Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica

Colombia has a renewable installed capacity of close to 70% in hydroelectric generation. However, especially in dry periods, thermal generation (mostly based on natural gas) has played a dominant role in the country's generation. In this sense, thermal generation has considerably increased gree...

Full description

Autores:
Echeverri Puerta, Jorge Alberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79470
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79470
https://repositorio.unal.edu.co
Palabra clave:
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Energía eólica
Cambios climáticos
Energy complementarity
Offshore wind potential
Wind potential in ENSO
Wind potential in climate change
Wind potential in the caribbean sea
Seasonal projections
Complementariedad energética
Potencial eólico offshore
Potencial eólico en ENSO
Potencial eólico en cambio climático
Potencial eólico en el mar Caribe
Proyecciones estacionales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6baae057188ad13e4d3156659291b770
oai_identifier_str oai:repositorio.unal.edu.co:unal/79470
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
dc.title.translated.eng.fl_str_mv Study of wind potential in Colombia and its complementarity with hydraulic generation sources
title Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
spellingShingle Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Energía eólica
Cambios climáticos
Energy complementarity
Offshore wind potential
Wind potential in ENSO
Wind potential in climate change
Wind potential in the caribbean sea
Seasonal projections
Complementariedad energética
Potencial eólico offshore
Potencial eólico en ENSO
Potencial eólico en cambio climático
Potencial eólico en el mar Caribe
Proyecciones estacionales
title_short Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
title_full Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
title_fullStr Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
title_full_unstemmed Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
title_sort Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica
dc.creator.fl_str_mv Echeverri Puerta, Jorge Alberto
dc.contributor.advisor.none.fl_str_mv Hoyos-Ortiz, Carlos David
dc.contributor.author.none.fl_str_mv Echeverri Puerta, Jorge Alberto
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Energía eólica
Cambios climáticos
Energy complementarity
Offshore wind potential
Wind potential in ENSO
Wind potential in climate change
Wind potential in the caribbean sea
Seasonal projections
Complementariedad energética
Potencial eólico offshore
Potencial eólico en ENSO
Potencial eólico en cambio climático
Potencial eólico en el mar Caribe
Proyecciones estacionales
dc.subject.lemb.none.fl_str_mv Energía eólica
Cambios climáticos
dc.subject.proposal.eng.fl_str_mv Energy complementarity
Offshore wind potential
Wind potential in ENSO
Wind potential in climate change
Wind potential in the caribbean sea
Seasonal projections
dc.subject.proposal.spa.fl_str_mv Complementariedad energética
Potencial eólico offshore
Potencial eólico en ENSO
Potencial eólico en cambio climático
Potencial eólico en el mar Caribe
Proyecciones estacionales
description Colombia has a renewable installed capacity of close to 70% in hydroelectric generation. However, especially in dry periods, thermal generation (mostly based on natural gas) has played a dominant role in the country's generation. In this sense, thermal generation has considerably increased greenhouse gas (GHG) emissions, added to the fact that the proven reserves of natural gas are projected to a few years of supply, which makes its use unfeasible in the long term. Under this context, this work proposes to analyze the wind potential and complementarity with hydraulic generation in Colombia, from a climatological approach. The above, with the objective of determining if wind can be a viable alternative to guarantee the firmness of energy generation, reducing the dependence on non-renewable energies. For this purpose, wind atlases, data from hydrometeorological stations, reanalysis, satellite data, and climate change models are used. Based on this, the wind complementarity with basins for energy generation of the Sistema Interconectado Nacional (SIN) is established in regional terms and the places with the greatest wind potential in the country are determined. Subsequently, the offshore wind potential is studied in scenarios of climate variability and climate change. The results of this research indicate that there is a wide hydro-wind complementarity between different regions. It is worth highlighting the seasonal and interannual complementarity associated with ENSO of the most important hydroelectric region, with multiple regions of high wind potential such as the Caribbean Sea, among others. It was also determined, a higher net generation of wind farms in a location in the sea of La Alta Guajira in relation to equal installed capacities of important hydroelectric plants. This location also had a higher generation relative to the offshore potential of Buchan Deep in the North Sea. It was found that the migration phenology of migratory birds in the Caribbean coincides with the minimum offshore wind generation within the seasonal scale. Finally, multi-annual climate change projections predict that the offshore wind resource in the highest potential locations will remain stable or increase slightly. They also show for this century a likely seasonal compensation between reductions in precipitation in the Andes with increases in offshore wind potential in the Colombian Caribbean Sea and vice versa.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-03T21:43:34Z
dc.date.available.none.fl_str_mv 2021-05-03T21:43:34Z
dc.date.issued.none.fl_str_mv 2021-05-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79470
dc.identifier.instname.spa.fl_str_mv Repositorio Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Nacional
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co
url https://repositorio.unal.edu.co/handle/unal/79470
https://repositorio.unal.edu.co
identifier_str_mv Repositorio Universidad Nacional de Colombia
Repositorio Universidad Nacional
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv K. F. Ahmed, G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Global and Planetary Change, 100:320–332, 2013.
J. A. Amador. A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr, 5(2):1–13, 1998.
J. A. Amador. The intra-Americas sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146(1):153–188, 2008.
A. Amiri, R. Panahi, and S. Radfar. Parametric study of two-body floating-point wave absorber. Journal of marine science and application, 15(1):41–49, 2016.
S. G. Arias and L. F. C. Serna. Regionalización de curvas de duración de caudales en el Departamento de Antioquia-Colombia. Revista EIA, 14(27):21–30, 2017.
M. Bagatini, M. G. Benevit, A. Beluco, A. Risso, et al. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.
M. Belmonte Rivas and A. Stoffelen. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 2019.
A. Beluco, P. K. de Souza, and A. Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157– 2165, 2008.
E. L. Birch. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change” Intergovernmental Panel on Climate Change.(2014).(Contribution ofWorking Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). New York, NY: Cambridge University
P. J. Block, F. A. Souza Filho, L. Sun, and H.-H. Kwon. A streamflow forecasting framework using multiple climate and hydrological models 1. JAWRA Journal of the American Water Resources Association, 45(4):828–843, 2009.
J.-P. Boulanger, F. Martinez, and E. C. Segura. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Climate Dynamics, 28(2-3):255–271, 2007.
M. P. Cantão, M. R. Bessa, R. Bettega, D. H. Detzel, and J. M. Lima. Evaluation of hydrowind complementarity in the Brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.
L. Castro-Santos, M. I. Lamas-Galdo, and A. Filgueira-Vizoso. Managing the oceans: Site selection of a floating offshore wind farm based on GIS spatial analysis. Marine Policy, 113:103803, 2020a.
X. Costoya, M. deCastro, F. Santos, M. Sousa, and M. Gómez-Gesteira. Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178:356–367, 2019.
R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology, 27(8):1302–1317, 2010.
E. P. Bedoya and J. A. O. Osorio. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Todográficas, 2002.
F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.
F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.
A. N. Celik. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable energy, 29(4):593–604, 2004.
M. Denault, D. Dupuis, and S. Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.
ECMWF. Copernicus Climate Change Service (C3S), “ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS).
J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall. International energy outlook 2016 with projections to 2040. Technical report, USDOE Energy Information Administration (EIA), Washington, DC (United States . . . , 2016.
ENES. European Network for Earth System Modelling - Multimodel comparison of CMIP6 SSP2-4.5 scenario. https:// portal.enes.org/data/data-metadata-service/analysis-platforms/ example-of-how-to-run-server-side-data-near-multimodel-comparisons, 2020. Accessed: 2020-11-20.
C.-w. Zheng, X.-y. Li, X. Luo, X. Chen, Y.-h. Qian, Z.-h. Zhang, Z.-s. Gao, Z.-b. Du, Y.-b. Gao, and Y.-g. Chen. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmosphere-Ocean, 57(2):134–148, 2019.
L. Castro-Santos, D. Silva, A. R. Bento, N. Salvação, and C. G. Soares. Economic feasibility of floating offshore wind farms in Portugal. Ocean Engineering, 207:107393, 2020b.
M. Esteban and D. Leary. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128–136, 2012.
D. Elliott, C. Holladay, W. Barchet, H. Foote, and W. Sandusky. Wind energy resource atlas of the United States. Technical report, Pacific Northwest Lab., Richland,WA (USA), 1987.
S. Gadad and P. C. Deka. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Applied Energy, 176:157–170, 2016.
C. Gómez and N. Bayly. Cruzando el Caribe: Identificación de sitios de parada críticos para aves migratorias Neotropicales en el norte de Colombia. SELVA: Investigación para la conservación en el Neotrópico, Bogotá. Informe técnico del primer año No. CEC03, 2010.
T. I. Hennemuth, D. Jacob, E. Keup-Thiel, S. Kotlarski, G. Nikulin, J. Otto, D. Rechid, K. Sieck, S. Sobolowski, P. Szabó, et al. Guidance for EURO-CORDEX climate projections data use. Version1. 0-2017.08. Retrieved on, 6:2019, 2017.
F. Johnson and A. Sharma. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resources Research, 47(4), 2011.
I. Koletsis, V. Kotroni, K. Lagouvardos, and T. Soukissian. Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renewable and Sustainable Energy Reviews, 60:234–245, 2016.
M. Meinshausen, Z. Nicholls, J. Lewis, M. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, et al. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. Discuss, 2019:1–77, 2019.
S. Keevallik and T. Soomere. Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981-2010. Proceedings of the Estonian Academy of Sciences, 63 (4):428, 2014.
G. Lenderink, A. Buishand, and W. Van Deursen. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. 2007.
R. Moss, W. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), 2008.
J. A. Marengo, S. C. Chou, G. Kay, L. M. Alves, J. F. Pesquero, W. R. Soares, D. C. Santos, A. A. Lyra, G. Sueiro, R. Betts, et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate dynamics, 38(9-10):1829–1848, 2012.
P. Ramírez and J. A. Carta. Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion and Management, 46(15-16):2419–2438, 2005.
. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.
N. Salvação and C. G. Soares. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy, 145:276–287, 2018.
J. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.
M. R. Shaner, S. J. Davis, N. S. Lewis, and K. Caldeira. Geophysical constraints on the reliability of solar and wind power in the United States. Energy & Environmental Science, 11(4):914–925, 2018.
A. Rott, B. Doekemeijer, J. K. Seifert, J.-W. v. Wingerden, and M. Kühn. Robust active wake control in consideration of wind direction variability and uncertainty. Wind energy science, 3(2):869–882, 2018.
Statoil. Technical report; Hywind, Statoil: Grampian,UK - Hywind. Building the World’s First Floating Offshore Wind Farm. http://www.statoil.com, 2015. Accessed: 2019-05- 28.
W. Yang, W. Tian, O. Hvalbye, Z. Peng, K. Wei, and X. Tian. Experimental research for stabilizing offshore floating wind turbines. Energies, 12(10):1947, 2019.
J. Widén. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2):177–184, 2011.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 141 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79470/4/1036930864.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79470/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79470/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79470/7/1036930864.2021.pdf.jpg
bitstream.checksum.fl_str_mv fa7710af85300a58bdf757e30a93db44
cccfe52f796b7c63423298c2d3365fc6
f7d494f61e544413a13e6ba1da2089cd
b0d6ffd14a0b81ef0796cfc83ea01f02
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089625591873536
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hoyos-Ortiz, Carlos Davidba97623f3382055c9956dfa4e4017ab8600Echeverri Puerta, Jorge Alberto3c8e83fd851b916b047a48769a89144e2021-05-03T21:43:34Z2021-05-03T21:43:34Z2021-05-02https://repositorio.unal.edu.co/handle/unal/79470Repositorio Universidad Nacional de ColombiaRepositorio Universidad Nacionalhttps://repositorio.unal.edu.coColombia has a renewable installed capacity of close to 70% in hydroelectric generation. However, especially in dry periods, thermal generation (mostly based on natural gas) has played a dominant role in the country's generation. In this sense, thermal generation has considerably increased greenhouse gas (GHG) emissions, added to the fact that the proven reserves of natural gas are projected to a few years of supply, which makes its use unfeasible in the long term. Under this context, this work proposes to analyze the wind potential and complementarity with hydraulic generation in Colombia, from a climatological approach. The above, with the objective of determining if wind can be a viable alternative to guarantee the firmness of energy generation, reducing the dependence on non-renewable energies. For this purpose, wind atlases, data from hydrometeorological stations, reanalysis, satellite data, and climate change models are used. Based on this, the wind complementarity with basins for energy generation of the Sistema Interconectado Nacional (SIN) is established in regional terms and the places with the greatest wind potential in the country are determined. Subsequently, the offshore wind potential is studied in scenarios of climate variability and climate change. The results of this research indicate that there is a wide hydro-wind complementarity between different regions. It is worth highlighting the seasonal and interannual complementarity associated with ENSO of the most important hydroelectric region, with multiple regions of high wind potential such as the Caribbean Sea, among others. It was also determined, a higher net generation of wind farms in a location in the sea of La Alta Guajira in relation to equal installed capacities of important hydroelectric plants. This location also had a higher generation relative to the offshore potential of Buchan Deep in the North Sea. It was found that the migration phenology of migratory birds in the Caribbean coincides with the minimum offshore wind generation within the seasonal scale. Finally, multi-annual climate change projections predict that the offshore wind resource in the highest potential locations will remain stable or increase slightly. They also show for this century a likely seasonal compensation between reductions in precipitation in the Andes with increases in offshore wind potential in the Colombian Caribbean Sea and vice versa.Colombia posee una capacidad instalada renovable cercana al 70% en generación hidroeléctrica. Sin embargo, especialmente en periodos secos, la generación térmica (mayoritariamente basada en gas natural) ha tenido un papel dominante en la generación del país. En este sentido, la generación térmica ha incrementado considerablemente las emisiones de gases de efecto invernadero (GEI), sumado a que las reservas probadas de gas natural se proyectan a unos pocos años de suministro, lo que hace inviable su uso a largo plazo. Bajo este contexto se propone realizar en este trabajo un análisis del potencial eólico y complementariedad con la generación hidráulica en Colombia, desde un enfoque climatológico. Lo anterior, con el objetivo de determinar si los vientos pueden ser una alternativa viable para garantizar la firmeza de la generación de energía reduciendo la dependencia de energías no renovables. Para esto se hace uso de atlas de vientos, datos de estaciones hidrometeorológicas, reanálisis, datos satelitales y modelos de cambio climático. Con base en esto se establece en términos regionales la complementariedad eólica con cuencas para generación de energía del Sistema Interconectado Nacional (SIN) y se determinan los lugares de mayor potencial eólico en el país. Posteriormente se estudia en escenarios de variabilidad climática y cambio climático el potencial eólico offshore. Los resultados de esta investigación indican que existe una amplia complementariedad hidro - eólica entre diversas regiones. Cabe resaltar la complementariedad estacional e interanual asociada a ENSO de la región hidroeléctrica más importante, con múltiples regiones de alto potencial eólico como el Mar Caribe entre otras. Se determinó también, una mayor generación neta de parques eólicos en una ubicación en el mar de La Alta Guajira en relación a iguales capacidades instaladas de importantes hidroeléctricas. Esta ubicación también presentó una mayor generación en relación al potencial offshore de Buchan Deep en el Mar del Norte. Se encontró que la fenología de migración de aves migratorias en El Caribe coincide con los mínimos de generación eólica offshore dentro de la escala estacional. Finalmente, las proyecciones multianuales de cambio climático prevén que el recurso eólico offshore de las ubicaciones de mayor potencial permanecerá estable o se incrementará ligeramente. También evidencian para este siglo una posible compensación estacional entre reducciones de precipitación en los Andes con incrementos en el potencial eólico offshore en el Mar Caribe colombiano y viceversa.Maestría141 páginasapplication/pdfengUniversidad Nacional de ColombiaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaEnergía eólicaCambios climáticosEnergy complementarityOffshore wind potentialWind potential in ENSOWind potential in climate changeWind potential in the caribbean seaSeasonal projectionsComplementariedad energéticaPotencial eólico offshorePotencial eólico en ENSOPotencial eólico en cambio climáticoPotencial eólico en el mar CaribeProyecciones estacionalesEstudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulicaStudy of wind potential in Colombia and its complementarity with hydraulic generation sourcesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_dc82b40f9837b551Texthttp://purl.org/redcol/resource_type/TMK. F. Ahmed, G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Global and Planetary Change, 100:320–332, 2013.J. A. Amador. A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr, 5(2):1–13, 1998.J. A. Amador. The intra-Americas sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146(1):153–188, 2008.A. Amiri, R. Panahi, and S. Radfar. Parametric study of two-body floating-point wave absorber. Journal of marine science and application, 15(1):41–49, 2016.S. G. Arias and L. F. C. Serna. Regionalización de curvas de duración de caudales en el Departamento de Antioquia-Colombia. Revista EIA, 14(27):21–30, 2017.M. Bagatini, M. G. Benevit, A. Beluco, A. Risso, et al. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.M. Belmonte Rivas and A. Stoffelen. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 2019.A. Beluco, P. K. de Souza, and A. Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157– 2165, 2008.E. L. Birch. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change” Intergovernmental Panel on Climate Change.(2014).(Contribution ofWorking Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). New York, NY: Cambridge UniversityP. J. Block, F. A. Souza Filho, L. Sun, and H.-H. Kwon. A streamflow forecasting framework using multiple climate and hydrological models 1. JAWRA Journal of the American Water Resources Association, 45(4):828–843, 2009.J.-P. Boulanger, F. Martinez, and E. C. Segura. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Climate Dynamics, 28(2-3):255–271, 2007.M. P. Cantão, M. R. Bessa, R. Bettega, D. H. Detzel, and J. M. Lima. Evaluation of hydrowind complementarity in the Brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.L. Castro-Santos, M. I. Lamas-Galdo, and A. Filgueira-Vizoso. Managing the oceans: Site selection of a floating offshore wind farm based on GIS spatial analysis. Marine Policy, 113:103803, 2020a.X. Costoya, M. deCastro, F. Santos, M. Sousa, and M. Gómez-Gesteira. Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178:356–367, 2019.R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology, 27(8):1302–1317, 2010.E. P. Bedoya and J. A. O. Osorio. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Todográficas, 2002.F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.A. N. Celik. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable energy, 29(4):593–604, 2004.M. Denault, D. Dupuis, and S. Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.ECMWF. Copernicus Climate Change Service (C3S), “ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS).J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall. International energy outlook 2016 with projections to 2040. Technical report, USDOE Energy Information Administration (EIA), Washington, DC (United States . . . , 2016.ENES. European Network for Earth System Modelling - Multimodel comparison of CMIP6 SSP2-4.5 scenario. https:// portal.enes.org/data/data-metadata-service/analysis-platforms/ example-of-how-to-run-server-side-data-near-multimodel-comparisons, 2020. Accessed: 2020-11-20.C.-w. Zheng, X.-y. Li, X. Luo, X. Chen, Y.-h. Qian, Z.-h. Zhang, Z.-s. Gao, Z.-b. Du, Y.-b. Gao, and Y.-g. Chen. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmosphere-Ocean, 57(2):134–148, 2019.L. Castro-Santos, D. Silva, A. R. Bento, N. Salvação, and C. G. Soares. Economic feasibility of floating offshore wind farms in Portugal. Ocean Engineering, 207:107393, 2020b.M. Esteban and D. Leary. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128–136, 2012.D. Elliott, C. Holladay, W. Barchet, H. Foote, and W. Sandusky. Wind energy resource atlas of the United States. Technical report, Pacific Northwest Lab., Richland,WA (USA), 1987.S. Gadad and P. C. Deka. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Applied Energy, 176:157–170, 2016.C. Gómez and N. Bayly. Cruzando el Caribe: Identificación de sitios de parada críticos para aves migratorias Neotropicales en el norte de Colombia. SELVA: Investigación para la conservación en el Neotrópico, Bogotá. Informe técnico del primer año No. CEC03, 2010.T. I. Hennemuth, D. Jacob, E. Keup-Thiel, S. Kotlarski, G. Nikulin, J. Otto, D. Rechid, K. Sieck, S. Sobolowski, P. Szabó, et al. Guidance for EURO-CORDEX climate projections data use. Version1. 0-2017.08. Retrieved on, 6:2019, 2017.F. Johnson and A. Sharma. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resources Research, 47(4), 2011.I. Koletsis, V. Kotroni, K. Lagouvardos, and T. Soukissian. Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renewable and Sustainable Energy Reviews, 60:234–245, 2016.M. Meinshausen, Z. Nicholls, J. Lewis, M. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, et al. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. Discuss, 2019:1–77, 2019.S. Keevallik and T. Soomere. Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981-2010. Proceedings of the Estonian Academy of Sciences, 63 (4):428, 2014.G. Lenderink, A. Buishand, and W. Van Deursen. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. 2007.R. Moss, W. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), 2008.J. A. Marengo, S. C. Chou, G. Kay, L. M. Alves, J. F. Pesquero, W. R. Soares, D. C. Santos, A. A. Lyra, G. Sueiro, R. Betts, et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate dynamics, 38(9-10):1829–1848, 2012.P. Ramírez and J. A. Carta. Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion and Management, 46(15-16):2419–2438, 2005.. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.N. Salvação and C. G. Soares. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy, 145:276–287, 2018.J. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.M. R. Shaner, S. J. Davis, N. S. Lewis, and K. Caldeira. Geophysical constraints on the reliability of solar and wind power in the United States. Energy & Environmental Science, 11(4):914–925, 2018.A. Rott, B. Doekemeijer, J. K. Seifert, J.-W. v. Wingerden, and M. Kühn. Robust active wake control in consideration of wind direction variability and uncertainty. Wind energy science, 3(2):869–882, 2018.Statoil. Technical report; Hywind, Statoil: Grampian,UK - Hywind. Building the World’s First Floating Offshore Wind Farm. http://www.statoil.com, 2015. Accessed: 2019-05- 28.W. Yang, W. Tian, O. Hvalbye, Z. Peng, K. Wei, and X. Tian. Experimental research for stabilizing offshore floating wind turbines. Energies, 12(10):1947, 2019.J. Widén. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2):177–184, 2011.SIATA - Sistema de Alerta Temprana del Valle de AburráORIGINAL1036930864.2021.pdf1036930864.2021.pdfTesis Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf397872891https://repositorio.unal.edu.co/bitstream/unal/79470/4/1036930864.2021.pdffa7710af85300a58bdf757e30a93db44MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79470/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79470/6/license_rdff7d494f61e544413a13e6ba1da2089cdMD56THUMBNAIL1036930864.2021.pdf.jpg1036930864.2021.pdf.jpgGenerated Thumbnailimage/jpeg4396https://repositorio.unal.edu.co/bitstream/unal/79470/7/1036930864.2021.pdf.jpgb0d6ffd14a0b81ef0796cfc83ea01f02MD57unal/79470oai:repositorio.unal.edu.co:unal/794702024-08-12 01:59:32.328Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==