lozano-Durán, R., & Robatzek, S. (2015). 14-3-3 Proteins in plant-pathogen interactions. Molecular Plant-Microbe Interactions, 28(5), 511–518. https://doi.org/10.1094/MPMI-10-14-0322-CR MADR, A.-. (2022). Asocolflores y el éxito de la floricultura colombiana en los mercados internacionales. Agronet. https://www.agronet.gov.co/Noticias/Paginas/Asocolflores-y-el-éxito-de-la-floricultura-colombiana-en-loSMercados-internacionales.aspx Maldonado Alconada, M. A., Castillejo, M. Á., Rey, M. D., Labella, M., Tienda Parrilla, M., Hernández Lao, T., Honrubia, I., Ramírez, J., Guerrero, V., López, C., Valledor, L., Navarro, R., & Jorrin Novo, J. V. (2022). Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for and How. International Journal of Molecular Sciences, 23(9980), 1–26. Manghwar, H., & Li, J. (2022). Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. International Journal of Molecular Sciences, 23(2). https://doi.org/10.3390/ijms23020828 Martínez-González, A. P., Coy-barrera, E., & Ardila, H. D. (2022). Extraction and analysis of apoplastic phenolic me- tabolites in carnation roots and stems (Dianthus caryophyllus L). Revista Colombiana de Química, 51(1), 3–13. https://doi.org/https://doi.org/10.15446/rev.colomb.quim.v51n1.99258 Martínez González, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Universidad Nacional de colombia. Matern, U. (1994). Dianthus Species (Carnation): In Vitro Culture and the Biosynthesis of Dianthalexin and Other Secondary Metabolites. In Y. Bajaj (Ed.), Medicinal and Aromatic Plants (pp. 170–184). Springer-Verlag. https://doi.org/10.1007/978-3-662-30369-6_12 Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68, 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132 Mehta, C. M., Palni, U., Franke-Whittle, I. H., & Sharma, A. K. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34(3), 607–622. https://doi.org/10.1016/j.wasman.2013.11.012 Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., Vela-Delgado, M. D., Navas-Becerra, J. A., & Basallote-Ureba, M. J. (2011). Effects of soil amendment with poultry manure on carnation Fusarium wilt in greenhouses in southwest Spain. Crop Protection, 30(8), 970–976. Mhlongo, M. I., Tugizimana, F., Piater, L. A., Steenkamp, P. A., Madala, N. E., & Dubery, I. A. (2017). Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells. Biochemical and Biophysical Research Communications, 482(4), 1498–1503. https://doi.org/10.1016/j.bbrc.2016.12.063 Mhlongo, Msizi I., Steenkamp, P. A., Piater, L. A., Madala, N. E., & Dubery, I. A. (2016). Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Frontiers in Plant Science, 7, 1–16. https://doi.org/10.3389/fpls.2016.01527 Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as Important Molecules of Plant Interactions with the Environment. 16240–16265. https://doi.org/10.3390/molecules191016240 Mohammadi, M. A., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., & Wang-Pruski, G. (2019). Effects of potassium phosphite on biochemical contents and enzymatic activities of chinese potatoes inoculated by phytophthora infestans. Applied Ecology and Environmental Research, 17(2), 4499–4514. Morkunas, I., Formela, M., Floryszak-Wieczorek, J., Marczak, Ł., Narozna, D., Nowak, W., & Bednarski, W. (2013). Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. Plant Science, 211, 102–121. https://doi.org/10.1016/j.plantsci.2013.07.007 Moya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control, 92, 153–163. https://doi.org/10.1016/j.biocontrol.2015.10.006 Naeem Bajwa, M., Bibi, A., Zaeem Idrees, M., Zaman, G., Farooq, U., & Tufail Bhatti, T. (2021). Elicitation, A Mechanistic Approach to Change the Metabolic Pathway of Plants to Produce Pharmacological Important Compounds in In-vitro Cell Cultures. Global Journal of Engineering Sciences, 8(1), 1–7. https://doi.org/10.33552/gjes.2021.08.000678 Nakkeeran, S., Vinodkumar, S., Dheepa, R., & Renukadevi, P. (2018). Diseases of Carnation and their management. In V. Devappa, D. Singh, & S. Jahagirdar (Eds.), Diseases of Ornamental Crops (pp. 99–130). Indian Phytopathological Society. Ngou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34, 1447–1478. https://doi.org/10.1093/plcell/koac041 Niemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054 OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación (Organización Mundial de la salud (ed.)). Orozco-Mosqueda, M. del C., Fadiji, A. E., Babalola, O. O., & Santoyo, G. (2023). Bacterial elicitors of the plant immune system: An overview and the way forward. Plant Stress, 7, 1–8. https://doi.org/10.1016/j.stress.2023.100138 Overbeek, L. van, Leiss, K., Bac-Molenaar, J., Duhamel, M., & Mouden, S. (2022). Plant resilience - role of chemical and microbial elicitors on metabolome and microbiome (Issue WPR-1043). https://doi.org/10.18174/566561 Paraschivu, M., Simnic-craiova, D. S., Timisoara, V. M., Faculty, H., & County, D. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat. Research Journal of Agricultural Science, 45(1), 193–201. Pastor-Fernández, J., Sánchez-Bel, P., Gamir, J., Pastor, V., Sanmartín, N., Cerezo, M., AndréSMoreno, S., & Flors, V. (2022). Tomato Systemin induces resistance against Plectosphaerella cucumerina in Arabidopsis through the induction of phenolic compounds and priming of tryptophan derivatives. Plant Science, 321, 1–12. https://doi.org/10.1016/j.plantsci.2022.111321 Pérez-Mora, W., Jorrin-Novo, J. V., & Melgarejo, L. M. (2018). Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 240. https://doi.org/10.1016/j.foodchem.2017.07.128 Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734 Pérez Mora, W., Castillejo, M. Á., Jorrín Novo, J., Melgarejo, L. M., & Ardila, H. D. (2024). Thiamine-induced resistance in carnation against Fusarium oxysporum f. sp dianthi and mode of action studies based on the proteomics analysis of root tissue. Scientia Horticulturae, 323, 112549. https://doi.org/10.1016/j.scienta.2023.112549 Pinto, K. M. S., Cordeiro, L., de Souza Gomes, H., da Silva, H. F., & Miranda, J. dos reis. (2012). Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola : epidemiological , biochemical and economic aspects. European Journal of Plant Pathology, 134, 745–754. https://doi.org/10.1007/s10658-012-0050-1 Pizano de M, M. (2000). Clavel (Dianthus caryophyllus L) (E. Hortitecnia (ed.)). Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(395), 1–11. https://doi.org/10.1186/1471-2105-11-395 Poli, A., Bertetti, D., Rapetti, S., Gullino, M. L., & Garibaldi, A. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 95(2), 255–263. Poór, P., Czékus, Z., Tari, I., & Ördög, A. (2019). The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20235842 Porter, K., Shimono, M., Tian, M., & Day, B. (2012). Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLoS Pathogens, 8(11), e1003006. https://doi.org/10.1371/journal.ppat.1003006 Pushpalatha, H. G., Sudisha, J., Geetha, N. P., Amruthesh, K. N., & Shetty, H. S. (2011). Thiamine seed treatment enhances LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biologia Plantarum, 55(3), 522–527. https://doi.org/10.1007/s10535-011-0118-3 Ramagli, L. S., & Rodriguez, L. V. (1985). Quantitation of microgram amounts of protein in two‐dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6(11), 559–563. https://doi.org/10.1002/elps.1150061109 Ramaroson, M. L., Koutouan, C., Helesbeux, J. J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. (2022). Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules, 27(8371), 1–24. https://doi.org/10.3390/molecules27238371 Ramos, O., Smith, M., Fritz, A. K., & Madl, R. L. (2017). Salicylic Acid-Mediated Synthetic Elicitors of Systemic Acquired Resistance Administered to Wheat Plants at Jointing Stage Induced Phenolics in Mature Grains. Crop Science, 3128, 3122–3128. https://doi.org/10.2135/cropsci2015.11.0697 Riaz, T., Khan, S. N., & Javaid, A. (2009). Effect of co-cultivation and crop rotation on corm rot disease of Gladiolus. Scientia Horticulturae, 121(2), 218–222. https://doi.org/10.1016/j.scienta.2009.01.041 Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 1–12. https://doi.org/10.3389/fpls.2014.00017 Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez Martínez, P., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003 Romero-Cuervo, W. A., Pinzon-Sandoval, E. H., & Luis-Ayala, M. A. (2021). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas, 39(1), 7–15. https://doi.org/10.22267/rcia.223901.167 Romero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192, 112933. https://doi.org/10.1016/j.phytochem.2021.112933 Romero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia. Sadeghi, B., Mirzaei, S., & Fatehi, F. (2022). The proteomic analysis of the resistance responses in tomato during interaction with Alternaria alternate. Scientia Horticulturae, 304, 111295. https://doi.org/10.1016/j.scienta.2022.111295 Saikia, R., Yadav, M., Varghese, S., Singh, B. P., Gogoi, D. K., Kumar, R., & Arora, D. K. (2006). Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathology Journal, 22(4), 339–347. https://doi.org/10.5423/PPJ.2006.22.4.339 Sanabria, K., Pérez, W., & Andrade, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 1–7. https://doi.org/10.1016/j.cropro.2020.105241 Sant, D., Casanova, E., Segarra, G., Avilés, M., Reis, M., & Trillas, M. I. (2010). Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biological Control, 53(3), 291–296. https://doi.org/10.1016/j.biocontrol.2010.01.012 Santos-Rodríguez, J., Coy, E., & Ardila, H. D. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10(1447), 1–20. https://doi.org/10.3390/plants10071447 Sathiyabama, M., Gandhi, M., & Indhumathi, M. (2022). Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microbial Pathogenesis, 173(PB), 105893. https://doi.org/10.1016/j.micpath.2022.105893 Sathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/j.ijbiomac.2021.12.105 Sathiyabama, Muthukrishnan, Indhumathi, M., & Muthukumar, S. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/10.1016/j.carbpol.2019.02.037 Schwachtje, J., Fischer, A., Erban, A., & Kopka, J. (2018). Primed primary metabolism in systemic leaves: A functional systems analysis. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18397-5 Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105 Shen, S., Zhan, C., Yang, C., Fernie, A. R., & Luo, J. (2023). Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant, 16(1), 43–63. https://doi.org/10.1016/j.molp.2022.09.007 Singh, K. S., van der Hooft, J. J. J., van Wees, S. C. M., & Medema, M. H. (2022). Integrative omics approaches for biosynthetic pathway discovery in plants. Natural Product Reports, 39(9), 1876–1896. https://doi.org/10.1039/d2np00032f Singh, P., Singh, J., Ray, S., Rajput, R. S., Vaishnav, A., Singh, R. K., & Singh, H. B. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 1–13. https://doi.org/10.1016/j.micres.2020.126482 Soto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 30(2), 172–178. http://redalyc.org/articulo.oa?id=180325300002 Soto-sedano, J., & Filgueira-Duarte, J. J. (2012). Evaluation or the reproduction proficiency of carnation (Dianthus caryophyllus L.) hybrids and varieties as search of useful parentals for a breeding program. Revista Facultad de Ciencias Básicas, 8(2), 184–195. Soto, C. J., Pabón, F., & Filgueria, J. (2009). Relación Entre El Color De La Flor Y La Tolerancia a Patógenos. Revista Facultad de Ciencias Básicas, 5(1), 116–129. Sukarta, O. C. A., Zheng, Q., Slootweg, E. J., Mekken, M., Mendel, M., Putker, V., Bertran, A., Brand, A., Overmars, H., Pomp, R., Roosien, J., Boeren, S., Smant, G., & Goverse, A. (2022). Glycine-rich rna-binding protein 7 potentiates effector-triggered immunity through an RNA recognition motif. Plant Physiology, 189(2), 972–987. https://doi.org/10.1093/plphys/kiac081 Suprakash Ojha, N. C. C. (2012). Induction of Resistance in Tomato Plants Against Through Salicylic Acid and Trichoderma Harzianum. Journal of Plant Protection Research, 52(2), 220–225. https://doi.org/10.2478/v10045-012-0034-3 Szklarczyk, D., Gable, A., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), 607–613, doi.org/10.1093/nar/gky1131 Ton, J., Van Der Ent, S., Van Hulten, M., Pozo, M., Van Oosten, V., van Loon, L., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC Wprs Bull, 44, 3–13. Torky, Z. A. (2016). Vitamin B Mediated Priming of Disease Resistance and Defense Responses to Tobacco Mosaic Virus in Capsicum annuum L. Plants. Journal of Antivirals & Antiretrovirals, 8(2), 35–53. https://doi.org/10.4172/jaa.1000133 Tripathi, D., Raikhy, G., & Kumar, D. (2019). Chemical elicitors of systemic acquired resistance - Salicylic acid and its functional analogs. Current Plant Biology, 17, 48–59. https://doi.org/10.1016/j.cpb.2019.03.002 Tugizimana, F., Mhlongo, M., Piater, L., & Dubery, I. A. (2018). Metabolomics in plant priming research: The way forward? International Journal of Molecular Sciences, 19(6), 1–18. https://doi.org/10.3390/ijms19061759 Tunc-ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress, Plant Physiology 151 (1), 421–432. https://doi.org/10.1104/pp.109.140046 Valledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 347–358). Humana Press - Springer Protocols. https://doi.org/10.7551/mitpress/1247.003.0039 Vanegas-Cano, L. J., Martínez-Peralta, S. T., Coy-Barrera, E., & Ardila-Barrantes, H. D. (2022). Plant hormones accumulation and its relationship with symplastic peroxidases expression during carnation-Fusarium oxysporum interaction. Ornamental Horticulture, 28(1), 49–59. https://doi.org/10.1590/2447-536X.V28I1.2412 Verchot, J., & Pajerowska, K. M. (2021). UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Current Opinion in Virology, 47, 9–17. https://doi.org/10.1016/j.coviro.2020.11.001 Vimala, R., & Suriachandraselvan, M. (2009). Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2(1), 111–114. Vinchesi, A. C., Rondon, S., & Goyer, A. (2017). Priming Potato with Thiamin to Control Potato Virus Y. American Journal of Potato Research, 94, 120–128. https://doi.org/10.1007/s12230-016-9552-2 Wang, J., Lian, N., Zhang, Y., Man, Y., Chen, L., Yang, H., Lin, J., & Jing, Y. (2022). The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. International Journal of Molecular Sciences, 23(24). https://doi.org/10.3390/ijms232415553 Wang, Lanxiang, Chen, M., Lam, P. Y., Dini-Andreote, F., Dai, L., & Wei, Z. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 10(1), 1–13. https://doi.org/10.1186/s40168-022-01420-x Wang, Lanxiang, Lui, A. C. W., Lam, P. Y., Liu, G., Godwin, I. D., & Lo, C. (2020). Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal, 18(11), 2170–2172. https://doi.org/10.1111/pbi.13397 Wang, Long, Wang, L., Yang, T., Wang, B., Lin, Q., Zhu, S., Li, C., Ma, Y., Tang, J., Xing, J., Li, X., Liao, H., Staiger, D., Hu, Z., Yu, F., & Yu, F. (2020). RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances, 6(21), 1–14. https://doi.org/10.1126/sciadv.aaz1622 Wang, Y., Wei, X., Jing, X., Chang, Y., Hu, C., Wang, X., & Chen, K. (2016). The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. International Journal of Molecular Sciences, 17, 2–18. https://doi.org/10.3390/ijms17060805 Wang, Z., Song, Q., Shuai, L., Htun, R., Malviya, M. K., Li, Y., Liang, Q., Zhang, G., Zhang, M., & Zhou, F. (2020). Metabolic and proteomic analysis of nitrogen metabolism mechanisms involved in the sugarcane – Fusarium verticillioides interaction. Journal of Plant Physiology, 251, 153207. https://doi.org/10.1016/j.jplph.2020.153207 Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5, 1–13. https://doi.org/10.3389/fpls.2014.00655 Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. . McGovern & W. H. Elmer (Eds.), Handbook of Plant Disease Management (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319-39670-5_14 Xie, X., Han, Y., Yuan, X., Zhang, M., Li, P., Ding, A., Wang, J., Cheng, T., & Zhang, Q. (2022). Transcriptome Analysis Reveals that Exogenous Melatonin Confers Lilium Disease Resistance to Botrytis elliptica. Frontiers in Genetics, 13, 1–12. https://doi.org/10.3389/fgene.2022.892674 Yáñez-Juárez, M. G., López-Orona, C. A., Ayala-Tafoya, F., Partida Ruvalcaba, L., Velázquez-Alcaraz, T. de J., & Medina-López, R. (2018). Phosphites as alternative for the management of phytopathological problems Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Revista Mexicana de Fitopatología, 79–94. https://doi.org/10.18781/R.MEX.FIT.1710-7 Yang, F., Wu, C., Zhu, G., Yang, Q., Wang, K., & Li, Y. (2022). An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics, 114(6), 110516. https://doi.org/10.1016/j.ygeno.2022.110516 Yang, Q., Li, J., Sun, J., & Cui, X. (2022). Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology, 119, 101814. https://doi.org/10.1016/j.pmpp.2022.101814 Yin, Y., Bi, Y., Li, Y., Wang, Y., & Wang, D. (2012). Use of thiamine for controlling Alternaria alternata postharvest rot in Asian pear (Pyrus bretschneideri Rehd. cv. Zaosu). International Journal of Food Science and Technology, 47(10), 2190–2197. https://doi.org/10.1111/j.1365-2621.2012.03088.x Yong-hong, G. E., Can-ying, L. I., Jing-yi, L., & Dan-shi, Z. (2017). Effects of thiamine on Trichothecium and Alternaria rots of muskmelon fruit and the possible mechanisms involved. Journal of Integrative Agriculture, 16(11), 2623–2631. https://doi.org/10.1016/S2095-3119(16)61584-8 Zhang, X., Yang, Z., Wu, D., & Yu, F. (2020). RALF–FERONIA Signaling: Linking Plant Immune response with cell growth. Plant Communications, 1(4), 100084. https://doi.org/10.1016/j.xplc.2020.100084 Zhao, J. (2015). Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science, 20(9), 576–585. https://doi.org/10.1016/j.tplants.2015.06.007 Zhao, M., Jin, J., Gao, T., Zhang, N., Jing, T., Wang, J., Ban, Q., Schwab, W., & Song, C. (2019). Glucosyltransferase CsUGT78A14 Regulates Flavonols Accumulation and Reactive Oxygen Species Scavenging in Response to Cold Stress in Camellia sinensis. Frontiers in Plant Science, 10, 1–14. https://doi.org/10.3389/fpls.2019.01675 Zheng, X., Gong, M., Zhang, Q., Tan, H., Li, L., Tang, Y., Li, Z., Peng, M., & Deng, W. (2022). Metabolism and Regulation of Ascorbic Acid in Fruits. Plants, 11(12), 1–18. https://doi.org/10.3390/plants11121602 Zhou, J., Sun, A., & Xing, D. (2013). Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany, 64(11), 3261–3272. https://doi.org/10.1093/jxb/ert166 Zhou, Y., Lambrides, C. J., & Fukai, S. (2013). Drought resistance of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. Environmental and Experimental Botany, 85, 22–29. https://doi.org/10.1016/j.envexpbot.2012.07.008 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 179 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85369/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85369/2/1013576890.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85369/3/1013576890.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 4bd3e0de15d4c2c7b216e4eaf731ab0c 61813c339023693aac418a0750808601 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090163771408384 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melgarejo Muñoz, Luz Marinac13b62e709cbe2df09a40b59645414d3Ardila Barrantes, Harold Duban3c0b4dc91cdf02792559faddcd37e2b3Pérez Mora, Walter Hernando5fe7de3b492010d6563eb85a847f1d3fFisiología del Estrés y Biodiversidad en Plantas y MicroorganismosEstudio de Actividades Metabólicas VegetalesPérez Mora, Walter Hernando [0000000272901874]Pérez Mora, Walter Hernando [0001375535]Pérez Mora, Walter Hernando [https://www.researchgate.net/profile/Walter-Perez-Mora]Pérez Mora, Walter Hernando [https://scholar.google.com/citations?user=hKtonb0AAAAJ&hl=es]2024-01-18T20:05:54Z2024-01-18T20:05:54Z2023https://repositorio.unal.edu.co/handle/unal/85369ilustraciones, diagramasLa floricultura es un sector económico de interés en Colombia, siendo el clavel uno de los productos destacados. No obstante, el clavel se ve afectado por enfermedades como el marchitamiento vascular causado por Fusarium oxysporum f.sp. dianthi (Fod), el cual es el factor de mayor impacto en la producción. Ante esta problemática, se están explorando distintas estrategias para el control de esta enfermedad, como es el caso de la potencialización de la respuesta de defensa innata mediante el uso de inductores de resistencia. En el presente estudio se evaluó el efecto que tienen moléculas inductoras en el patosistema y se seleccionó la tiamina aplicada por aspersión foliar en concentración 1mmol L-1 como potencial inductor de resistencia para el control del patógeno en el clavel. Posteriormente, se estudiaron los cambios bioquímicos causados por la tiamina en la planta a nivel de proteínas y metabolitos, usando herramientas de la proteómica y la metabólomica. La aplicación de tiamina promueve la acumulación de proteínas de diversos procesos bioquímicos en la raíz, que han sido previamente vinculados a la defensa vegetal. Además, también promueve la acumulación de metabolitos de tipo flavonoide y derivados del antranilato, que han sido relacionados a cultivares de clavel resistentes a Fod. Los resultados obtenidos sugieren que los tratamientos con tiamina permiten la activación de mecanismos de defensa que protegen a la planta frente al patógeno. Estos resultados aumentan el conocimiento sobre el uso de tiamina como agente bioestimulante en plantas y permiten proponer los principales mecanismos bioquímicos asociados a su modo de acción. (Texto tomado de la fuente)Floriculture holds significant economic importance in Colombia, with carnation among the prominent products. Unfortunately, carnations are highly susceptible to diseases, with vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) being a major production-limiting factor. Various strategies are being explored to address this issue, including enhancing the innate defense response using resistance inducers. In this study, we investigated the effect of inducing molecules on the pathosystem and specifically evaluated thiamine as a potential resistance inducer for controlling the Fod pathogen incarnation. Thiamine was applied through foliar spraying at a concentration of 1mmol L-1. Subsequently, we delved into the biochemical changes induced by thiamine in the plants at the protein and metabolite levels, employing proteomic and metabolomic tools. Remarkably, thiamine application promoted the accumulation of proteins involved in diverse biochemical processes in the roots, which have been previously linked to plant defense mechanisms. Additionally, it stimulated the accumulation of flavonoid-type metabolites and anthranilate derivatives, known to be associated with Fod-resistant carnation cultivars. These results suggest that thiamine treatments activate defense mechanisms safeguarding plants against this pathogen. By shedding light on using thiamine as a biostimulant agent in plants, our findings contribute to a better understanding of its mode of action. This knowledge allows us to propose the primary biochemical mechanisms associated with thiamine effectiveness in bolstering plant resistance. Overall, our study opens new possibilities for disease control in carnation and advances our comprehension of how thiamine can be harnessed as a valuable tool in promoting plant defense strategies.DoctoradoDoctor en Ciencias - QuímicaBioquímica de las interacciones hospedero-patógenoxxi, 179 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines570 - Biología::572 - Bioquímica630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesFloriculturaProtección de las plantasVitamina B1FloriculturePlants, protection ofVitamin B1ClavelInductor de resistenciaSensibilizacióninmunidad innata en plantasTiaminaResistance inductorsCarnationPlant innate immunityPrimingResistance inductorsThiamineAproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthiMetabolomics and proteomics-based approach for studying mechanisms associated with resistance induction through the use of commercial inducing substances in carnation (Dianthus caryophyllus L) for the control of vascular wilt caused by Fusarium oxysporum f. sp. dianthiTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/ajb.v2i4.14830Abdel Monaim, M. F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10(53), 10842–10855. https://doi.org/10.5897/ajb11.253Abdul Hasseb, H., Zhang, J., Guo, Y. shuang, Gao, M. xu, & Guo, W. (2022). Proteomic analysis of pathogen-responsive proteins from maize stem apoplast triggered by Fusarium verticillioides. Journal of Integrative Agriculture, 21(2), 446–459. https://doi.org/10.1016/S2095-3119(21)63657-2Ahmad, M. Z., Li, P., Wang, J., Rehman, N. U., & Zhao, J. (2017). Isoflavone malonyltransferases GmiMaT1 and GmiMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Frontiers in Plant Science, 8, 1–17. https://doi.org/10.3389/fpls.2017.00735Ahmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 3(3), 24–34.Ahn, I., Kim, S., & Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138, 1505–1515. https://doi.org/10.1104/pp.104.058693.cytosolicAhn, I., Kim, S., Lee, Y. H., & Suh, S. C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in arabidopsis. Plant Physiology, 143, 838–848. https://doi.org/10.1104/pp.106.092627Akram, W., Anjum, T., & Ali, B. (2016). Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Frontiers in Plant Science, 7, 1–12. https://doi.org/10.3389/fpls.2016.00498Aleandri, M. P., Reda, R., Tagliavento, V., Magro, P., & Chilosi, G. (2010). Effect of chemical resistance inducers on the control of Monosporascus root rot and vine decline of melon. Phytopathologia Mediterranea, 49(1), 18–26. https://doi.org/10.14601/phytopathol_mediterr-3117Alexandersson, E., Mulugeta, T., Lankinen, Å., & Liljeroth, E. (2016). Plant Resistance Inducers against Pathogens in Solanaceae Species — From Molecular Mechanisms to Field Application. International Journal of Molecular Sciences, 17(10), 1673. https://doi.org/10.3390/ijms17101673Anup, C. P., Melvin, P., Shilpa, N., Gandhi, M. N., Jadhav, M., Ali, H., & Kini, K. R. (2015). Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. Journal of Proteomics, 120, 58–74. https://doi.org/10.1016/j.jprot.2015.02.013Arbelaez G. y Calderon O.L. (1991). Determinacion de las razas fisiologicas de Fusarium oxysporum. Agronomía Colombiana, 8(2), 243–247.Ardila, Harold Duban, Baquero, B., & Martínez, S. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.Ardila, Harold Duban, & Higuera, B. L. (2005). Induccion diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infeccion por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biologica Colombiana, 10(2), 61–74.Ardila, Harold Duban, Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35, 1233–1245. https://doi.org/10.1007/s11738-012-1162-0Ardila, Harold Duban, Raquel, G. F., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein extraction and gel-based separation methods to analyze responses to pathogens in carnation (Dianthus caryophyllus L). In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 573–591). Humana Press - Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39Ardila, Harold Duban, Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003Ardila, Harold Duban. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.Asensi-Fabado, M., & Munné-Bosch, S. (2010). Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15(10), 582–592. https://doi.org/10.1016/j.tplants.2010.07.003Baayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.xBahuguna, R. N., Joshi, R., Shukla, A., Pandey, M., & Kumar, J. (2012). Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 57, 159–167. https://doi.org/10.1016/j.plaphy.2012.05.003Banasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kȩpczyńska, E., Figlerowicz, M., & Jasiński, M. (2013). A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. Journal of Experimental Botany, 64(4), 1005–1015. https://doi.org/10.1093/jxb/ers380Basallote-Ureba, M. J., Vela-Delgado, M. D., Capote, N., Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., & Talavera-Rubia, M. F. (2016). Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Protection, 89, 184–192. https://doi.org/10.1016/j.cropro.2016.07.013Behr, M., Neutelings, G., El Jaziri, M., & Baucher, M. (2020). You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.571399Bertini, L., Palazzi, L., Proietti, S., Pollastri, S., Arrigoni, G., de Laureto, P. P., & Caruso, C. (2019). Proteomic analysis of MeJa-induced defense responses in rice against wounding. International Journal of Molecular Sciences, 20(2025), 1–24. https://doi.org/10.3390/ijms20102525Bheri, M., M. Bhosle, S., & Makandar, R. (2019). Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiological Research, 222, 25–34. https://doi.org/10.1016/j.micres.2019.02.006Boubakri, H. (2017). The Role of Ascorbic Acid in Plant – Pathogen Interactions The Role of Ascorbic Acid in Plant – Pathogen Interactions. In Hossain, M, S. Munné-Bosch, D. Burritt, P. Diaz-Vivancos, M. Fujita, & A. Lorence (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance (Issue January, pp. 255–271). Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7Boubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds : Possible mechanisms. In M. A. Hossain, F. Liu, D. J. Burritt, M. Fujita, & B. Huang (Eds.), Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Academic Press Elsevier Inc. https://doi.org/10.1016/B978-0-12-817892-8.00005-2Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0Boubakri, H., Poutaraud, A., Wahab, M. A., Clayeux, C., Baltenweck-guyot, R., Steyer, D., Marcic, C., Mliki, A., & Soustre-gacougnolle, I. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13(1), 1. https://doi.org/10.1186/1471-2229-13-31Boubakri, H., Wahab, M., Chong, J., Bertsch, C., Mliki, A., & Soustre, I. (2012). Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiology and Biochemistry, 57, 120–133. https://doi.org/10.1016/j.plaphy.2012.05.016Camoni, L., Visconti, S., Aducci, P., & Marra, M. (2018). 14-3-3 proteins in plant hormone signaling: Doing several things at once. Frontiers in Plant Science, 9, 1–8. https://doi.org/10.3389/fpls.2018.00297Carvalho, H. H., Silva, P. A., Mendes, G. C., Brustolini, O. J. B., Pimenta, M. R., Gouveia, B. C., Valente, M. A. S., Ramos, H. J. O., Soares-Ramos, J. R. L., & Fontes, E. P. B. (2014). The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiology, 164(2), 654–670. https://doi.org/10.1104/pp.113.231928Castillejo, María Ángeles, Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1210/endo-22-1-92Castillejo, Mariá Ángeles, Fondevilla, S., Fuentes, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance against Ascochyta Blight (Peyronellaea pinodes) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365Chandrasekhar, B., Umesha, S., & Naveen Kumar, H. N. (2017). Proteomic analysis of salicylic acid enhanced disease resistance in bacterial wilt affected chilli (Capsicum annuum) crop. Physiological and Molecular Plant Pathology, 98, 85–96. https://doi.org/10.1016/j.pmpp.2017.04.002Chiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169Clematis, F., Tedeschini, J., Dolci, M., Lanzotti, V., & Cangelosi, B. (2011). Phenol Composition and Susceptibility to Fusarium oxysporum Dianthi in Carnation. Journal of Life Sciences, 5, 921–925.Cuervo, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.Cuervo, D., Martinez, S., Ardila, H., & Higuera, B. (2009). Differential Induction of Peroxidase Enzyme and Its relationship with lignification in carnation defense (dianthus caryophyllus l.) mechanism against Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Quimica, 38(3), 379–393.Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achon, M. Á., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11. https://doi.org/10.1016/j.pmpp.2015.11.003Curir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672Curir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-XDarwesh, Y., Nour El-deen, A., & Fayad Eman, M. (2015). In-Vitro Investigation for Improving Secondary Metabolites in Origanum Vulgare Plants Using Tissue Culture Technique at Taif Governorate, KSA. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1117), 1117–1122.de Borba, M., Velho, A., Maia-Grondard, A., Baltenweck, R., Magnin, M., Randoux, B., Holvoet, M., Hilbert, J., Flahaut, C., Reignault, P., Hugueney, P., Stadnik, M., & Siah, A. (2021). The Algal Polysaccharide Ulvan Induces Resistance in Wheat Against Zymoseptoria tritici Without Major Alteration of Leaf Metabolome. Frontiers in Plant Science, 12, 703712. https://doi.org/10.3389/fpls.2021.703712Dehestani, M., Gholamnezhad, J., Alizadeh, S., Meftahizadeh, H., & Ghorbanpour, M. (2022). Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flower. South African Journal of Botany, 150, 1192–1204. https://doi.org/10.1016/j.sajb.2022.09.028Devi, B., Singh, G., Dash, A. K., & Gupta, S. K. (2020). Chemically induced systemic acquired resistance in the inhibition of French bean rust. Current Plant Biology, 23, 1–10. https://doi.org/10.1016/j.cpb.2020.100151Días Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 257–267.Dong, W., Stockwell, V. O., & Goyer, A. (2015). Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering. Plant & Cell Physiology, 56(12), 2285–2296. https://doi.org/10.1093/pcp/pcv148El Kasmi, F., Chung, E. H., Anderson, R. G., Li, J., Wan, L., Eitas, T. K., Gao, Z., & Dangl, J. L. (2017). Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 114(35), E7385–E7394. https://doi.org/10.1073/pnas.1708288114Fernandes, L. B., & Ghag, S. B. (2022). Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. Plant Physiology and Biochemistry, 174(January), 22–34. https://doi.org/10.1016/j.plaphy.2022.01.032Fernández-Cabanás, V. M., Borrero, C., Cozzolino, D., & Avilés, M. (2022). Feasibility of near infrared spectroscopy for estimating suppressiveness of carnation (Dianthus cariophyllus L.) fusarium wilt in different plant growth media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 280, 1–5. https://doi.org/10.1016/j.saa.2022.121528Finkina, E. I., Melnikova, D. N., Bogdanov, I. V., & Ovchinnikova, T. V. (2017). Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Current Medicinal Chemistry, 24, 1772–1787. https://doi.org/10.2174/0929867323666161026154111Galeotti, F., Barile, E., Lanzotti, V., Dolci, M., & Curir, P. (2008). Quantification of Major Flavonoids in Carnation Tissues. Z Naturforsch, 63, 161–168.Gao, H., Ma, K., Ji, G., Pan, L., Wang, Z., Cui, M., & Zhou, Q. (2022). Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. International Journal of Biological Macromolecules, 212, 381–392. https://doi.org/10.1016/j.ijbiomac.2022.05.126Gao, H., Ma, K., Ji, G., Pan, L., & Zhou, Q. (2022). Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Molecular Plant Pathology, 23(12), 1815–1829. https://doi.org/10.1111/mpp.13264Goellner, K., & Conrath, U. (2008). Priming: It’s all the world to induced disease resistance. Sustainable Disease Management in a European Context, 121, 233–242. https://doi.org/10.1007/978-1-4020-8780-6_3Gómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34.González-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028Goyer, A. (2010). Thiamine in plants : Aspects of its metabolism and functions. Phytochemistry, 71(14–15), 1615–1624. https://doi.org/10.1016/j.phytochem.2010.06.022Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003Gullner, G., Komives, T., Király, L., & Schröder, P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science, 871, 1–19. https://doi.org/10.3389/fpls.2018.01836Hamada, A. M., Fatehi, J., & Jonsson, L. M. V. (2017). Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bulletin of Entomological Research, 108(1), 84–92. https://doi.org/10.1017/S0007485317000529Hamada, Afaf M, & Jonsson, L. M. V. (2013). Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry, 94, 135–141. https://doi.org/10.1016/j.phytochem.2013.05.012Higuera, B. L. (2001). Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.Hirakawa, H. (2020). Draft genome sequence. In T. Onozaki & M. Yagi (Eds.), The carnation genome. Compendium of Plant Genomes (pp. 1–12). Springer Nature.Hönig, M., Roeber, V. M., Schmülling, T., & Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1–21. https://doi.org/10.3389/fpls.2023.1146577Hosseinii Zarandi, M. M., Yali, M. P., & Ahmadi, K. (2022). Induction of Resistance to Macrosiphum rosae by Foliar Applicatrion of Salicylic Acid and Potassium Sulfate in Rose Plant. International Journal of Horticultural Science and Technology, 9(2), 227–236. https://doi.org/10.22059/ijhst.2021.305196.378Huang, W. K., Ji, H. L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316Ibraheem, F., Gaffoor, I., & Chopra, S. (2010). Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics, 184(4), 915–926. https://doi.org/10.1534/genetics.109.111831International Trade Center. (2022). Lista de los mercados importadores para un producto exportado por Colombia en 2021 Producto : 060312 "Claveles" "flores y capullos" "cortados para ramos o adornos, frescos". Trade Map: Estadísticas Del Comercio Para El Desarrollo Internacional de Las Empresas. https://www.trademap.orgJain, A., Singh, H. B., & Das, S. (2021). Deciphering plant-microbe crosstalk through proteomics studies. Microbiological Research, 242, 126590. https://doi.org/10.1016/j.micres.2020.126590Jawaharlal, M., Ganga, M., Padmadevi, K., Jegadeeswari, V., & Karthikeyan, S. (2010). A technical guide on carnation. College and Research Institute Tamil Nadu Agricultural University.Ji, H., Peng, Y., Meckes, N., Allen, S., Stewart, C. N., & Traw, M. B. (2014). ATP-dependent binding cassette transporter G family member 16 increases plant tolerance to abscisic acid and assists in basal resistance against Pseudomonas syringae DC3000. Plant Physiology, 166(2), 879–888. https://doi.org/10.1104/pp.114.248153Jia, X., Qin, H., Bose, S. K., Liu, T., He, J., Xie, S., Ye, M., & Yin, H. (2020). Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. Plant Physiology and Biochemistry, 149, 301–312. https://doi.org/10.1016/j.plaphy.2020.01.037Jorrín-novo, J. V, Maldonado, A. M., Echevarría-zomeño, S., Valledor, L., Castillejo, M. A., Curto, M., Valero, J., Sghaier, B., Donoso, G., & Redondo, I. (2009). Plant proteomics update ( 2007 – 2008): Second-generation proteomic techniques , an appropriate experimental design , and data analysis to fulfill MIAPE standards , increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72(3), 285–314. https://doi.org/10.1016/j.jprot.2009.01.026Joshi, S. M., De Britto, S., & Jogaiah, S. (2021). Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. Journal of Biotechnology, 325, 196–206. https://doi.org/10.1016/j.jbiotec.2020.10.023Kamarudin, A. N., Lai, K. S., Lamasudin, D. U., Idris, A. S., & Balia Yusof, Z. N. (2017). Enhancement of thiamine biosynthesis in oil palm seedlings by colonization of endophytic fungus hendersonia toruloidea. Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.01799Karmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3Katam, R., Lin, C., Grant, K., Katam, C. S., & Chen, S. (2022). Advances in Plant Metabolomics and Its Applications in Stress and Single‐Cell Biology. International Journal of Molecular Sciences, 23(13), 1–35. https://doi.org/10.3390/ijms23136985Kheyri, F., Taheri, P., & Jafarinejad-Farsangi, S. (2022). Thiamine and Piriformospora indica induce bean resistance against Rhizoctonia solani: The role of polyamines in association with iron and reactive oxygen species. Biological Control, 172, 1–13. https://doi.org/10.1016/j.biocontrol.2022.104955Kim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany, 65(9), 2295–2306. https://doi.org/10.1093/jxb/eru109Kumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001Kuźniak, E. (2010). The Ascorbate–Gluathione cycle and related redox signals in plant–pathogen interactions. In N. A. Anjum, S. Umar, & M. T. Chan (Eds.), Ascorbate-Glutathione Pathway and Stress Tolerance in Plants (1st ed., pp. 115–136). Springer Dordrecht. https://doi.org/10.1007/978-90-481-9404-9Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(735), 1–19. https://doi.org/10.3389/fpls.2016.00735Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004Lee, I., Seo, Y., Coltrane, D., Hwang, S., Oh, T., & Marcotte, E. M. (2011). Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences, 108(45), 18548–18553. https://doi.org/10.1073/pnas.1110384108Lemaître-Guillier, C., Hovasse, A., Schaeffer-Reiss, C., Recorbet, G., Poinssot, B., Trouvelot, S., Daire, X., Adrian, M., & Héloir, M. C. (2017). Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. Journal of Proteomics, 156, 113–125. https://doi.org/10.1016/j.jprot.2017.01.016Li, Lin, Zhu, X. M., Zhang, Y. R., Cai, Y. Y., Wang, J. Y., Liu, M. Y., Wang, J. Y., Bao, J. D., & Lin, F. C. (2022). Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094658Li, Linlin, Guo, P., Jin, H., & Li, T. (2016). Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato. Horticultural Plant Journal, 2(3), 154–162. https://doi.org/10.1016/j.hpj.2016.08.004Li, X., Bai, T., Li, Y., Ruan, X., & Li, H. (2013). Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Science, 11(1), 1–14. https://doi.org/10.1186/1477-5956-11-41Li, Y., Xiong, W., He, F., Qi, T., Sun, Z., Liu, Y., Bai, S., Wang, H., Wu, Z., & Fu, C. (2022). Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis, and improves cell wall digestibility in switchgrass. Journal of Experimental Botany, 73(12), 4157–4169. https://doi.org/10.1093/jxb/erac147Lightfoot, D. J., Mcgrann, G., & Able, A. J. (2017). The role of a cytosolic superoxide dismutase in barley–pathogen interactions. Molecular Plant Pathology, 18(3), 323–335. https://doi.org/10.1111/mpp.12399Lim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., & Wang-Pruski, G. (2013). Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. In Journal of Proteomics (Vol. 93). Elsevier B.V. https://doi.org/10.1016/j.jprot.2013.03.010Lin, C. H., Pan, Y., Ye, N., Shih, Y., Liu, F. W., & Chen, C. Y. (2020). LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Molecular Plant Pathology, 21(9), 1149–1166. https://doi.org/10.1111/mpp.12968Liu, B., Stevens-Green, R., Johal, D., Buchanan, R., & GeddeSMcAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. Journal of Plant Physiology, 269, 153593. https://doi.org/10.1016/j.jplph.2021.153593Liu, Z., Zhang, M., Chen, P., Harnly, J. M., & Sun, J. (2022). Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. Journal of Agricultural and Food Chemistry, 70(36), 11138–11153. https://doi.org/10.1021/acs.jafc.2c01878Llorens, E., García-Agustín, P., & Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Scientia Agricola, 74(1), 90–100. https://doi.org/10.1590/1678-992x-2016-0012López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., Conejero, V., & Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8, 1–15. https://doi.org/10.3389/fpls.2017.01188Lorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005Lozano-Durán, R., & Robatzek, S. (2015). 14-3-3 Proteins in plant-pathogen interactions. Molecular Plant-Microbe Interactions, 28(5), 511–518. https://doi.org/10.1094/MPMI-10-14-0322-CRMADR, A.-. (2022). Asocolflores y el éxito de la floricultura colombiana en los mercados internacionales. Agronet. https://www.agronet.gov.co/Noticias/Paginas/Asocolflores-y-el-éxito-de-la-floricultura-colombiana-en-loSMercados-internacionales.aspxMaldonado Alconada, M. A., Castillejo, M. Á., Rey, M. D., Labella, M., Tienda Parrilla, M., Hernández Lao, T., Honrubia, I., Ramírez, J., Guerrero, V., López, C., Valledor, L., Navarro, R., & Jorrin Novo, J. V. (2022). Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for and How. International Journal of Molecular Sciences, 23(9980), 1–26.Manghwar, H., & Li, J. (2022). Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. International Journal of Molecular Sciences, 23(2). https://doi.org/10.3390/ijms23020828Martínez-González, A. P., Coy-barrera, E., & Ardila, H. D. (2022). Extraction and analysis of apoplastic phenolic me- tabolites in carnation roots and stems (Dianthus caryophyllus L). Revista Colombiana de Química, 51(1), 3–13. https://doi.org/https://doi.org/10.15446/rev.colomb.quim.v51n1.99258Martínez González, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Universidad Nacional de colombia.Matern, U. (1994). Dianthus Species (Carnation): In Vitro Culture and the Biosynthesis of Dianthalexin and Other Secondary Metabolites. In Y. Bajaj (Ed.), Medicinal and Aromatic Plants (pp. 170–184). Springer-Verlag. https://doi.org/10.1007/978-3-662-30369-6_12Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68, 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132Mehta, C. M., Palni, U., Franke-Whittle, I. H., & Sharma, A. K. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34(3), 607–622. https://doi.org/10.1016/j.wasman.2013.11.012Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., Vela-Delgado, M. D., Navas-Becerra, J. A., & Basallote-Ureba, M. J. (2011). Effects of soil amendment with poultry manure on carnation Fusarium wilt in greenhouses in southwest Spain. Crop Protection, 30(8), 970–976.Mhlongo, M. I., Tugizimana, F., Piater, L. A., Steenkamp, P. A., Madala, N. E., & Dubery, I. A. (2017). Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells. Biochemical and Biophysical Research Communications, 482(4), 1498–1503. https://doi.org/10.1016/j.bbrc.2016.12.063Mhlongo, Msizi I., Steenkamp, P. A., Piater, L. A., Madala, N. E., & Dubery, I. A. (2016). Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Frontiers in Plant Science, 7, 1–16. https://doi.org/10.3389/fpls.2016.01527Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as Important Molecules of Plant Interactions with the Environment. 16240–16265. https://doi.org/10.3390/molecules191016240Mohammadi, M. A., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., & Wang-Pruski, G. (2019). Effects of potassium phosphite on biochemical contents and enzymatic activities of chinese potatoes inoculated by phytophthora infestans. Applied Ecology and Environmental Research, 17(2), 4499–4514.Morkunas, I., Formela, M., Floryszak-Wieczorek, J., Marczak, Ł., Narozna, D., Nowak, W., & Bednarski, W. (2013). Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. Plant Science, 211, 102–121. https://doi.org/10.1016/j.plantsci.2013.07.007Moya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control, 92, 153–163. https://doi.org/10.1016/j.biocontrol.2015.10.006Naeem Bajwa, M., Bibi, A., Zaeem Idrees, M., Zaman, G., Farooq, U., & Tufail Bhatti, T. (2021). Elicitation, A Mechanistic Approach to Change the Metabolic Pathway of Plants to Produce Pharmacological Important Compounds in In-vitro Cell Cultures. Global Journal of Engineering Sciences, 8(1), 1–7. https://doi.org/10.33552/gjes.2021.08.000678Nakkeeran, S., Vinodkumar, S., Dheepa, R., & Renukadevi, P. (2018). Diseases of Carnation and their management. In V. Devappa, D. Singh, & S. Jahagirdar (Eds.), Diseases of Ornamental Crops (pp. 99–130). Indian Phytopathological Society.Ngou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34, 1447–1478. https://doi.org/10.1093/plcell/koac041Niemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación (Organización Mundial de la salud (ed.)).Orozco-Mosqueda, M. del C., Fadiji, A. E., Babalola, O. O., & Santoyo, G. (2023). Bacterial elicitors of the plant immune system: An overview and the way forward. Plant Stress, 7, 1–8. https://doi.org/10.1016/j.stress.2023.100138Overbeek, L. van, Leiss, K., Bac-Molenaar, J., Duhamel, M., & Mouden, S. (2022). Plant resilience - role of chemical and microbial elicitors on metabolome and microbiome (Issue WPR-1043). https://doi.org/10.18174/566561Paraschivu, M., Simnic-craiova, D. S., Timisoara, V. M., Faculty, H., & County, D. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat. Research Journal of Agricultural Science, 45(1), 193–201.Pastor-Fernández, J., Sánchez-Bel, P., Gamir, J., Pastor, V., Sanmartín, N., Cerezo, M., AndréSMoreno, S., & Flors, V. (2022). Tomato Systemin induces resistance against Plectosphaerella cucumerina in Arabidopsis through the induction of phenolic compounds and priming of tryptophan derivatives. Plant Science, 321, 1–12. https://doi.org/10.1016/j.plantsci.2022.111321Pérez-Mora, W., Jorrin-Novo, J. V., & Melgarejo, L. M. (2018). Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 240. https://doi.org/10.1016/j.foodchem.2017.07.128Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734Pérez Mora, W., Castillejo, M. Á., Jorrín Novo, J., Melgarejo, L. M., & Ardila, H. D. (2024). Thiamine-induced resistance in carnation against Fusarium oxysporum f. sp dianthi and mode of action studies based on the proteomics analysis of root tissue. Scientia Horticulturae, 323, 112549. https://doi.org/10.1016/j.scienta.2023.112549Pinto, K. M. S., Cordeiro, L., de Souza Gomes, H., da Silva, H. F., & Miranda, J. dos reis. (2012). Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola : epidemiological , biochemical and economic aspects. European Journal of Plant Pathology, 134, 745–754. https://doi.org/10.1007/s10658-012-0050-1Pizano de M, M. (2000). Clavel (Dianthus caryophyllus L) (E. Hortitecnia (ed.)).Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(395), 1–11. https://doi.org/10.1186/1471-2105-11-395Poli, A., Bertetti, D., Rapetti, S., Gullino, M. L., & Garibaldi, A. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 95(2), 255–263.Poór, P., Czékus, Z., Tari, I., & Ördög, A. (2019). The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20235842Porter, K., Shimono, M., Tian, M., & Day, B. (2012). Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLoS Pathogens, 8(11), e1003006. https://doi.org/10.1371/journal.ppat.1003006Pushpalatha, H. G., Sudisha, J., Geetha, N. P., Amruthesh, K. N., & Shetty, H. S. (2011). Thiamine seed treatment enhances LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biologia Plantarum, 55(3), 522–527. https://doi.org/10.1007/s10535-011-0118-3Ramagli, L. S., & Rodriguez, L. V. (1985). Quantitation of microgram amounts of protein in two‐dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6(11), 559–563. https://doi.org/10.1002/elps.1150061109Ramaroson, M. L., Koutouan, C., Helesbeux, J. J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. (2022). Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules, 27(8371), 1–24. https://doi.org/10.3390/molecules27238371Ramos, O., Smith, M., Fritz, A. K., & Madl, R. L. (2017). Salicylic Acid-Mediated Synthetic Elicitors of Systemic Acquired Resistance Administered to Wheat Plants at Jointing Stage Induced Phenolics in Mature Grains. Crop Science, 3128, 3122–3128. https://doi.org/10.2135/cropsci2015.11.0697Riaz, T., Khan, S. N., & Javaid, A. (2009). Effect of co-cultivation and crop rotation on corm rot disease of Gladiolus. Scientia Horticulturae, 121(2), 218–222. https://doi.org/10.1016/j.scienta.2009.01.041Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 1–12. https://doi.org/10.3389/fpls.2014.00017Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez Martínez, P., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003Romero-Cuervo, W. A., Pinzon-Sandoval, E. H., & Luis-Ayala, M. A. (2021). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas, 39(1), 7–15. https://doi.org/10.22267/rcia.223901.167Romero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192, 112933. https://doi.org/10.1016/j.phytochem.2021.112933Romero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.Sadeghi, B., Mirzaei, S., & Fatehi, F. (2022). The proteomic analysis of the resistance responses in tomato during interaction with Alternaria alternate. Scientia Horticulturae, 304, 111295. https://doi.org/10.1016/j.scienta.2022.111295Saikia, R., Yadav, M., Varghese, S., Singh, B. P., Gogoi, D. K., Kumar, R., & Arora, D. K. (2006). Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathology Journal, 22(4), 339–347. https://doi.org/10.5423/PPJ.2006.22.4.339Sanabria, K., Pérez, W., & Andrade, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 1–7. https://doi.org/10.1016/j.cropro.2020.105241Sant, D., Casanova, E., Segarra, G., Avilés, M., Reis, M., & Trillas, M. I. (2010). Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biological Control, 53(3), 291–296. https://doi.org/10.1016/j.biocontrol.2010.01.012Santos-Rodríguez, J., Coy, E., & Ardila, H. D. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10(1447), 1–20. https://doi.org/10.3390/plants10071447Sathiyabama, M., Gandhi, M., & Indhumathi, M. (2022). Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microbial Pathogenesis, 173(PB), 105893. https://doi.org/10.1016/j.micpath.2022.105893Sathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/j.ijbiomac.2021.12.105Sathiyabama, Muthukrishnan, Indhumathi, M., & Muthukumar, S. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/10.1016/j.carbpol.2019.02.037Schwachtje, J., Fischer, A., Erban, A., & Kopka, J. (2018). Primed primary metabolism in systemic leaves: A functional systems analysis. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18397-5Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105Shen, S., Zhan, C., Yang, C., Fernie, A. R., & Luo, J. (2023). Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant, 16(1), 43–63. https://doi.org/10.1016/j.molp.2022.09.007Singh, K. S., van der Hooft, J. J. J., van Wees, S. C. M., & Medema, M. H. (2022). Integrative omics approaches for biosynthetic pathway discovery in plants. Natural Product Reports, 39(9), 1876–1896. https://doi.org/10.1039/d2np00032fSingh, P., Singh, J., Ray, S., Rajput, R. S., Vaishnav, A., Singh, R. K., & Singh, H. B. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 1–13. https://doi.org/10.1016/j.micres.2020.126482Soto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 30(2), 172–178. http://redalyc.org/articulo.oa?id=180325300002Soto-sedano, J., & Filgueira-Duarte, J. J. (2012). Evaluation or the reproduction proficiency of carnation (Dianthus caryophyllus L.) hybrids and varieties as search of useful parentals for a breeding program. Revista Facultad de Ciencias Básicas, 8(2), 184–195.Soto, C. J., Pabón, F., & Filgueria, J. (2009). Relación Entre El Color De La Flor Y La Tolerancia a Patógenos. Revista Facultad de Ciencias Básicas, 5(1), 116–129.Sukarta, O. C. A., Zheng, Q., Slootweg, E. J., Mekken, M., Mendel, M., Putker, V., Bertran, A., Brand, A., Overmars, H., Pomp, R., Roosien, J., Boeren, S., Smant, G., & Goverse, A. (2022). Glycine-rich rna-binding protein 7 potentiates effector-triggered immunity through an RNA recognition motif. Plant Physiology, 189(2), 972–987. https://doi.org/10.1093/plphys/kiac081Suprakash Ojha, N. C. C. (2012). Induction of Resistance in Tomato Plants Against Through Salicylic Acid and Trichoderma Harzianum. Journal of Plant Protection Research, 52(2), 220–225. https://doi.org/10.2478/v10045-012-0034-3Szklarczyk, D., Gable, A., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), 607–613, doi.org/10.1093/nar/gky1131Ton, J., Van Der Ent, S., Van Hulten, M., Pozo, M., Van Oosten, V., van Loon, L., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC Wprs Bull, 44, 3–13.Torky, Z. A. (2016). Vitamin B Mediated Priming of Disease Resistance and Defense Responses to Tobacco Mosaic Virus in Capsicum annuum L. Plants. Journal of Antivirals & Antiretrovirals, 8(2), 35–53. https://doi.org/10.4172/jaa.1000133Tripathi, D., Raikhy, G., & Kumar, D. (2019). Chemical elicitors of systemic acquired resistance - Salicylic acid and its functional analogs. Current Plant Biology, 17, 48–59. https://doi.org/10.1016/j.cpb.2019.03.002Tugizimana, F., Mhlongo, M., Piater, L., & Dubery, I. A. (2018). Metabolomics in plant priming research: The way forward? International Journal of Molecular Sciences, 19(6), 1–18. https://doi.org/10.3390/ijms19061759Tunc-ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress, Plant Physiology 151 (1), 421–432. https://doi.org/10.1104/pp.109.140046Valledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 347–358). Humana Press - Springer Protocols. https://doi.org/10.7551/mitpress/1247.003.0039Vanegas-Cano, L. J., Martínez-Peralta, S. T., Coy-Barrera, E., & Ardila-Barrantes, H. D. (2022). Plant hormones accumulation and its relationship with symplastic peroxidases expression during carnation-Fusarium oxysporum interaction. Ornamental Horticulture, 28(1), 49–59. https://doi.org/10.1590/2447-536X.V28I1.2412Verchot, J., & Pajerowska, K. M. (2021). UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Current Opinion in Virology, 47, 9–17. https://doi.org/10.1016/j.coviro.2020.11.001Vimala, R., & Suriachandraselvan, M. (2009). Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2(1), 111–114.Vinchesi, A. C., Rondon, S., & Goyer, A. (2017). Priming Potato with Thiamin to Control Potato Virus Y. American Journal of Potato Research, 94, 120–128. https://doi.org/10.1007/s12230-016-9552-2Wang, J., Lian, N., Zhang, Y., Man, Y., Chen, L., Yang, H., Lin, J., & Jing, Y. (2022). The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. International Journal of Molecular Sciences, 23(24). https://doi.org/10.3390/ijms232415553Wang, Lanxiang, Chen, M., Lam, P. Y., Dini-Andreote, F., Dai, L., & Wei, Z. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 10(1), 1–13. https://doi.org/10.1186/s40168-022-01420-xWang, Lanxiang, Lui, A. C. W., Lam, P. Y., Liu, G., Godwin, I. D., & Lo, C. (2020). Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal, 18(11), 2170–2172. https://doi.org/10.1111/pbi.13397Wang, Long, Wang, L., Yang, T., Wang, B., Lin, Q., Zhu, S., Li, C., Ma, Y., Tang, J., Xing, J., Li, X., Liao, H., Staiger, D., Hu, Z., Yu, F., & Yu, F. (2020). RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances, 6(21), 1–14. https://doi.org/10.1126/sciadv.aaz1622Wang, Y., Wei, X., Jing, X., Chang, Y., Hu, C., Wang, X., & Chen, K. (2016). The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. International Journal of Molecular Sciences, 17, 2–18. https://doi.org/10.3390/ijms17060805Wang, Z., Song, Q., Shuai, L., Htun, R., Malviya, M. K., Li, Y., Liang, Q., Zhang, G., Zhang, M., & Zhou, F. (2020). Metabolic and proteomic analysis of nitrogen metabolism mechanisms involved in the sugarcane – Fusarium verticillioides interaction. Journal of Plant Physiology, 251, 153207. https://doi.org/10.1016/j.jplph.2020.153207Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5, 1–13. https://doi.org/10.3389/fpls.2014.00655Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. . McGovern & W. H. Elmer (Eds.), Handbook of Plant Disease Management (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319-39670-5_14Xie, X., Han, Y., Yuan, X., Zhang, M., Li, P., Ding, A., Wang, J., Cheng, T., & Zhang, Q. (2022). Transcriptome Analysis Reveals that Exogenous Melatonin Confers Lilium Disease Resistance to Botrytis elliptica. Frontiers in Genetics, 13, 1–12. https://doi.org/10.3389/fgene.2022.892674Yáñez-Juárez, M. G., López-Orona, C. A., Ayala-Tafoya, F., Partida Ruvalcaba, L., Velázquez-Alcaraz, T. de J., & Medina-López, R. (2018). Phosphites as alternative for the management of phytopathological problems Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Revista Mexicana de Fitopatología, 79–94. https://doi.org/10.18781/R.MEX.FIT.1710-7Yang, F., Wu, C., Zhu, G., Yang, Q., Wang, K., & Li, Y. (2022). An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics, 114(6), 110516. https://doi.org/10.1016/j.ygeno.2022.110516Yang, Q., Li, J., Sun, J., & Cui, X. (2022). Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology, 119, 101814. https://doi.org/10.1016/j.pmpp.2022.101814Yin, Y., Bi, Y., Li, Y., Wang, Y., & Wang, D. (2012). Use of thiamine for controlling Alternaria alternata postharvest rot in Asian pear (Pyrus bretschneideri Rehd. cv. Zaosu). International Journal of Food Science and Technology, 47(10), 2190–2197. https://doi.org/10.1111/j.1365-2621.2012.03088.xYong-hong, G. E., Can-ying, L. I., Jing-yi, L., & Dan-shi, Z. (2017). Effects of thiamine on Trichothecium and Alternaria rots of muskmelon fruit and the possible mechanisms involved. Journal of Integrative Agriculture, 16(11), 2623–2631. https://doi.org/10.1016/S2095-3119(16)61584-8Zhang, X., Yang, Z., Wu, D., & Yu, F. (2020). RALF–FERONIA Signaling: Linking Plant Immune response with cell growth. Plant Communications, 1(4), 100084. https://doi.org/10.1016/j.xplc.2020.100084Zhao, J. (2015). Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science, 20(9), 576–585. https://doi.org/10.1016/j.tplants.2015.06.007Zhao, M., Jin, J., Gao, T., Zhang, N., Jing, T., Wang, J., Ban, Q., Schwab, W., & Song, C. (2019). Glucosyltransferase CsUGT78A14 Regulates Flavonols Accumulation and Reactive Oxygen Species Scavenging in Response to Cold Stress in Camellia sinensis. Frontiers in Plant Science, 10, 1–14. https://doi.org/10.3389/fpls.2019.01675Zheng, X., Gong, M., Zhang, Q., Tan, H., Li, L., Tang, Y., Li, Z., Peng, M., & Deng, W. (2022). Metabolism and Regulation of Ascorbic Acid in Fruits. Plants, 11(12), 1–18. https://doi.org/10.3390/plants11121602Zhou, J., Sun, A., & Xing, D. (2013). Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany, 64(11), 3261–3272. https://doi.org/10.1093/jxb/ert166Zhou, Y., Lambrides, C. J., & Fukai, S. (2013). Drought resistance of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. Environmental and Experimental Botany, 85, 22–29. https://doi.org/10.1016/j.envexpbot.2012.07.008Estudio de las respuestas bioquímicas, moleculares y fisiológicas ocasionadas por la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L): nuevas alternativas limpias para el control del marchitamiento vascular, con número de contrato RC No. 80740-148-2019Ministerio de Ciencia, Tecnología e InnovaciónUniversidad Nacional de ColombiaBibliotecariosEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85369/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1013576890.2023.pdf1013576890.2023.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf5148929https://repositorio.unal.edu.co/bitstream/unal/85369/2/1013576890.2023.pdf4bd3e0de15d4c2c7b216e4eaf731ab0cMD52THUMBNAIL1013576890.2023.pdf.jpg1013576890.2023.pdf.jpgGenerated Thumbnailimage/jpeg5790https://repositorio.unal.edu.co/bitstream/unal/85369/3/1013576890.2023.pdf.jpg61813c339023693aac418a0750808601MD53unal/85369oai:repositorio.unal.edu.co:unal/853692024-01-19 15:21:24.283Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |