Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt

Los epicarpios de la papaya (Carica papaya L.) y la guayaba (Psidium guajava) obtenidos en la transformación agroindustrial de estas frutas, hasta el momento no han sido valorados como fuente de pigmentos carotenoides y hoy en día su disposición final consiste en servir de fuente de materia prima pa...

Full description

Autores:
Velasco Arango, Viviana Andrea
Tipo de recurso:
Informe
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/78311
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/78311
Palabra clave:
660 - Ingeniería química
Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6b9f938ec8297248c9d1057beec21fb7
oai_identifier_str oai:repositorio.unal.edu.co:unal/78311
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
title Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
spellingShingle Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
660 - Ingeniería química
Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.
title_short Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
title_full Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
title_fullStr Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
title_full_unstemmed Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
title_sort Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas Frankfurt
dc.creator.fl_str_mv Velasco Arango, Viviana Andrea
dc.contributor.advisor.spa.fl_str_mv Hleap Zapata, José Igor
dc.contributor.author.spa.fl_str_mv Velasco Arango, Viviana Andrea
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Manejo y Agroindustrialización de Productos de Origen Biológico
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.
dc.subject.proposal.spa.fl_str_mv Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.
description Los epicarpios de la papaya (Carica papaya L.) y la guayaba (Psidium guajava) obtenidos en la transformación agroindustrial de estas frutas, hasta el momento no han sido valorados como fuente de pigmentos carotenoides y hoy en día su disposición final consiste en servir de fuente de materia prima para la alimentación animal o simplemente son desechados como un desperdicio generando contaminación ambiental. Pensando en esto, el objetivo de esta investigación consistió en valorar el posible aprovechamiento agroindustrial de estos residuos, para lo cual se realizó la identificación fisicoquímica, la extracción y optimización de los pigmentos carotenoides con el fin de obtener un colorante natural para ser aplicado como sustituto parcial de los nitritos en salchichas Frankfurt y finalmente evaluar la estabilidad en el tiempo de almacenamiento de los productos finales. Para llevar a cabo lo anterior, se realizó un proceso de liofilización y molturación de cada uno de los epicarpios hasta obtener una harina, la cual fue analizada fisicoquímicamente mediante los métodos estipulados de la AOAC y sometida al proceso de extracción e identificación de los pigmentos carotenoides mediante espectrofotometría UV-Vis. El proceso de extracción se realizó por ultrasonido, usando aceite de girasol neutro, hasta encontrar las condiciones óptimas de extracción de los pigmentos carotenoides. Se determinó la actividad antioxidante, el contenido de compuestos fenólicos y las coordenadas de color CIEL*a*b*. Posteriormente, para continuar con la experimentación y definir la formulación más indicada, se elaboraron tres formulaciones diferentes de salchichas Frankfurt con cada uno de los extractos obtenidos, en las cuales se disminuyó la concentración de nitritos reemplazándola por los extractos en diferentes concentraciones, más una formulación control sin adición de ninguno de los dos extractos analizados. A partir de un análisis de las características fisicoquímicas, de las coordenadas de color CIEL*a*b*, de una evaluación sensorial y de un análisis microbiológico se determinaron las dos salchichas óptimas (una por cada extracto), las cuales se utilizaron para hacer la evaluación de la estabilidad durante 30 días de observación, de los pigmentos carotenoides incluidos en los extractos presentes en las salchichas. El diseño experimental aplicado fue un diseño aleatorio simple de un factor con dos tratamientos, equivalentes a cada una de las harinas utilizadas (harina de epicarpio de papaya - HEP y harina de epicarpio de guayaba – HEG). Se realizó un análisis de T-Student para identificar las diferencias entre los tratamientos. Se utilizó la metodología de superficie de respuesta y siguiendo el diseño experimental Plackett-Burman, se determinaron los factores que afectan la extracción de los pigmentos carotenoides de las HEP y HEG por ultrasonido. Para la optimización del proceso de extracción, se aplicó un diseño Box-Behnken de tres niveles y tres factores consistentes en quince ejecuciones experimentales, incluidas tres repeticiones en el punto central. Las variables fueron la intensidad ultrasónica (X1, W/m2), la temperatura (X2, °C) y el tiempo de extracción (X3, min). Para las formulaciones de las salchichas Frankfurt se utilizó un diseño experimental aleatorizado simple, con un factor correspondiente al tiempo de almacenamiento: el análisis proximal y valor energético se realizó a los 0, 10, 20 y 30 días; Los análisis de coordenadas de color CIEL*a*b* y nitrito residual se realizó a los 0, 10, 20, 30 días; el análisis de oxidación de lípidos se realizó a los 0, 15 y 30 días y el análisis microbiológico se realizó a los 0, 8, 15, 22 y 30 días. Las medias obtenidas se evaluaron por medio de un análisis de varianza – ANOVA, con un nivel de significancia del 5%, y cuando se presentaron diferencias significativas entre ellas, se aplicó la prueba de comparación de medias de Tukey. Para realizar los análisis estadísticos se utilizó el software SPSS Statics 19, para Windows, 2010. Las medias obtenidas se evaluaron por medio de un análisis de varianza – ANOVA, con un nivel de significancia del 5% y cuando se detectaron diferencias significativas entre ellas, se aplicó la prueba de comparación de medias de Tukey. Para realizar los análisis estadísticos se utilizó el software SPSS Statics 19, para Windows, 2010 y Design-Expert Software versión 12. Los resultados obtenidos mostraron que los epicarpios de papaya (HEP) y de guayaba (HEG) son una excelente fuente de pigmentos carotenoides como β-caroteno ( 5,63 – 10,07 ) mg/100g de harina , α-caroteno (5,15 – 9,41 ) mg/100g de harina, β-criptoxantina (5,86 – 10,89) mg/100g de harina, Zeaxantina ( 5,81 – 10,81) mg/100g de harina, Licopeno (4,07 – 10,58) mg/100g de harina para HEP y HEG respectivamente. las condiciones óptimas de extracción de los pigmentos carotenoides presentes en la harina de epicarpio de papaya fueron un t: 60 minutos, T: 30 °C y relación harina/aceite 0,0256 g/4 ml, donde se obtuvo una concentración de carotenoides máxima de 66,03 ± 0,60 mg/100g de HEP. Para la harina de epicarpio de guayaba las condiciones óptimas de extracción de los pigmentos carotenoides fueron un t: 40 minutos, T: 60°C y relación harina/aceite 0,0256 g/ 4ml, obteniendo un resultado una concentración de carotenoides de 47,38 ± 1,03 mg/100g de HEG. Al aplicar el extracto de HEP y HEG en salchichas Frankfurt y evaluar en el tiempo de almacenamiento no presentó cambios significativos (p < 0,05) para el análisis proximal, las coordenadas de luminosidad (L*), y rojo-verde (a*) no presentaron diferencias estadísticamente significativas (p<0,05) durante los 30 días de almacenamiento. Los valores de nitrito residual se mantuvieron entre 21,66 mg/kg y 41,35 mg/kg para la muestra de salchicha adicionada con extracto de pigmentos carotenoides obtenidos a partir de la harina de epicarpio de papaya y entre 23,65 mg/kg y 42,15 mg/kg para la muestra de salchicha adicionada con extracto de pigmentos carotenoides obtenidos a partir de la harina de epicarpio de guayaba. Las salchichas formuladas con el extracto lipídico de carotenoides del epicarpio de papaya y guayaba presentaron excelentes características fisicoquímicas, sensoriales y microbiológicas, además de una muy buena estabilidad en el tiempo, lo cual permite establecer un potencial uso de estos extractos en aplicaciones agroalimentarias en la industria cárnica, como alternativa para reducir el 25% de nitritos, y también como colorantes naturales en salchichas. Palabras Claves: Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-28T16:16:04Z
dc.date.available.spa.fl_str_mv 2020-08-28T16:16:04Z
dc.date.issued.spa.fl_str_mv 2020-08-26
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_93fc
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Natural dyes, Extraction, Optimization, Meat products, Agro-industrial waste,
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/78311
identifier_str_mv Natural dyes, Extraction, Optimization, Meat products, Agro-industrial waste,
url https://repositorio.unal.edu.co/handle/unal/78311
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelhafez, A.A., Husseiny, S.M., Abdel-Aziz, A. and Sanad, H.M. (2016). Optimization of β-carotene production from agro-industrial by-products Serratia marcescens ATCC using Plackett-Burman design and composite design. Annals of Agricultural Science, 61(1), 87-96. https://doi.org/10.1016/j.aoas.2016.01.005
Ademiluyi, A.O., Oboh, G. and Ogunsuyi, O.B. (2016). A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. Comparative Clinical Pathology, 25(2), 363-374. https://doi.org/10.1007/s00580-015-2192-y
Adom, K.K., Sorrells, M.E. and Liu, R.H. (2005). Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. Journal of Agriculture and Food Chemistry, 53(6), 2297-2306. https://doi.org/10.1021/jf048456d
Afoakwah, N.A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y. and Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) Powder and its application in emulsion-type sausage. LWT – Food Science and Technology, 64(1), 74-81. https://doi.org/10.1016/j.lwt.2015.05.030
AGRONET. (2014). Evaluaciones Agropecuarias Municipales – Guayaba. Bogotá, Colombia. [Online]: http://www.agronet.gov.co/Documents/Guayaba.pdf
Aguilar-Méndez, M.A., Campos-Arias, M.P., Quiroz-Reyes, C.N., Ronquillo, E. and Cruz-Hernández, M.A. (2019). Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Revista Facultad de Ciencias Agrarias UNCUYO, 52(1), en prensa
Ahmad, S.R., Gokulakrishnan, P., Giriprasad, R. and Yatoo, M.A. (2015). Fruit-based natural antioxidants in meat and meat products: a review. Critical Reviews in Food Science and Nutrition, 55(11), 1503-1513. https://doi.org/10.1080/10408398.2012.701674
Ahn, J., Grun, I.U. and Mustapha, A. (2007). Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiology, 24(1), 7-14. https://doi.org/j.fm.2006.04.006
Al-Duais, M., Hohbein, J., Werner, S., Böhm, V. And Jetschke, G. (2009). Contents of vitamin C, carotenoids, tocopherols, and tocotrienols in the subtropical plant species Cyphostemma digitatum as affected by processing. Journal of Agricultural and Food Chemistry, 57(12), 5420-5427. https://doi.org/10.1021/j9003626
Alahakoon, A.U., Jayasena, D.D., Ramachandra, S. and Jo, S. (2015). Alternatives to nitrite in processed meat: Up to date. Trends in Food Science & Technology, 45(1), 37-49. https://doi.org/10.1016/j.tifs.2015.05.008
Alamar, P.D., Caramês, E.T., Poppi, R.J. and Pallone, J.A.L. (2016). Quality evaluation of frozen guava and yellow passion Fruit pulps by NIR spectroscopy and chemometrics. Food Research International, 85, 209-214. https://doi.org/10.1016/j.foodres.2016.04.027
Albarracín, W., Acosta, L.F. and Sánchez, I.C. (2010). Elaboración de un producto cárnico escaldado utilizando como extensor harina de fríjol común (Phaseolus spp.). Vitae, 17(3), 264-271.
Albertini, S., Lai Reyes, A.E., Trigo, J.M., Sarries, G.A. and Spoto, M.H.F. (2016). Effects of chemical treatments on fresh-cut papaya. Food Chemistry, 190, 1182-1189. https://doi.org/10.1016/j.foodchem.2015.06.038
Ali, A., Muda, M.T., Sijam, M. and Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124(2), 620-626. https://doi.org/10.1016/j.foodchem.2010.06.085
Alimentos saludables. (2017). Beneficios de la guayaba. [Online]: https://www.alimentossaludables.mercola.com/guayaba.html
Almulaiky, Y., Zeyadi, M., Saleh, R., Baothman, O., Al-Shawafi, W. and Al-Talhi. (2018). Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16(1), 90-97. https://doi.org/10.1016/j.bcab.2018.07.025
Amensour, M., Sánchez-Zapata, H., Abrini, J., Sendra, E., Sayas, E., Navarro, C., Pérez-Álvarez, J.A. and Fernández-López, J. (2010). Estabilidad del color en salchiichas de pollo tipo Frankfurt adicionadas con extracto acuoso de hoja de Myrtus communis. Óptica Pura y Aplicada, 43(4), 251-257.
Andújar, G., Guerra, A, Santos, R. (2000). La utilización de extensores cárnicos. Experiencias de la industria cárnica cubana. Instituto de investigaciones para la industria alimenticia. Disponible desde Internet en: http://www.rlc.fao.org/prior/segalim/pdf/extensor.pdf
Annegowda, H.V., Bhat, R., Yeong, K.I., Liong, M.T., Karim, A.A. and Mansor, S.M. (2014). Influence of drying treatments on polyphenolic contents and antioxidant properties of raw and ripe papaya (Carica papaya L.). International Journal of Food Properties, 17(2), 283-292. https://doi.org/10.1080/10942912.2011.631248
Anwar, M., Rasul, M.G. and Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion Management, 158, 103-112. https://doi.org/10.1016/j.enconman.2017.11.004
AOAC. (1990) Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 15th. Edition. Virginia, USA. AOAC International
AOAC. (1998). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 16th edition. Virginia, USA. AOAC International
AOAC. (2000). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 17th ed. Maryland, USA. AOAC International
AOAC. (2005). Association of Official Analytical Chemists. Official Methods of Analysis, Methods 925.09: Moisture in cassava – air oven methods. Washington D.C., USA. AOAC International
AOCS. (2003). American Oil Chemists Society. Official Methods of Analysis of AOCS International. Method Cd 8-53, Boulder, Illinois, USA. AOCS International
AOCS. (2017). American Oil Chemists Society. Official Methods of Analysis of AOCS International. Method Cd 18-90, Boulder, Illinois, USA. AOCS International
Apostolidis, E., Kwon, Y.I. and Shetty, K. (2008). Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. International Journal of Food Microbiology, 128, 317-324. https://doi.org/10.1016/j.ijfoodmicro.2008.09.012
Araújo, K.L., Magnani, M., Nascimiento, J.A., Souza, A.L., Epaminondas, P.S., Souza, A.L., Queiroz, N. and Souza, A.G. (2014). Antioxidant activity of co-products from guava, mango and Barbados cherry produced in the Brazilian northeast. Molecules, 19, 3110-3119. https://doi.org/10.3390/molecules19033110
Aravind, G., Debjit, B., Duraivel, S. and Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7-15
Armenteros, M., Morcuende, D., Ventanas, S. and Estévez, M. (2013). Application of natural antioxidants from strawberry tree (Arbutus unedo L.) and dog rose (Rosa canina L.) to frankfurters subjected to refrigerated storage. Journal of Integrative Agriculture, 12(11), 1972-1981. https://doi.org/10.1016/S2095-3119(13)60635-8
Aruwa, C.E., Amoo, S. and Kudanga, T. (2019). Phenolic compound profile and biological activities of southern African Opuntia ficus- indica fruit pulp and peels. LWT, 111, 337-344. https://doi.org/10.1016/j.lwt.2019.05.028
ASOHOFRUCOL. (2019). Asociación Hortifrutícola de Colombia. Balance del sector hortifruticultura en 2018. Bogotá, Colombia. [Online]: https://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdf
Ayala-Aponte, A.A., Leiton-Ramírez, Y. and Serna-Cock, L. (2017). Cambios en propiedades mecánicas durante la deshidratación osmótica de pitahaya amarilla. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), 39-48. https://doi.org/10.1018684/BSAA(15)39-48
Baba, Y., Kallas, Z., Costa-Font, M., Gil, J.M. and Realini, C.E. (2016). Impact of hedonic evaluation on consumers’ preferences for beef attributes including its enrichment whit n-3 and CLA fatty acids. Meat Science, 111, 9-17. https://doi.org/10.1016/j.meatsci.2015.08.005
Basirnejad, M., Milani, A. and Bolhassani, A. (2017). Carotenoids and cancer: biological functions. Acta Scientific Pharmaceutical Sciences, 1(6), 11-20.
Bazán L., E. (2008). Nitritos y Nitratos: su uso, control y alternativas en embutidos cárnicos. Nacameh, 2(2), 160-187.
Bejarano G., A. and Arenas B., R.P. (2003). Pymes de producción y comercialización de guayaba pera en Colombia. Tesis de especialización en Gerencia Estratégica, Universidad de la Sabana, Bogotá, Colombia. 55p.
Bekhit, A.E., Morton, J.D., Bhat, Z.F. and Kong, L.M. (2019). Meat color: factors affecting color stability. Encyclopedia of Food Chemistry, 202-210. https://doi.org/10.1016/B978-0-08-100596-5.21665-X
Benmeziane, F., Djermoune-Arkoub, L., Boudraa, A.T. and Bellaagoune, S. (2018). Physicochemical characteristics and phytochemical content of jam made from melon (Cucumis melo). International Food Research Journal, 25(1), 133-141
Benmeziane, F., Sangare Z. and Djermoune-Arkoub, L. (2019). Spectrophotometric quantification of some pigments in mango pulp (Mangifera indica L.) powder. Asian Journal of Applied Sciences, 12(1), 45-51. https://doi.org/10.3923/ajaps.2019.45.51
Bian, H., Ma, J., Geng, Z., Liu, T., Sun, C., Wang, D., Zhang, M. and Xu, W. (2019). Changes of hydroxyl-linoleic acids during Chinese-style sausage processing and their relationships with lipids oxidation. Food Chemistry, 296, 63-68. https://doi.org/10.1016/j.foodchem.2019.05.183
Bisha, B., Weinsetel, N., Brehm-Stecher, B.F. and Mendonca, A. (2010). Antilisterial effects of gravinol-grape seed extract at low levels in aqueous media and its potential application as a produce wash. Journal of Food Protection, 73, 266-273. https://doi.org/10.4351/0362-028x-73.2.266
Bohn, T. (2018). Carotenoids, chronic disease prevention and dietary recommendations. International Journal for Vitamin and Nutrition Research, 87(3-4), 1-10. https://doi.org/10.1024/0300-9831/a000525
Bolger, Z., Brunton, N.P and Monahan, F.J. (2018). Impact of inclusion of flaxseed oil (pre-emulsified or encapsulated) on the physical characteristics of chicken sausages. Journal of Food Engineering, 230, 39-48. https://doi.org/10.1016/j.foodeng.2018.02.026
Boon, C.S., McClements, D.J., Weiss, J., and Decker, E.A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515-532. https://doi.org/10.1080/10408390802565889
Borges, P.R.S., Tavares, E.G., Guimaraes, I.C., Rocha, R.P., Araujo, A.B., Nunes, E.E. and Vilas Boas, E. Obtaining a protocol for extraction of phenolics from açai fruit pulp through Plackett-Burman design and Response Surface Methodology. Food Chemistry, 210, 189-199. https://doi.org/10.1016/j.foodchem.2016.04.077
Boukroufa, M., Boutekedjiret, C. and Chemat, F. (2017). Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies, 3(3), 252-262. https://doi.org/10.1016/j.reffit.2017.08.007
Bugge, M.M., Fevolden, A.M. and Klitkou, A. (2019). Governance for system optimization and system change: The case of urban waste. Research Policy, 48(4), 1076-1090. https://doi.org/10.1016/j.respol.2018.10.013
Buriti, F.C.A., Cardarelli, H.R. and Saad, S.M.I. (2008). Textura instrumental e avaliação sensorial de queijo fresco cremoso simbiótico: implicações da adição de Lactobacillus paracasei e inulina. Revista Brasileira de Ciencias Farmacêuticas, 44(1), 75-84. https://doi.org/10.1590/S1516-93322008000100009
Calvache, J.N., Cueto, M., Farroni, A., Pla, M.E. and Gerschenson, L.N. (2016). Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.). Journal of Functional Foods, 27, 319-328. https://doi.org/10.1016/j.jff.2016.09.012
Carvajal-Macías, B., Pérez-Ramírez, S., Gaviria-Gaviria, Y. y Alzate-Agudelo, J. (2019). Sustitución de nitritos en un producto cárnico embutido por nabo (Brassica rapa) y sustitución parcial de harina de papa (Solanum tuberosum) por harina de cáscara de mango (Mangifera indica) para la evaluación del desarrollo de color y textura. Informador Técnico, 83(1), 19-29. https://doi.org/10.23850/22565035.1518
Castellano, G., Quijada, O., Marín, C. and Camacho, R. (2004). Fertilización precosecha con fuentes de calcio sobre la firmeza y calidad de frutas de guayaba (Psidium guajava L.). Revista Iberoamericana de Tecnología Poscosecha, 6(2), 72-77.
Celada, P., Bastida, S. and Sánchez-Muniz, F.J. (2016). Comer o no comer carne: ¿es esa la incógnita? Nutrición Hospitalaria, 33(1), 177-181. https://doi.org/10.20960/nh.29
Celli, G.B., Ghanem, A. and Brooks, M.S. (2015). Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrasonics Sonochemistry, 27, 449-455. https://doi.org/10.1016/j.ultsonch.2015.06.014
Chaiwut, P., Pintathong, P. and Rawdkuen. (2010). Extraction and three-phase partitioning behavior of proteases form papaya peels. Process Biochemistry, 45(7), 1172-1175. https://doi.org/10.1016/j.procbio.2010.03.019
Chan, T.Y. (2011). Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicology Letters, 200(1-2), 107-108. https://doi.org/10.1016/j.toxlet.2010.11.002
Chattopadhyay K., K.A., Amjad B., M.J., Layana, P. and Bushan, N., B. (2019). Chitosan gel addition in pre-emulsified fish mince – Effect on quality parameters of sausages under refrigerated storage. LWT, 110, 283-291. https://doi.org/10.1016/j.lwt.2019.04.081
Cheok, C.Y., Adzahan, N.M., Rahman, R.A., Zainal, N.H., Hussain, N., Sulaiman, R. and Chong, G.H. (2018). Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition, 58(3), 335-361. https://doi.org/10.1080/10408398.2016.1176009
Choe, J.H., Kim, H.Y., Lee, J.M., Kim, Y.J. and Kim, C.J. (2013). Quality of frankfurter-type sausages with added pig skin and wheat fiber mixture as fat replacers. Meat Science, 93(4), 849-854. https://doi.org/10.1016/j.meatsci.2012.11.054
Choi, J.H., Song, D.H., Hong, S.H., Ham, Y.K., Ha, J.H., Choi, Y.S. and Kim, H.W. (2019). Nitrite scavenging impact of fermented soy sauce in vitro and in a pork sausage model. Meat Science, 131, 36-42. https://doi.org/10.1016/j.meatsci.2019.01.001
Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E. and García-Villabona, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44, 2047-2053. https://doi.org/10.1016/j.foodres.2010.11.003
Coutinho de Oliveira, T.L., Malfitano de Carvalho, S., de Araújo Soares, R., Andrade, M.A, Cardoso, M.D.G., Ramos, E.M. and Piccoli, R.H. (2012). Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT – Food Science and Technology, 45(2), 204-212. https://doi.org/10.1016/j.lwt.2011.09.006
Cui, H., Gabriel, A.A. and Nakano, H. (2010). Antimicrobial efficacies of plant extracts and sodium nitrite against Clostridium botulinum. Food Control, 21(7), 1030-1036. https://doi.org/10.1016/j.foodcont.2009.12.023
Cury, K., Aguas, Y., Martínez, A., Olivero, R., & Ch, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal-RECIA, 122-132. https://doi.org/10.24188/reciav9.nS.2017.53
DANE. (2020). Departamento Administrativo Nacional de Estadísticas. Encuesta Nacional Agropecuaria. Bogotá, Colombia. [Online]: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019-1.pdf
De Oliveira, S., Araújo, A.N., De Sousa, A.N., Magalhães, T.A., Lopes, G.S., Rodrigues, S., Correia da Costa, J.M., Narciso, F.A. and Vasconcelos, M.G. (2015). Characterization of he industrial residues of seven fruits and prospection of their potential application as food supplements. Journal of Chemistry, Article ID 264284, 1-9. https://doi.org/10.1155/2015/2645284
De Souza P., C., De Figueredo F., G., Honorio, A.R., Mokarsel, L., Da Silva V., V.A., Badan R., A.P., Lopes C., R. and Rodrigues P., M.A. (2019). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20, 100105. https://doi.org/10.1016/j.foostr.2019.100105
Deda, M.S., Bloukas, J.G. and Fista, G.A. (2007). Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Science, 76(3), 501-508. https://doi.org/10.1016/j.meatsci.2007.01.004
Delgado-Vargas, F., Jiménez, A.R. and Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins and Betalains – characteristics, biosynthesis, processing and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. https://doi.org/10.10810/10408690091189257
Dey, S. and Rathod, V.K. (2013), Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochemistry, 20(1), 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010
Dhillon, G.S., Kaur, S. And Brar, S.K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renewable and Sustainable Energy Reviews, 27, 789-805. https://doi.org/10.1016/j.rser.2013.06.046
Dong, C., Wang, B, Li, F., Zhong, Q., Xia, X. and Kong, B. (2020). Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Science, 159, 107919. https://doi.org/10.,1016/j.meatsci.2019.107919
Du, G., Li, M, Ma, F. and Liang, D, (2009). Antioxidant capacity and relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. https://doi.org/10.1016/j.foodchem.2008.08.025
Duizer, L.M. and Walker, S.B. (2016) The application of sensory science to the evaluation of grain-bassed foods. Encyclopedia of Food Grains, 3, 144-153. https://doi.org/10.1016/B978-0-08-100596-5.00134-7
Dzudie, T., Scher, J. and Hardy, J. (2002). Common bean flour as an extender in beef sausages. Journal of Food Engineering, 52(2), 143-147. https://doi.org/10.1016/S0260-8774(01)00096-6
Eldahshan, O. and Singab, A.N. (2013). Carotenoids. Journal of Pharmacognosy and Phytochemistry, 2(1), 225-234
Ellong, E.N., Billard, C., Adenet, S. and Rochefort, K. (2015). Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food and Nutrition Sciences, 6, 299-313. https://doi.org/10.4236/fns.2015.63030
ENCOLOMBIA. (2014). Cultivo de Guayaba. Bogotá, Colombia. [Online]: https://www.encolombia.com/economia/agroindustria/cultivo/cultivodeguayaba
Exotic Fruit Box. (2020). Málaga, España. [Online]. https://exoticfruitbox.com/frutas-exoticas/papaya
Eyiler, E., Oztan, A. (2011). Production of frankfurters with tomato powder as a natural additive. LWT – Food Science and Technology, 44(1), 307-311. https://doi.org/10.1016/j.lwt.2010.07.004
FACTFISH. (2018). World Statistics and Data Research. Papayas, production quantity (tons) – for all countries. [Online]: https://www.factfish.com/statistic/papayas%2C%20production%20quantity
Fang, F.C. (1997). Perspectives series: host/pathogen interactions. Mechanism of nitric oxide-related antimicrobial activity. The Journal of Clinical Investigation, 99(12), 2818-2815. https://doi.org/10.1172/JC119473
FAO. (2000). Organización de las Naciones Unidad para la Alimentación y la Agricultura. Manual de manejo poscosecha de frutas tropicales (papaya, piña, plátano, cítricos) Roma, Italia. [Online]: https://www.fao.org/inpho/content/documents/vlibrary/ac304s/ac304s00.htm
FAO. (2019). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Fruta tropical. Roma, Italia. [Online]: https://www.fao.org/economic/est/est-commodities/frutas-tropicales/es/
Faten, A.E. and Rehab, M.A. (2014). Antioxidant and anticancer activities of different constituents retrieved from Egyptian prickly cactus pear (Opuntia ficus indica) peel. Biochemistry & Analytical Biochemistry, 3(2), 1-9. https://doi.org/10.4172/2161-1009.1000158
FEN. (2016). Fundación Española de la Nutrición. Carne roja y procesada: interpretación del informe de la OMS sobre la carcinogenicidad de su consumo. Madrid, España. [Online]: https://www.fen.org.es/blog/carne-roja-y-procesada-interpretacion-del-informe-de-la-oms-sobre-la-carcinogenicidad-de-su-consumo/
Feng, C.H. and Makino, Y. (2020). Colour analysis in sausages stuffed in modified casings with different storage days using hyperspectral imaging – a feasibility study. Food Control, 111, 107047. https://doi.org/j.foodcont.2019.107047
Fernández-López, J., Lucas-González, R., Viuda-Martos, M., Sayas-Barberá, E., Ballester-Sánchez, J., Haros, C.M., Martínez-Mayoral, A., Pérez-Álvarez, J.A. (2020). Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chemistry, 310, 125936. https://doi.org/10.1016/j.foodchem.2019.125936
Ferrufino-Peña, P.J. (2017). Efecto del remplazo parcial de nitrito de sodio por achiote (Bixa orellana L.) en las propiedades de salchichas frankfurter. Tesis de grado en Ingeniería en Agroindustria Alimentaria. Zamorano, Honduras, 26 p.
Fiorda, F.A., Soares, M., da Silva, F.A., Araújo, C.M. and Grossmann, M.V.E. (2015). Physical Quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusión variables. LWT – Food Science and Technology, 62(2), 1112-1119. https://doi.org/10.1016/j.lwt.2015.02.030
Flores, J.D., Child, G., Baez, J.G., García-Alanis. K., Gallardo, C. and Castillo, S.L. (2018). Evaluación antimicrobiana, antioxidante y composición nutricia de subproductos bioprocesados de Carica Papaya L. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 3, 145-150.
Formiga, A.S. Pinsetta J., J.S., Pereira, E.M., Cordeiro, I. and Mattiuz, B. (2019). Use of edible coatings bassed on hydroxypropyl methylcellulose and beeswax in the conservation of red guava “Pedro Sato”. Food Chemistry, 290, 144-151. https://doi.org/10.1016/j.foodchem.2019.03.142
García, A., Izquierdo, P., Uzcátegui-Bracho, S., Faría, J.F., Alfara, M. and García, A.C. (2005). Formulación de salchichas con atún y carne: vida útil y aceptabilidad. Revista Científica FCV-LUZ, 15(3), 272-278
Gassara, F., Kouassi, A.P., Brar, S.K. and Belkacemi, K. (2016). Green alternatives to nitrates and nitrites in meat-based products – a review. Critical Reviews in Food Science and Nutrition, 56(13), 2133-2148. https://doi.org/10.1080/10408398.2013.812610
Gata F., V. (2017). Evidencia de la asociación entre cáncer colorrectal y la ingesta de carnes procesadas. Nutrición Clínica y Dietética Hospitalaria, 37(2), 69-74. https://doi.org/10.12873/372gata
Gayosso-García, L.E., Yahia, E.M., Martínez-Tellez, M.A., González-Aguilar, G.A. (2010). Effect of maturity stage of papaya Maradol on physiological and biochemical parameters. American Journal of Agricultural and Biological Sciences, 5(2), 194-203. https://doi.org/10.3844/ajabssp.2010.194.2003
Ghafouri-Oskuei, H., Javadi, A., Saedi A., M.R., Azadmard-Damichi, S. and Armin, M. (2020). Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Science, 161, 107957. https://doi.org/10.1016/j.meatsci.2019.107957
Ghalati, R.E., Shamilli, M. and Homaei, A. (2019). Guava (Psidium guajava L.) leaf protease activity enriched by controlled-stress and putrescine application. Scientia Horticulturae, 248, 105-111. https://doi.org/10.1016/j.scienta.2019.01.010
Gil G., M.A., Bedoya M., V., Millán C., L.J. and Benavides P., Y. L. (2012). Papaína extraída a partir de la cascara de la papayuela perteneciente a la especie (Carica papaya L.), por medio de microondas con aplicación en el ablandamiento de la carne bovina. Journal of Engineering and Technology, 1(1), 18-25
Gonçalves, L.G., Mazzutti, M., Vitali, L., Micke, G.A. and Salvador, S.R. (2019). Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology, 22, 101367. https://doi.org/10.1016/j.bcab.2019.101367
Gonçalves, J. and Vitoria, A.P. (2011). Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders: an overview. Food Research International, 44(1), 1306-1313. https://doi.org/10.1016/j.foodres.2010.12.035
Gong, H., Yang, Z., Liu, M., Shi, Z., Li, J., Chen, W. and Qiao, X. (2017). Time-dependent categorization of volatile aroma compound formation in stewed Chinese spicy beef using electron nose profile coupled with thermal desorption GC–MS detection. Food Science and Human Wellness, 6(3), 137-146. https://doi.org/10.1016/j.fshw.2017.07.001
González, B. and Diez, V. (2002). The effect nitrite and starter culture on microbiological Quality of chorizo-a Spanish dry cured sausage. Meat Science, 60(3), 295-298. https://doi.org/10.1016/S0309-1740(01)00137-1
Goula, A.M., Ververi, M., Adamopoulou, A. and Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821-830. https://doi.org/10.1016/j.ultsonch.2016.07.022
Govari, M. and Pexara, A. Nitrates and nitrites in meat products. Journal of Hellenic Veterinary Medical Society, 66(3), 127-140. https://doi.org/10.12681/jhvms.15856
Grompone, M.A. (1991). El índice de anisidina como medida del deterioro latente de un material graso. Grasas y aceites revistas csic. Es, 42(1), 8-13
Grune, T., Lietz, G. Palou, A., Ross, A.C., Stahl, W., Tang, G., Thumham, D., Yin, S.A. and Biesalki, H.K. (2010). Beta-carotene is an important vitamin A source for humans. Journal of Nutrition, 140(12), 2268-2285. https://doi.org/10.3945/jn.109.119024
Guavita-Vargas, J., Avellaneda-Torres, L.M., Solarte, M.E. and Melgarejo, L.M. (2018). Carotenoides, clorofilas y pectinas durante la maduración de variedades de guayaba (Psidium guajava L.) de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(2), 379-389. https://doi.org/10.17584/rech.2018v12i2.7713
Gurak, P.D., De Bona, G.S., Tessaro, I.C. and Ferreira, D. (2014). Jaboticaba pomace powder obtained as a co-product o juice extraction: a comparative study of powder obtained from peel and whole fruit. Food Research International, 62, 786-792. https://doi.org/10.1016/j.foodres.2014.04.042
Gutiérrez-Salinas, J., Mondragón-Terán, P., García-Ortiz, L., Hernández-Rodríguez, S., Ramírez-García, S. and Nuñez-Ramos, N. (2014). Breve descripción de los mecanismos moleculares de daño celular provocado por los radicales libres derivados de oxígeno y nitrógeno. Revista de Especialidades Médico-Quirúrgicas, 19(4), 446-454.
Hamzaoui, A., Ghariani, M., Sellem, I., Hamdi, M., Feki, A, Jaballi, I., Nasri, M. and Amara, I.B. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages. International Journal of Biological Macromolecules, 148, 1156-1158. https://doi.org/10.1016/j.ijbiomac.2002.01.009
Hammed, B.H. (2009). Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162(2-3), 939-944. https://doi.org/10.1016/j.hazmat.2008.05.120
Hammes, W.P. (2012). Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiology, 29(2), 151-156. https://doi.org/10.1016/j.fm.2011.06.016
Haskell, M.J. (2013). Provitamin A carotenoids as a dietary source of vitamin A. In S.A. Tanumihardjo S. (Eds) Carotenoids and Human Health. Butrition and Health. Humana Press, Totowa, N.J. pp. 249-260
Hernández-Hernández, E., Ponce-Alquicira, E., Jaramillo-Flores, M.E. and Legarreta, I.G. (2009). Antioxidant effect Rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on TBARS and color of model raw pork batters. Meat Science, 81(2), 410-417. https://doi.org/j.meatsci.2008.09.004
Hernández, Y., Lobo, M.G. and González, M. (2007). Optimización del tipo de troceado de papaya mínimamente procesada y su efecto en la translucidez. In: Grupo de postrecolección y refrigeración. UPCT (ed.) V Congreso Iberoamericano de Tecnología Poscosecha y Agroexportaciones. p. 751-759
Herrera J., J.F. and Bello, V.J. (2015). Investigación del cultivo de guayaba media china. Universidad Autónoma de Chapingo, Departamento de Agronomía, Academia de Meteorología. Texcoco, México. [Online]: https://www.academia.edu/39171704/ACADEMIA_DE_METEOROLOGÍA_INVESTIGACIÓN_DEL_CULTIVO_DE_GUAYABA_MEDIA_CHINA
Hleap Z., J.I. and Molina C., A. (2008). Proceso de elaboración de salchiichas a partir de tilapia roja (Oreochromis sp) con adición de almidón de sagú (Marantha arundinacea). Manual de transferencia de Tecnología. Universidad Nacional de Colombia – Sede Palmira. 56 p.
Hleap Z., J.I., Burbano P., M.Y. and Mora V., J.M. (2017). Evaluación fisicoquímica y sensorial de salchiichas con inclusión de harina de quinua (Chenopodium quinoa W.). Biotecnología en el Sector Agropecuario y Agroindustrial, 15(EE 2), 61-71. https://doi.org/10.18684/bsaa(v15)EdicionEspecial2.579
Hleap Z., J.I., Rodríguez, G.C. and Dussán S., S. (2020). Efecto de la sustitución de grasas en salchichas de tilapia roja (Oreochromis sp.) por una mezcla de piel de cerdo y fibra de quinua. Revista U.D.C.A. Actualidad & Divulgación Científica, 23(1), 1-10. https://doi.org/10.31910/rudav.23.n1.2020.1149
Horita, C.N., Farías-Campomanes, A.M., Barbosa, T.S., Esmerino, E.A., Gomes da Cruz, A., Bolini, H.M.A., Meireles, M.A.A. and Pollonio, M.A.R. (2016). The antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurters along shelf-life. Food Research International, 84, 1-8. https://doi.org/10.1016/j.foodres.2016.02.006
Hospital, X.F., Carballo, J., Fernández, M., Arnau, J., Gratacós, M. and Hierro, E. (2015). Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: typical microbiota, residual nitrate and nitrite and volatile profile. Food Control, 57, 275-281. https://doi.org/10.1016/j.foodcont.2015.04.024
Hwang, K.E., Kim, T.K., Kim, H.W., Seo, D.H., Kim, Y.B., Jeon, K.H. and Choi, Y.S. (2018). Effect of natural pre-converted nitrite sources on color development in raw and cooked pork sausage. Asian-Australasian Journal of Animal Sciences, 31(8), 1358-1365. https://doi.org/10.5713/ajas.17.0767
ICONTEC. (1999a). Instituto Colombiano de Normas Técnicas y Certificación. Jugos de Frutas y Hortalizas. Determinación del contenido de sólidos solubles. Método refractométrico. NTC 4624. Bogotá, Colombia. pp 9.
ICONTEC. (1999b). Instituto Colombiano de normas Técnicas y Certificación. Productos de Frutas y verduras. Determinación del pH. NTC 4592. Bogotá, Colombia. pp 4.
ICONTEC. (1999c). Instituto Colombiano de Normas Técnicas y Certificación. Productos de Frutas y verduras. Determinación de la acidez titulable. NTC 4623. Bogotá, Colombia. pp 6.
ICONTEC. (2008). Instituto Colombiano de Normas Técnicas y Certificación. Industrias Alimentarias. Productos Cárnicos procesados no enlatados. NTC 1325. Bogotá, Colombia. pp 32.
Ingkasupart, P., Manochai, B., Song, W.T. and Hong, J.H. (2015). Antioxidant activities and lutein content of 11 marigold cultivars (Tagetes spp.) grown in Thailand. Food Science and Technology, 35(2), 380-385. https://doi.org/10.1590/1678-457X.6663
Izquierdo, P., García, A., Allara, M., Rojas, E., Torres, G. and González, P. (2007). Análisis proximal, microbiológico y evaluación sensorial de salchichas elaboradas a base de cachama negra (Colossoma macropomum). Revista Científica FVC-LUZ, 17(3), 294-300.
Jamal, P., Akbar, I., Jaswir, I. and Zuhanis, Y. (2017). Quantification of total phenolic compounds in papaya fruit peel. Tropical Agricultural Science, 40(1), 87-98.
Jayasena, D.D. and Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends in Food Science and Technology, 34(2), 96-108. https://doi.org/10.1016/j.tifs.2013.09.002
Jiménez, M.E., Zambrano, M.L. and Aguilar, M.R. (2004). Estabilidad de pigmentos en frutas sometidas a tratamiento con energía de microondas. Información Tecnológica, 15(3), 61-66. https://doi.org/10.4067/50718-07642004000300009
Jin, S.K., Choi, J.S., Yang, H.S., Park, T.S. and Yim, D.G. (2018). Natural curing agents as nitrite alternatives and their effects on the Physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Science, 146, 34-40. https://doi.org/10.1016/j.meatsci.2018.07.032
Kassegn, H.H. (2018). Determination of proximate composition and bioactive compounds of the Abyssinian purple wheat. Food Science & Technology, 4, 1-9. https://doi.org/10.1080/23311932.2017.1421415
Ke, P.I. and Woyewoda, A.D. (1979). Microdetermination of thiobarbituric acid values in marine lipids by a direct spectrophotometric method whit a monophasic reaction system. Analytical Chimica Acta, 106(12), 279-284. https://doi.org/10.1016/S0003-2670(01)85011-X
Kim, Y.H., Nam, K.C. and Ahn, D.U. (2002). Color, oxidation-reduction potential, and gas production of irradiated meats from different animal species. Journal of Food Science, 67(5), 1692-1695. https://doi.org/10.1111/j.1365-2621.2002.tb08707.x
Kim, H.W., Hwang, K.E., Song, D.H., Kim, Y.J., Ham, Y.K., Lim, Y.B., Jeong, T.J., Choi, Y.S. and Kim, C.J. (2015). Wheat fiber colored with a safflower (Carthamus tinctorius L.) red pigment as a natural colorant and antioxidant in cooked sausages. LWT – Food Science and Technology, 64(1), 350-355. https://doi.org/10.1016/j.lwt.2015.05.064
Lang, E., Chemial, L., Molin. P., Guyot, S., Alvarez-Martín, P., Perrier-Cornet, J.M., Dantigny, P. and Gervais, P. (2017). Modeling the heat inactivation of foodborne pathogens in milk powder: high relevance of the substrate water activity. Food Research International, 99(1), 577-585. https://doi.org/10.1016/j.foodres.2017.06.028
Lee, W.J., Lee, M.H. and Su, N.W. (2011). Characteristics of papaya seed oils obtained by extrusion-expelling processes. Journal of the Science of Food and Agriculture, 91(13), 2348-2354. https://doi.org/10.1002/j.sfa.4466
Li, Z., Keasling, J.D. and Nigoyi, K.K. (2012). Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiology, 158, 313-323. https://doi.org/10.1104/pp.111.181230
Li, Y., Fabiano-Tixier, A.S., Tomao, V., Cravotto, G. and Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids Based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12-18. https://doi.org/10.1016/j.ultsonch.2012.07.005
Li, X., Wang, T., Zhou, B, Gao, W., Cao, J. And Huang, L. (2014). Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chemistry, 152(1), 531-538. https://doi.org/10.1016/j.foodchem.2013.12.010
Linnewiel-Hermoni, K., Khanin, M., Danilenko, M., Zango, G., Amosi, Y., Levy, J. and Sharoni, Y. (2015). The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, 572, 28-35. https://doi.org/10.1016/j.abb.2015.02.018
Liu, D.C., Wu, S.W., and Tan, F.J. (2010). Effects of addition of anka rice on the qualities of low-nitrite Chinese sausages. Food Chemistry, 118(2), 245-250. https://doi.org/10.1016/j.foodchem.2009.04.114
Lundberg, J.O., Weitzberg, E., Cole, J.A. and Benjamin, N. (2004). Nitrate, bacteria and human health. Nature Reviews. Microbiology, 2(7), 593-602. https://doi.org/10.1038/nrmicro929
Madrid V., A. (2014). La carne y los productos cárnicos. Ciencia y Tecnología. 1a. Ed. Editor: Antonio Madrid Vicente, Madrid, España. 320 p.
Majul, E.M., Morón M.J., Ramón, A.N. (2004). Estimación de la ingesta potencial de nitritos en productos cárnicos de mayor consumo en adolescentes. RESPYN Revista Salud Pública y Nutrición, 5(3), 1-11.
Marchetti, L., Argel, N., Andrés, S. C., & Califano, A. N. (2015). Sodium-reduced lean sausages with fish oil optimized by a mixture design approach. Meat science, 104, 67-77. https://doi.org/10.1016/j.meatsci.2015.02.005
Marelli de Souza, L., Silva, K., Paes, J.B. and Lopes, S. (2008). L-ascorbic acid, β-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles. Scientia agrícola, 65(3), 246-250. https://doi.org/10.1590/S0103-90162008000300004
Marti-Quijal, F.J., Zamuz, S., Tomaševic, I., Gómez, B., Rocchetti, G., Lucini, L., Remize, F. Barba, F.J. and Lorenzo, M. (2019). Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. LWT, 110, 316-323. https://doi.org/10.1016/j.lwt.2019.04.097
Martín-Sánchez, A.M., Ciro-Gómez, G., Vilella-Esplá, J., Pérez-Álvarez, J.A. and Sayas-Barberá, E. (2014). Influence of fresh date palm co-products on the ripening of a paprika added dry-cured sausage model system. Meat Science, 97(2), 130-136. https://doi.org/10.1016/j.meatsci.203.12.005
Martínez-Girón, J., Rodríguez-Rodríguez, X., Pinzón-Zárate, L.X. y Ordoñez-Santos, L.E. (2017). Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Ciencia y tecnología Agropecuaria, 18(3), 599-613. https://doi.org/1’0.21930/rcta.vol18_num3_art:747
Martínez-Girón, J., Ordoñez-Santos, L.E. and Rodríguez-Rodríguez, D.X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA, 86(209), 91-96. https://doi.org/10.15446/dyna.v86n209.74840
Martínez-Ortiz, M.A., Palma-Rodríguez, H.M., Montalvo-González, E., Sáyago-Ayerdi, S.G., Utrilla-Coello, R. and Vargas-Torres, A. (2019). Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Scientia-Horticulturae, 256, 108604. https://doi.org/10.1016/j.scienta.2019.108604
Meléndez-Martínez, A.J., Vicario, I.M. and Heredia, F.J. 2007. Pigmentos carotenoides: consideraciones estructurales y fisicoquímicas. Archivos Latinoamericanos de Nutrición, 57(2), 109-117.
Mendy, T.K., Misran, A., Mahmud, T.M.M. and Ismail, S.I. (2019). Application of aloe vera coating delays the ripening and extend shelf life of papaya fruit. Scientia Horticulturae, 246, 769-776. https://doi.org/10.1016/j.scienta.2018.11.054
Merino, L., Darnerud, P.O., Toldrá, F. and Ilbäck, N.G. (2016). Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrate intake estimation. Food Additives and Contaminants, 3(2), 186-192. https://doi.org/10.1080/19440049.2015.1125530
Moon, P., Fu, Y., Bai, J., Plotto, A., Crane, J. and Chambers, A. (2018). Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages. Scientia Horticulturae, 238, 375-383. https://doi.org/10.1016/j.scienta.2018.04.067
Morais, D.M., Rotta, E.M., Sargi, S.C., Schmidt, M.S., Bonafe, E.G., Eberlin, M.N., Sawaya, A. and Visentainer, J.V. (2015). Antioxidant activity phenolics and UPLC-ESE (-) – MS of extracts tropical fruits from different parts and processed peels. Food Research International, 77(3), 392-399. https://doi.org/10.1016/j.foodres.2015.08.036
Morita, H., Yoshikawa, H., Suzuki, T. Hisamatsu, S., Kato, Y, Sakata, R., Nagata, Y. and Yoshimura, T. (2004). Anti-microbial action against verotoxigenic Escherichia coli O157:H7 of nitric oxide derived from sodium nitrite. Bioscience, Biotechnology and Biochemistry, 68(5), 1027-1034. https://doi.org/10.1271/bbb.68.1027
Murador, D.C., Salafia, F., Zoccali, M., Martins, P.L., Ferreira, A.G., Dugo, P., Mondello, L., de Resso, V. and Giuffrida, D. (2019) Green extraction approaches for carotenoids and esters: characterization of native composition from orange peel. Antioxidants, 8(12), 613-631. https://doi.org/10.3390/antiox8120613
Murmu, S.B. and Mishra, H.N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil cinnamon and lemon grass on guava. Food Chemistry, 245, 820-828. https://doi.org/10.1016/j.foodchem.2017.11.104
Mustafa, F.A. (2013). Effect of green tea extract on color and lipid oxidation in ground beef meat. Journal of Tikrit University for Agriculture Sciences, 13(1), 351-354.
Nair, M.S., Saxena, A. and Kaur, C. (2018). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry, 240, 245-252. https://doi.org/10.1016/j.foodchem.2017.07.122
Nasir, M., Boot, M., Anium, F., Sharif, K. and Minhas, R. (2003). Effect of moisture on the shelf life of wheat flour. International Journal of Agriculture & Biology, 5(4), 458-459
Navarro-Cruz, A., Rojas-Zenteno, E., Lazcano-Hernández M. and Vera-López, O. (2016). Propiedades funcionales de semillas de papaya (Carica papaya L.). Revista de Ciencias de la Salud, 3(7), 48-56.
Nayak, B.S., Ramdeen, R., Adogwa, A., Ramsubhag, A. and Marshall, J.R. (2012). Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. International Wound Journal, 9(6), 650-655. https://doi.org/10.1111/j.1742-481X.2011.00933.x
Ng, L.Y., Ang, Y.K., Khoo, H.E. and Yim, H.S. (2012). Influence of different extraction parameters on antioxidant properties of Carica papaya peel and seed. Research Journal of Phytochemistry, 6, 61-74. https://doi.org/10.3923/rrjphyto.2012.61.74
Nikousaleh, A. and Prakash, J. (2016). Antioxidant properties of selected spices used in Iranian cuisine and their efficacy in preventing lipid peroxidation in meat sausages. Journal of Agricultural Science and Technology, 18(1), 67-78
Noronha, K.A., Lima, P., Pereira, A.P., Zerlotti, A., and Campos, R. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. https://doi.org/10.1016/j.foodchem.2018.08.053
Nowak, A., Czyzowska, A., Efenberger, M. and Krala L. (2016). Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiology, 59, 142-149. https://doi.org/10.1016/j.fm.2016.06.004
Oliveira, D., Lobato, A.L., Ribeiro, S.M., Santana, A.M. Chaves, J.B. and Pinheiro-Sant’Ana, H.M. (2010). Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. Journal of Agricultural and Food Chemistry, 58(10), 6166-6172. https://doi.org/10.1021/jf903734x
Oliveira de Araújo, N. (2016). Variación espacial de las características fisicoquímicas en frutas de la papaya Formosa. Idesia (Arica), 34(5), 5-9. https://doi.org/10.4067/S0718-34292016005000023
OMS. (2015). Organización Mundial de la Salud. Carcinogenicidad del consumo de carne roja y de la carne procesada. [Online]: https://www.who.int/features/qa/cancer-red-meat/es/
Ordoñez-Santos, L.E., Hurtado-Aguilar, P., Ríos-Solarte, O.D. and Arias-Jaramillo, M.E. (2014). Concentración de carotenoides totales en residuos de frutas tropicales. Producción + Limpia, 9(1), 91-98.
Ordoñez-Santos, L.E., Pinzón-Zárate, L.X. and González-Salcedo, L.O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm Fruit (Bactris gasipaes) by-products with sun flower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560-566. https://doi.org/10.1016/j.ultsonch.2015.04.010
Ordoñez-Santos, L.E., Esparza-Estrada, J. and Osorio-Mora, O. (2019a). Valorization of mulberry (Rubus glaucus) by-products: ultrasound-assisted extraction of total anthocyanins. Revista de la Facultad de Ciencias Agrarias UNCUYO, 51(2), 367-380.
Ordoñez-Santos, L.E., Osorio-Mora, O. and Pinchao, Y.A. (2019b). Evaluation of the effect of different factors on the ultrasound assisted extraction of phenolic compounds of the pea pod. DYNA, 86(210), 211-215. https://doi.org/10.15446/dyna.v86n210.72880
Ordoñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2020). Potencial agroindustrial del epicarpio de mandarina como alternativa de colorante natural en pan. TecnoLógicas, 23(48), 17-29. https://doi.org/10.22430/22565337.1465
Ozaki, M.M., Munekata, P.E., De Souza L., A., Da Silva N., M., Paleiro, M., Lorenzo, J.M. and Rodrigues, M.A. (2020). Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Science, 167, 108165. https://doi.org/10.1016/j.meatsci.2020.108165
Palavecino F., F. and Palacio, M.I. (2017). Determinación de la Concentración de nitritos en salchiichas Viena de marcas comerciales. Tesis de grado en Licenciatura en Tecnología de Alimentos. Tandil, Argentina, 36 p.
Parni, B. and Verma, Y. (2014). Biochemical properties in peel, pulp and seeds of Carica papaya. Plant Archives, 14(1), 565-568.
Parthasarathy, D. and Bryan, N. (2012). Sodium nitrite: the “cure” for nitric oxide insufficiency. Meat Science, 92(3), 274-279. https://doi.org/10.1016/j.meatsci.2012.03.001
Pateiro, M., Franco, D., Carril, J.A. and Lorenzo, J.M. (2015). Changes on physico-chemical properties, Lipid oxidation and volatile compounds during the manufacture of celta dry-cured loin. Journal of Food Science and Technology, 8, 4808-4818. https://doi.org/10.1007/s13197-014-1561-x
Pinzón-Zárate, L.X., Hleap-Zapata, J.I. and Ordoñez-Santos, L.E. (2015). Análisis de los parámetros de color en salchiichas Frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris gasipaes). Información Tecnológica, 26(5), 45-54. https://doi.org/10.4067/S0718-07642015000500007
Prasad, K., Singh, J. and Chandra, D. (2014). Quantification of antioxidant phytochemicals in fresh vegetables using high performance liquid chromatography. Research Journal of Photochemistry, 8(4), 162-167. https://doi.org/10.3923/rjphyto.2014.162.167
Pritwani, R. and Mathur, P. (2017). Β-carotene content of some commonly consumed vegetables and fruits available in Delhi, India. Journal of Nutrition & Food Sciences, 7(5), 2-7. https://doi.org/10.4172/2155-9600.1000625
PROEXANT. (2012). Promoción de exportaciones agrícolas no tradicionales. Producción de la guayaba. La industria se moderniza. [Online]: https://www.issuu.com/diario_larepublica/docs/agronegocios_junio_06_de_2012
Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S. and Cortés, M. (2010), Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International, 44(7), 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034
Raja, K.S., Taip, F.S., Zakuan, M.M. and Islam, M.R. (2019). Effect of pre-treatment and different drying methods on the physicochemical properties of Carica papaya L. leaf powder. Journal of the Saudi Society of Agricultural Sciences, 18(2), 150-156. https://doi.org/10.1016/j.jssas.2017.04.001
Repo de Carrasco, R. and Encina Z., C.R. (2008). Determinación de la capacidad antioxidante y compuestos bioactivos de frutas nativas peruanas. Revista de la Sociedad Química del Perú, 74(2), 108-124.
Restrepo M., D.A. (2018). La carne: ciencia, tecnología y salud. 1a. Ed. Editor: Instituto de Ciencia y Tecnología Alimentaria – INTAL y Universidad Nacional de Colombia. Medellín, Colombia 440 p.
Reyes, L. and González, E. (2002). Origen. En el libro: Guayaba su cultivo en México. Libro técnico No. 1 Capítulo 7. Campo experimental piloto, México. pp. 5-9.
Reyes-Munguía, A., Alanis-Campos, L.G., Vásquez-Elorza, A. and Carrillo-Inungaray, M.A. (2016). Propiedades antioxidantes de extractos acuosos frescos y secos de cáscara de C. papaya L. Revista de Ciencias de la Salud, 3(6), 44-49.
Riazi, F., Zeynali, F., Hoseini, E., Behmadi, H. and Savadkoohi, S. (2016). Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Science, 121, 350-358. https://doi.org/10.1016/j.meatsci.2016.07.008
Riel, G., Boulaaba, A., Popp, J., Klein, G. (2017). Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella- type sausages – Impact on microbiological, physicochemical and sensory aspects. Meat Science, 131, 166-175. https://doi.org/10.1016/j.meatsci.2017.05.007
Rinaldi, M., De Lima, T., and Ramírez, D. (2010). Caracterizao física de frutos de mamão e química de cascas e sementes. Planaltina. Embrapa Cerrados, D.F. 1-18
Rodas H., M. (2005). Determinación de la concentración de nitritos y nitratos en salchicha ofertada que se comercializa en los supermercados de la ciudad capital. Tesis de grado en Química Farmacéutica. Ciudad de Guatemala, Guatemala, 69 p.
Rodrigues-Amaya, D.B. (2018). Natural Food Pigments and Colorants. In: Merillon, J.M., Ramawat, K. (Eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. pp. 1-35
Rodríguez-Leyton, M. (2019). Desafíos para el consumo de frutas y verduras. Revista de la Facultad de Medicina Humana, 19(2), 105-112. https://doi.org/10.25176/RFMH.v19n.2.2077
Rojas-Garbanzo, C., Gleichenhagen, M.P., Heller, A., Esquivel, P., Schulze, N. and Scheiber, A. (2017). Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guava L. cv. “Criolla”) during fruit ripening. Journal of Agricultural and Food Chemistry, 65(18), 3737-3747. https://doi.org/10.1021/acs.jafc.6b04560
Rubio, R., Martínez, B., García-Cachán, D., Rovira, J. and Jaime, I. (2008). Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichón manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Science, 80(4), 1182-1187. https://doi.org/10.1016/j.meatsci.2008.05.012
Ruiz-Capillas, C., Tahmouzi, S., Triki, M., Rodríguez-Salas, L. Jiménez-Colmenero, F. and Herrero, A.M. (2015). Nitrite-free Asian hot dog sausages reformulated with nitrite replacers. Journal of Food Science and Technology, 52(7), 4333-4341. https://doi.org/10.1007/s13197-014-1460-1
Saini, R.K., Nile, S.H. and Park, S.W. (2015). Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76(3), 735-750. https://doi.org/10.1016/j.foodres.2015.07.047
Saldaña, E., Behrens, J.H., Serrano, J.S., Ribeiro, F., Almeida, M.A. and Contreras-Castillo, C.J. (2015). Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Structure, 6, 13-20. https://doi.org/10.1016/j.foostr.2005.09.001
Sánchez Z., Micro. (2008). Efectos de los trihalometanos sobre la salud. Higiene y Sanidad Ambiental, 8, 280-290
Santamaría, F., Kauri, E., Swords, G., Díaz, R., Larqué, A. and Santamaría, J.M. (2009). Postharvest ripening and maturity indices for Maradol papaya. Interciencia, 34(8), 583-588.
Santos, M.M.F., Lima, D.A.S., Madruga M.S. and Silva, F.A.P. (2020). Lipid and protein oxidation of emulsified chicken patties prepared using abdominal fat and skin. Poultry Science, 99(3), 1777-1787. https://doi.org/10.1016/j.psj.2019.11.027
Savadkoohi, S., Hoogenkamp, H., Shamsi, K. and Farahnaky, A. (2014). Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Science, 97(4), 410-418. https://doi.org/10.1016/j.meatsci.2014.03.017
Serna-Cock, L., Torres-Leon, C. and Ayala-Aponte, A. (2015). Evaluación de polvos alimentarios obtenidos de cáscaras de mango (Mangifera índica) como fuente de ingredientes funcionales. Información Tecnológica, 26(2), 41-50. https://doi.org/10.4067/S0718-07642015000200006
Shahat, M., Ibrahim, M.I., Osheba, A.S. and Taha, I.M. (2016). Effect of plant powders as natural nitrate source on reduction of nitrosamine compounds in beef burgers. Middle East Journal of Applied Sciences, 6(1), 198-206
Shahidi, F., Rubin, L.J. and D’Souza, L.A. (1986). Meat flavor volatiles: a review of the composition, techniques of analysis, and sensory evaluation. Critical Reviews in Food Science and Nutrition, 24(2), 141-243. https://doi.org/10.1080/10408398609527435
Shete, V. and Quadro, L. (2013). Mammalian metabolism of β-carotene; gaps in knowledge. Nutrients, 5(12), 4849-4868. https://doi.org/10.3390/nu5124849
Silva, W.B., Cosme, G.M., Bortolini, D., Rodrigues, A., Barbosa, D., Belghith, I., Martins, N., Meneses, M.E. and Misobutsi, G.P. (2018), Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, 242, 232-238. https://doi.org/10.1016/j.foodchem.2017.09.052
Sindelar, J. and Milkowski, A. (2011). Sodium nitrite in processed meat and poultry meats: a review of curing and examining the risk/benefit of its use. American neat Science Association White Paper Series No. 3, 1-14
Singh, O. and Ali, M. (2011). Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian Journal of Pharmaceutical Sciences, 73(4), 447-451. https://doi.org/10.4103/0250-474X.95648
Singleton, V.L., Orthofer, R. and Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Šojić, B., Tomović, V., Jokanović, M., Ikonić, P., Džinić, N., Kocić-Tanackov, S., Popović, L., Tasić, T., Savanović, J. and Živković, N. (2017). Antioxidant activity of Juniperus communis L. essential oil in cooked pork sausages. Czech Journal of Food Sciences, 35, 189-193. https://doi.org/10.17221/210/2016-CJFS
Šojić, B., Pavlić, B., Ikonić, P., Tomović, V., Ikonić, B., Zeković, Z., Kocić-Tanackov, S., Jokanović, M., Skaljać, S. and Ivić, M. (2019). Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Science, 157, 107879. https://doi.org/10.1016/j.meatsci.2019.107879
Souza, M.S.B., Morais, L., Marques, M.J. and De Lima, A. (2011). Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciencia e Agrotecnología, 35(3), 554-559. https://doi.org/10.1590/S1413-70542011000300017
Stahl, W. and Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740(2), 101-107. https://doi.org/10.1016/j.bbadis.2004.12.006
Suares, S., Lindsay, M., Pedrozo, J.E., Canniatti-Brazaca, S.G. and Duarte, P.E. (2018). Ultrasound processing of guava juice: effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594-601. https://doi.org/10.1016/j.foodchem.2018.06.127
Sucu, C. and Turp, G.Y. (2018). The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science, 140, 158-166. https://doi.org/10.1016/j.meatsci.2018.03.012
Tanaka, Y., Sasaki, N. and Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
Tang, S.Z., Ou, S.Y., Huang, X.S., Li, W., Kerry, J.P. and Buckley, D.J. (2006). Effects of added tea catechins on color stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packaging conditions. Journal of Food Engineering, 77(2), 248-253. https://doi.org/10.1016/j.jfoodeng.2005.06.025
Tao, Y. and Sun, D.W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594. https://doi.org/10.1080/10408398.2012.667849
Tofiño-Rivera, A., Ortega-Cuadros, M., Herrera-Hinojosa, B.K., Fragoso-Castilla, P. and Pedraza-Claros, B. (2017). Conservación microbiológica de embutido cárnico artesanal on aceites esenciales Eugenia caryophyllata y Thymus vulgaris. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(ee2), 30-41. https://doi.org/10.18684/bsaa(v15)EdicionEspecialn2.576
Tripathi, S., Suzuki, J.Y., Carr, J.B., McQuate G.T., Ferreira, S.A., Manshardt, R.M., Pitz, K.Y., Wall, M.M. and Gonsalves, D. (2011). Nutritional composition of Rainbow papaya, the first commercialized transgenic fruit crop. Journal of Food Composition and Analysis, 24(2), 140-147. https://doi.org/10.1016/j.jfca.2010.07.003
Tsoukalas, D.S., Katsandis, E., Marantidou, S. and Bloukas, J.G. (2011). Effect of freeze-dried leek powder (FDLP) and nitrite level on processing and quality characteristics of fermented sausages. Meat Science, 87(2), 140-145. https://doi.org/10.1016/j.meatsci.2010.10.003
Urango, L.A., Montoya, G.A., Cuadros, M.A., Henao D.C., Zapata, P.A., Mira, L.L., Castaño, E., Serna, A.M., Vanegas, C.V., Loaiza, M.C. and Gómez, B.D. (2009). Efecto de los compuestos bioactivos de algunos alimentos en la salud. Perspectivas en Nutrición Humana, 11(1), 27-38.
USDA, N. (2019). Natural Resources Conservation Service. United States Departmentof Agriculture. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169926/nutrients
Vasconcelos, A.G., Amorim, A., Dos Santos, R.C., Souza, J.M., De Souza, L.K., Araújo, T, Nicolau, L.A.D., Carvalho, L.L., Aquino, P.E., Martins, C.S., Ropke, C.D., Soares, P.M.G., Aparecida, S., Kuckelhaus, S., Medeiros, J.V.R. and Leite, J.R. (2017). Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Research International, 99(Pt 2), 959-968. https://doi.org/10.1016/j.foodres.2017.01.017
Veda, S., Platel, K. and Srinivasan, K. (2007). Varietal differences in the bioaccessibility of β-carotene from mango (Mangifera indica) and papaya (Carica papaya) fruits. Journal of Agricultural and Food Chemistry, 55(19), 7931-7935. https://doi.org/10.1021/jf0712604
Velasco, J., Marmesat, S., Holgado, F., Marquez-Ruiz, G. and Dobarganes, C. (2008). Influence of two Lipid extraction procedures on the peroxide value in powered infant formulas. European Food Research and Technology, 226, 1159-1166. https://doi.org/10.1007/s00217-007-0645-5
Ventanas, S., Martín, D, Estévez, M., Ruiz, J. (2004). Nitratos, nitritos y nitrosaminas en productos cárnicos (i). Eurocarne, 129, 1-15
Vij, T. and Prashar, Y. 2015. A review on medicinal properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 5(1), 1-6. https://doi.org/10.1016/S2222-1808(14)60617-4
Vindas A., L., Rodríguez A., N. and Araya Q., Y. (2017). Variación del contenido de nitrito de sodio residual em diferentes lotes de salchiichas, de una misma formulación de una empresa productora costarricense. Revista Pensamiento Actual, 17(28), 88-98.
Wall, M.M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19(5), 434-455. https://doi.org/10.1016/j.jfca.2006.01.002
Wang, L., Shen, F., Yuan, H., Zou, D. Liu, Y., Zhu, B. and Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34(12), 2627-2633. https://doi.org/10.1016/j.wasman.2014.08.005
Wang, L., Guo, H, Liu, X., Jiang, G., Li, C., Li, X. and Li, Y. (2019). Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat Science, 156, 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016
Wen, R., Hu, Y., Zhang, L., Wang, Y., Chen, Q. And Kong, B. (2019). Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Science, 156, 33-43. https://doi.org/10.1016/j.meatsci.2019.05.011
Wolf, A.P. and Sylos, C.M. (2018), Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava L.) “Paluma” cv. Revista Brasileira de Fruticultura, 40(2), 1-10. https://doi.org/10.1590/0100-29452018011
Xiang, R., Cheng, J., Zhu, M. and Liu, X. (2019). Effect of mulberry (Morus alba) polyphenols as antioxidant on physicochemical properties, oxidation and bio-safety in Cantonese sausages. LWT, 116, 108504. https://doi.org/10.1016/j.lwt.2019.108504
Xu, Y. and Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrasonics Sonochemistry, 20(4), 1026-1032. https://doi.org/10.1016/j.ultsonch.2013.01.006
Yahia, E.M. and Ormelas-Paz, J. J. (2010). Chemistry, stability and biological actions of carotenoids. In book: Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability, Chapter 7. Ed. Wiley-Blackwell, Ames, Iowa, USA. pp. 177-222.
Yam T., J.A., Villaseñor P., C.A., Romantchik K., E., Soto E., M. and Peña P., Miguel A. (2010). Una revisión sobre la importancia del fruto de guayaba (Psidium guajava L.) y sus principales características en la postcosecha. Revista Ciencias Técnicas Agropecuarias, 19(4), 74-82
Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M. and Toda, J. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719-727. https://doi.org/10.1080/00021369.1972.10860321
Zahran, D.A. and Kassem, G.M.A. (2011). Residual nitrite in some Egyptian meat products and the reduction effect of electron beam irradiation. Advance Journal of Food Science and Technology, 3(5), 376-380.
Zambrano-Zaragoza, M.L., Mercado-Silva, E., Ramírez-Zamorano, P., Cornejo-Villegas, M.A., Gutiérrez-Cortez, E. and Quintana-Guerrero, D. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food research International, 51(2), 946-953
Zanardi, E., Dorigoni, V., Badiani, A. and Chizzolini, R. (2002). Lipid and colour stability of Milano-type sausages: effect of packing conditions. Meat Science, 61(1), 7-14. https://doi.org/10.1016/s0309-1740(01)00152-8
Zanatta, C.F., Cuevas, E., Bobbio, F., Winterhalter, P. and Mercadante, A.Z. (2005). Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR. Journal of Agricultural and Food Chemistry, 53(24), 9531-9535. https://doi.org/10.1021/jf051357v
Zarringhalami, S., Sahari, M.A. and Hamidi-Esfehani, Z. (2009). Partial replacement of nitrite by annatto as a color additive in sausage. Meat Science, 81, 281-284. https://doi.org/10.1016/j.meatsci.2008.08.003
Zhang, W., Zeng, G., Pan, Y., Chen, W., Huang, W. and Chen, H. (2017). Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline ultrasound assisted extraction. Carbohydrate Polymers, 172, 102-112. https://doi.org/10.1016/j.carbpol.2017.05.030.
Zhao, B., Zhou, H., Zhang, S., Pan, X., Li, S., Zhu, N., Wu, Q., Wang, S., Qiao, X. and Chen, W. (2020). Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Science and Human Wellness, In Press, https://doi.org/10.1016/j.fshw.2020.04.013
Zhoh, C.K., Kwon, H.J. and AHN, S.R. (2010). Antioxidative and antimicrobial effects to skin flora of extracts from peel of Allium cepa L. Journal of Aesthetics Cosmetics Soc, 8, 49-58
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 166
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.publisher.department.spa.fl_str_mv Maestría en Ingeniería Agroindustrial
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/78311/1/1113619347.2020.pdf.pdf
https://repositorio.unal.edu.co/bitstream/unal/78311/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/78311/3/1113619347.2020.pdf.pdf.jpg
bitstream.checksum.fl_str_mv fd255770217b87ead66ad51bdaf8e209
e2f63a891b6ceb28c3078128251851bf
c6b951306e57888bbd3308df3313ab1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886703867101184
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hleap Zapata, José Igor505dfaa4-5535-4d9d-8e03-7d091d78b3a6-1Velasco Arango, Viviana Andreaa36b285c-9797-4f34-a1db-9783274083baGrupo de Investigación en Manejo y Agroindustrialización de Productos de Origen Biológico2020-08-28T16:16:04Z2020-08-28T16:16:04Z2020-08-26Natural dyes, Extraction, Optimization, Meat products, Agro-industrial waste,https://repositorio.unal.edu.co/handle/unal/78311Los epicarpios de la papaya (Carica papaya L.) y la guayaba (Psidium guajava) obtenidos en la transformación agroindustrial de estas frutas, hasta el momento no han sido valorados como fuente de pigmentos carotenoides y hoy en día su disposición final consiste en servir de fuente de materia prima para la alimentación animal o simplemente son desechados como un desperdicio generando contaminación ambiental. Pensando en esto, el objetivo de esta investigación consistió en valorar el posible aprovechamiento agroindustrial de estos residuos, para lo cual se realizó la identificación fisicoquímica, la extracción y optimización de los pigmentos carotenoides con el fin de obtener un colorante natural para ser aplicado como sustituto parcial de los nitritos en salchichas Frankfurt y finalmente evaluar la estabilidad en el tiempo de almacenamiento de los productos finales. Para llevar a cabo lo anterior, se realizó un proceso de liofilización y molturación de cada uno de los epicarpios hasta obtener una harina, la cual fue analizada fisicoquímicamente mediante los métodos estipulados de la AOAC y sometida al proceso de extracción e identificación de los pigmentos carotenoides mediante espectrofotometría UV-Vis. El proceso de extracción se realizó por ultrasonido, usando aceite de girasol neutro, hasta encontrar las condiciones óptimas de extracción de los pigmentos carotenoides. Se determinó la actividad antioxidante, el contenido de compuestos fenólicos y las coordenadas de color CIEL*a*b*. Posteriormente, para continuar con la experimentación y definir la formulación más indicada, se elaboraron tres formulaciones diferentes de salchichas Frankfurt con cada uno de los extractos obtenidos, en las cuales se disminuyó la concentración de nitritos reemplazándola por los extractos en diferentes concentraciones, más una formulación control sin adición de ninguno de los dos extractos analizados. A partir de un análisis de las características fisicoquímicas, de las coordenadas de color CIEL*a*b*, de una evaluación sensorial y de un análisis microbiológico se determinaron las dos salchichas óptimas (una por cada extracto), las cuales se utilizaron para hacer la evaluación de la estabilidad durante 30 días de observación, de los pigmentos carotenoides incluidos en los extractos presentes en las salchichas. El diseño experimental aplicado fue un diseño aleatorio simple de un factor con dos tratamientos, equivalentes a cada una de las harinas utilizadas (harina de epicarpio de papaya - HEP y harina de epicarpio de guayaba – HEG). Se realizó un análisis de T-Student para identificar las diferencias entre los tratamientos. Se utilizó la metodología de superficie de respuesta y siguiendo el diseño experimental Plackett-Burman, se determinaron los factores que afectan la extracción de los pigmentos carotenoides de las HEP y HEG por ultrasonido. Para la optimización del proceso de extracción, se aplicó un diseño Box-Behnken de tres niveles y tres factores consistentes en quince ejecuciones experimentales, incluidas tres repeticiones en el punto central. Las variables fueron la intensidad ultrasónica (X1, W/m2), la temperatura (X2, °C) y el tiempo de extracción (X3, min). Para las formulaciones de las salchichas Frankfurt se utilizó un diseño experimental aleatorizado simple, con un factor correspondiente al tiempo de almacenamiento: el análisis proximal y valor energético se realizó a los 0, 10, 20 y 30 días; Los análisis de coordenadas de color CIEL*a*b* y nitrito residual se realizó a los 0, 10, 20, 30 días; el análisis de oxidación de lípidos se realizó a los 0, 15 y 30 días y el análisis microbiológico se realizó a los 0, 8, 15, 22 y 30 días. Las medias obtenidas se evaluaron por medio de un análisis de varianza – ANOVA, con un nivel de significancia del 5%, y cuando se presentaron diferencias significativas entre ellas, se aplicó la prueba de comparación de medias de Tukey. Para realizar los análisis estadísticos se utilizó el software SPSS Statics 19, para Windows, 2010. Las medias obtenidas se evaluaron por medio de un análisis de varianza – ANOVA, con un nivel de significancia del 5% y cuando se detectaron diferencias significativas entre ellas, se aplicó la prueba de comparación de medias de Tukey. Para realizar los análisis estadísticos se utilizó el software SPSS Statics 19, para Windows, 2010 y Design-Expert Software versión 12. Los resultados obtenidos mostraron que los epicarpios de papaya (HEP) y de guayaba (HEG) son una excelente fuente de pigmentos carotenoides como β-caroteno ( 5,63 – 10,07 ) mg/100g de harina , α-caroteno (5,15 – 9,41 ) mg/100g de harina, β-criptoxantina (5,86 – 10,89) mg/100g de harina, Zeaxantina ( 5,81 – 10,81) mg/100g de harina, Licopeno (4,07 – 10,58) mg/100g de harina para HEP y HEG respectivamente. las condiciones óptimas de extracción de los pigmentos carotenoides presentes en la harina de epicarpio de papaya fueron un t: 60 minutos, T: 30 °C y relación harina/aceite 0,0256 g/4 ml, donde se obtuvo una concentración de carotenoides máxima de 66,03 ± 0,60 mg/100g de HEP. Para la harina de epicarpio de guayaba las condiciones óptimas de extracción de los pigmentos carotenoides fueron un t: 40 minutos, T: 60°C y relación harina/aceite 0,0256 g/ 4ml, obteniendo un resultado una concentración de carotenoides de 47,38 ± 1,03 mg/100g de HEG. Al aplicar el extracto de HEP y HEG en salchichas Frankfurt y evaluar en el tiempo de almacenamiento no presentó cambios significativos (p < 0,05) para el análisis proximal, las coordenadas de luminosidad (L*), y rojo-verde (a*) no presentaron diferencias estadísticamente significativas (p<0,05) durante los 30 días de almacenamiento. Los valores de nitrito residual se mantuvieron entre 21,66 mg/kg y 41,35 mg/kg para la muestra de salchicha adicionada con extracto de pigmentos carotenoides obtenidos a partir de la harina de epicarpio de papaya y entre 23,65 mg/kg y 42,15 mg/kg para la muestra de salchicha adicionada con extracto de pigmentos carotenoides obtenidos a partir de la harina de epicarpio de guayaba. Las salchichas formuladas con el extracto lipídico de carotenoides del epicarpio de papaya y guayaba presentaron excelentes características fisicoquímicas, sensoriales y microbiológicas, además de una muy buena estabilidad en el tiempo, lo cual permite establecer un potencial uso de estos extractos en aplicaciones agroalimentarias en la industria cárnica, como alternativa para reducir el 25% de nitritos, y también como colorantes naturales en salchichas. Palabras Claves: Colorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.The epicarp of papaya (Carica papaya L.) and guava (Psidium guajava) obtained in the agro-industrial transformation of these fruits, have not been valued as a source of carotenoid pigments up to now and today its final disposition is to serve as source of raw material for animal feed or simply discarded as a waste generating environmental pollution. Thinking about this, the objective of this research was to assess the possible agro-industrial use of these residues, for which the physicochemical identification, extraction and optimization of carotenoid pigments was carried out in order to obtain a natural dye to be applied as a substitute partial of the nitrites in Frankfurt sausages and finally evaluate the stability in the storage time of the final products. To carry out the aforementioned, a freeze-drying and milling process of each of the epicarpies was carried out until a flour was obtained, which was analyzed physically and chemically by means of the stipulated methods of the AOAC and subjected to the process of extraction and identification of carotenoid pigments. using UV-Vis spectrophotometry. The extraction process was carried out by ultrasound, using neutral sunflower oil, until the optimal conditions for extraction of the carotenoid pigments were found. Antioxidant activity, content of phenolic compounds and CIEL * a * b * color coordinates were determined. Subsequently, to continue with the experimentation and define the most suitable formulation, three different formulations of Frankfurt sausages were made with each of the extracts obtained, in which the concentration of nitrites was decreased, replacing it with the extracts in different concentrations, plus a formulation control without addition of either of the two extracts analyzed. From an analysis of the physicochemical characteristics, the CIEL * a * b * color coordinates, a sensory evaluation and a microbiological analysis, the two optimal sausages (one for each extract) were determined, which were used to make the evaluation of the stability during 30 days of observation, of the carotenoid pigments included in the extracts present in the sausages. The experimental design applied was a simple randomized one-factor design with two treatments, equivalent to each of the flours used (papaya epicarp flour - HEP and guava epicarp flour - HEG). A Student's T analysis was performed to identify the differences between the treatments. The response surface methodology was used and following the Plackett-Burman experimental design, the factors affecting the extraction of carotenoid pigments from HEP and HEG by ultrasound were determined. For the optimization of the extraction process, a three-level, three-factor Box-Behnken design consisting of fifteen experimental runs, including three replications at the center point, was applied. The variables were the ultrasonic intensity (X1, W / m2), the temperature (X2, ° C) and the extraction time (X3, min). For the formulations of the frankfurters, a simple randomized experimental design was used, with a factor corresponding to the storage time: the proximal analysis and energy value were carried out at 0, 10, 20 and 30 days; The analysis of CIEL * a * b * color coordinates and residual nitrite was performed at 0, 10, 20, 30 days; the lipid oxidation analysis was performed at 0, 15 and 30 days and the microbiological analysis was performed at 0, 8, 15, 22 and 30 days. The means obtained were evaluated by means of an analysis of variance - ANOVA, with a significance level of 5%, and when there were significant differences between them, the Tukey test of comparison of means was applied. To perform the statistical analyzes, the SPSS Statics 19 software for Windows, 2010. The means obtained were evaluated by means of an analysis of variance - ANOVA, with a significance level of 5% and when significant differences were detected between them, Tukey's mean comparison test was applied. SPSS Statics 19 software for Windows, 2010 and Design-Expert Software version 12 were used to perform the statistical analyzes. The results obtained showed that papaya and guava epicarp are an excellent source of carotenoid pigments and their application as a natural dye in Frankfurt sausages may be a viable option as a partial substitute for nitrites in these meat products. The results obtained showed that papaya (HEP) and guava (HEG) epicarps are an excellent source of carotenoid pigments such as β-carotene (5.63 - 10.07) mg / 100g of flour, α-carotene (5, 15 - 9.41) mg / 100g of flour, β-cryptoxanthin (5.86 - 10.89) mg / 100g of flour, Zeaxanthin (5.81 - 10.81) mg / 100g of flour, Lycopene (4, 07 - 10.58) mg / 100g of flour for HEP and HEG respectively. the optimal extraction conditions of the carotenoid pigments present in the papaya epicarp flour were t: 60 minutes, T: 30 ° C and flour / oil ratio 0.0256 g / 4 ml, where a maximum carotenoid concentration was obtained of 66.45 mg / 100g of HEP. For the guava epicarp flour, the optimal conditions for the extraction of the carotenoid pigments were t: 40 minutes, T: 60 ° C and flour / oil ratio 0.0256 g / 4ml, obtaining a result a carotenoid concentration of 47, 40 mg / 100g of HEG. When applying the extract of HEP and HEG in frankfurters and evaluating the storage time did not show significant changes (p <0.05) for the proximal analysis, the coordinates of luminosity (L *), and red-green (a * ) did not present statistically significant differences (p <0.05) during the 30 days of storage. The residual nitrite values were kept between 21.66 mg / kg and 41.35 mg / kg for the sausage sample added with extract of carotenoid pigments obtained from papaya epicarp flour and between 23.65 mg / kg and 42.15 mg / kg for the sausage sample added with extract of carotenoid pigments obtained from guava epicarp flour. The sausages formulated with the lipid extract of carotenoids from the epicarp of papaya and guava presented excellent physicochemical, sensory and microbiological characteristics, as well as a very good stability over time, which allows establishing a potential use of these extracts in food and agriculture applications in the industry. meat, as an alternative to reduce nitrites by 25%, and also as natural colorants in sausages. Key words: Natural dyes, Extraction, Optimization, Meat products, Agro-industrial waste,Maestría166application/pdfspa660 - Ingeniería químicaColorantes naturales, Extracción, Optimización, Productos cárnicos, Residuos agroindustriales.Valorización agroindustrial de pigmentos carotenoides extraídos de residuos de papaya (Carica papaya l.) y guayaba (Psidium guajava) como colorante natural en salchichas FrankfurtDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialMaestría en Ingeniería AgroindustrialUniversidad Nacional de Colombia - Sede PalmiraAbdelhafez, A.A., Husseiny, S.M., Abdel-Aziz, A. and Sanad, H.M. (2016). Optimization of β-carotene production from agro-industrial by-products Serratia marcescens ATCC using Plackett-Burman design and composite design. Annals of Agricultural Science, 61(1), 87-96. https://doi.org/10.1016/j.aoas.2016.01.005Ademiluyi, A.O., Oboh, G. and Ogunsuyi, O.B. (2016). A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. Comparative Clinical Pathology, 25(2), 363-374. https://doi.org/10.1007/s00580-015-2192-yAdom, K.K., Sorrells, M.E. and Liu, R.H. (2005). Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. Journal of Agriculture and Food Chemistry, 53(6), 2297-2306. https://doi.org/10.1021/jf048456dAfoakwah, N.A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y. and Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) Powder and its application in emulsion-type sausage. LWT – Food Science and Technology, 64(1), 74-81. https://doi.org/10.1016/j.lwt.2015.05.030AGRONET. (2014). Evaluaciones Agropecuarias Municipales – Guayaba. Bogotá, Colombia. [Online]: http://www.agronet.gov.co/Documents/Guayaba.pdfAguilar-Méndez, M.A., Campos-Arias, M.P., Quiroz-Reyes, C.N., Ronquillo, E. and Cruz-Hernández, M.A. (2019). Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Revista Facultad de Ciencias Agrarias UNCUYO, 52(1), en prensaAhmad, S.R., Gokulakrishnan, P., Giriprasad, R. and Yatoo, M.A. (2015). Fruit-based natural antioxidants in meat and meat products: a review. Critical Reviews in Food Science and Nutrition, 55(11), 1503-1513. https://doi.org/10.1080/10408398.2012.701674Ahn, J., Grun, I.U. and Mustapha, A. (2007). Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiology, 24(1), 7-14. https://doi.org/j.fm.2006.04.006Al-Duais, M., Hohbein, J., Werner, S., Böhm, V. And Jetschke, G. (2009). Contents of vitamin C, carotenoids, tocopherols, and tocotrienols in the subtropical plant species Cyphostemma digitatum as affected by processing. Journal of Agricultural and Food Chemistry, 57(12), 5420-5427. https://doi.org/10.1021/j9003626Alahakoon, A.U., Jayasena, D.D., Ramachandra, S. and Jo, S. (2015). Alternatives to nitrite in processed meat: Up to date. Trends in Food Science & Technology, 45(1), 37-49. https://doi.org/10.1016/j.tifs.2015.05.008Alamar, P.D., Caramês, E.T., Poppi, R.J. and Pallone, J.A.L. (2016). Quality evaluation of frozen guava and yellow passion Fruit pulps by NIR spectroscopy and chemometrics. Food Research International, 85, 209-214. https://doi.org/10.1016/j.foodres.2016.04.027Albarracín, W., Acosta, L.F. and Sánchez, I.C. (2010). Elaboración de un producto cárnico escaldado utilizando como extensor harina de fríjol común (Phaseolus spp.). Vitae, 17(3), 264-271.Albertini, S., Lai Reyes, A.E., Trigo, J.M., Sarries, G.A. and Spoto, M.H.F. (2016). Effects of chemical treatments on fresh-cut papaya. Food Chemistry, 190, 1182-1189. https://doi.org/10.1016/j.foodchem.2015.06.038Ali, A., Muda, M.T., Sijam, M. and Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124(2), 620-626. https://doi.org/10.1016/j.foodchem.2010.06.085Alimentos saludables. (2017). Beneficios de la guayaba. [Online]: https://www.alimentossaludables.mercola.com/guayaba.htmlAlmulaiky, Y., Zeyadi, M., Saleh, R., Baothman, O., Al-Shawafi, W. and Al-Talhi. (2018). Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16(1), 90-97. https://doi.org/10.1016/j.bcab.2018.07.025Amensour, M., Sánchez-Zapata, H., Abrini, J., Sendra, E., Sayas, E., Navarro, C., Pérez-Álvarez, J.A. and Fernández-López, J. (2010). Estabilidad del color en salchiichas de pollo tipo Frankfurt adicionadas con extracto acuoso de hoja de Myrtus communis. Óptica Pura y Aplicada, 43(4), 251-257.Andújar, G., Guerra, A, Santos, R. (2000). La utilización de extensores cárnicos. Experiencias de la industria cárnica cubana. Instituto de investigaciones para la industria alimenticia. Disponible desde Internet en: http://www.rlc.fao.org/prior/segalim/pdf/extensor.pdfAnnegowda, H.V., Bhat, R., Yeong, K.I., Liong, M.T., Karim, A.A. and Mansor, S.M. (2014). Influence of drying treatments on polyphenolic contents and antioxidant properties of raw and ripe papaya (Carica papaya L.). International Journal of Food Properties, 17(2), 283-292. https://doi.org/10.1080/10942912.2011.631248Anwar, M., Rasul, M.G. and Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion Management, 158, 103-112. https://doi.org/10.1016/j.enconman.2017.11.004AOAC. (1990) Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 15th. Edition. Virginia, USA. AOAC InternationalAOAC. (1998). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 16th edition. Virginia, USA. AOAC InternationalAOAC. (2000). Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 17th ed. Maryland, USA. AOAC InternationalAOAC. (2005). Association of Official Analytical Chemists. Official Methods of Analysis, Methods 925.09: Moisture in cassava – air oven methods. Washington D.C., USA. AOAC InternationalAOCS. (2003). American Oil Chemists Society. Official Methods of Analysis of AOCS International. Method Cd 8-53, Boulder, Illinois, USA. AOCS InternationalAOCS. (2017). American Oil Chemists Society. Official Methods of Analysis of AOCS International. Method Cd 18-90, Boulder, Illinois, USA. AOCS InternationalApostolidis, E., Kwon, Y.I. and Shetty, K. (2008). Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. International Journal of Food Microbiology, 128, 317-324. https://doi.org/10.1016/j.ijfoodmicro.2008.09.012Araújo, K.L., Magnani, M., Nascimiento, J.A., Souza, A.L., Epaminondas, P.S., Souza, A.L., Queiroz, N. and Souza, A.G. (2014). Antioxidant activity of co-products from guava, mango and Barbados cherry produced in the Brazilian northeast. Molecules, 19, 3110-3119. https://doi.org/10.3390/molecules19033110Aravind, G., Debjit, B., Duraivel, S. and Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7-15Armenteros, M., Morcuende, D., Ventanas, S. and Estévez, M. (2013). Application of natural antioxidants from strawberry tree (Arbutus unedo L.) and dog rose (Rosa canina L.) to frankfurters subjected to refrigerated storage. Journal of Integrative Agriculture, 12(11), 1972-1981. https://doi.org/10.1016/S2095-3119(13)60635-8Aruwa, C.E., Amoo, S. and Kudanga, T. (2019). Phenolic compound profile and biological activities of southern African Opuntia ficus- indica fruit pulp and peels. LWT, 111, 337-344. https://doi.org/10.1016/j.lwt.2019.05.028ASOHOFRUCOL. (2019). Asociación Hortifrutícola de Colombia. Balance del sector hortifruticultura en 2018. Bogotá, Colombia. [Online]: https://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdfAyala-Aponte, A.A., Leiton-Ramírez, Y. and Serna-Cock, L. (2017). Cambios en propiedades mecánicas durante la deshidratación osmótica de pitahaya amarilla. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), 39-48. https://doi.org/10.1018684/BSAA(15)39-48Baba, Y., Kallas, Z., Costa-Font, M., Gil, J.M. and Realini, C.E. (2016). Impact of hedonic evaluation on consumers’ preferences for beef attributes including its enrichment whit n-3 and CLA fatty acids. Meat Science, 111, 9-17. https://doi.org/10.1016/j.meatsci.2015.08.005Basirnejad, M., Milani, A. and Bolhassani, A. (2017). Carotenoids and cancer: biological functions. Acta Scientific Pharmaceutical Sciences, 1(6), 11-20.Bazán L., E. (2008). Nitritos y Nitratos: su uso, control y alternativas en embutidos cárnicos. Nacameh, 2(2), 160-187.Bejarano G., A. and Arenas B., R.P. (2003). Pymes de producción y comercialización de guayaba pera en Colombia. Tesis de especialización en Gerencia Estratégica, Universidad de la Sabana, Bogotá, Colombia. 55p.Bekhit, A.E., Morton, J.D., Bhat, Z.F. and Kong, L.M. (2019). Meat color: factors affecting color stability. Encyclopedia of Food Chemistry, 202-210. https://doi.org/10.1016/B978-0-08-100596-5.21665-XBenmeziane, F., Djermoune-Arkoub, L., Boudraa, A.T. and Bellaagoune, S. (2018). Physicochemical characteristics and phytochemical content of jam made from melon (Cucumis melo). International Food Research Journal, 25(1), 133-141Benmeziane, F., Sangare Z. and Djermoune-Arkoub, L. (2019). Spectrophotometric quantification of some pigments in mango pulp (Mangifera indica L.) powder. Asian Journal of Applied Sciences, 12(1), 45-51. https://doi.org/10.3923/ajaps.2019.45.51Bian, H., Ma, J., Geng, Z., Liu, T., Sun, C., Wang, D., Zhang, M. and Xu, W. (2019). Changes of hydroxyl-linoleic acids during Chinese-style sausage processing and their relationships with lipids oxidation. Food Chemistry, 296, 63-68. https://doi.org/10.1016/j.foodchem.2019.05.183Bisha, B., Weinsetel, N., Brehm-Stecher, B.F. and Mendonca, A. (2010). Antilisterial effects of gravinol-grape seed extract at low levels in aqueous media and its potential application as a produce wash. Journal of Food Protection, 73, 266-273. https://doi.org/10.4351/0362-028x-73.2.266Bohn, T. (2018). Carotenoids, chronic disease prevention and dietary recommendations. International Journal for Vitamin and Nutrition Research, 87(3-4), 1-10. https://doi.org/10.1024/0300-9831/a000525Bolger, Z., Brunton, N.P and Monahan, F.J. (2018). Impact of inclusion of flaxseed oil (pre-emulsified or encapsulated) on the physical characteristics of chicken sausages. Journal of Food Engineering, 230, 39-48. https://doi.org/10.1016/j.foodeng.2018.02.026Boon, C.S., McClements, D.J., Weiss, J., and Decker, E.A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515-532. https://doi.org/10.1080/10408390802565889Borges, P.R.S., Tavares, E.G., Guimaraes, I.C., Rocha, R.P., Araujo, A.B., Nunes, E.E. and Vilas Boas, E. Obtaining a protocol for extraction of phenolics from açai fruit pulp through Plackett-Burman design and Response Surface Methodology. Food Chemistry, 210, 189-199. https://doi.org/10.1016/j.foodchem.2016.04.077Boukroufa, M., Boutekedjiret, C. and Chemat, F. (2017). Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies, 3(3), 252-262. https://doi.org/10.1016/j.reffit.2017.08.007Bugge, M.M., Fevolden, A.M. and Klitkou, A. (2019). Governance for system optimization and system change: The case of urban waste. Research Policy, 48(4), 1076-1090. https://doi.org/10.1016/j.respol.2018.10.013Buriti, F.C.A., Cardarelli, H.R. and Saad, S.M.I. (2008). Textura instrumental e avaliação sensorial de queijo fresco cremoso simbiótico: implicações da adição de Lactobacillus paracasei e inulina. Revista Brasileira de Ciencias Farmacêuticas, 44(1), 75-84. https://doi.org/10.1590/S1516-93322008000100009Calvache, J.N., Cueto, M., Farroni, A., Pla, M.E. and Gerschenson, L.N. (2016). Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.). Journal of Functional Foods, 27, 319-328. https://doi.org/10.1016/j.jff.2016.09.012Carvajal-Macías, B., Pérez-Ramírez, S., Gaviria-Gaviria, Y. y Alzate-Agudelo, J. (2019). Sustitución de nitritos en un producto cárnico embutido por nabo (Brassica rapa) y sustitución parcial de harina de papa (Solanum tuberosum) por harina de cáscara de mango (Mangifera indica) para la evaluación del desarrollo de color y textura. Informador Técnico, 83(1), 19-29. https://doi.org/10.23850/22565035.1518Castellano, G., Quijada, O., Marín, C. and Camacho, R. (2004). Fertilización precosecha con fuentes de calcio sobre la firmeza y calidad de frutas de guayaba (Psidium guajava L.). Revista Iberoamericana de Tecnología Poscosecha, 6(2), 72-77.Celada, P., Bastida, S. and Sánchez-Muniz, F.J. (2016). Comer o no comer carne: ¿es esa la incógnita? Nutrición Hospitalaria, 33(1), 177-181. https://doi.org/10.20960/nh.29Celli, G.B., Ghanem, A. and Brooks, M.S. (2015). Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrasonics Sonochemistry, 27, 449-455. https://doi.org/10.1016/j.ultsonch.2015.06.014Chaiwut, P., Pintathong, P. and Rawdkuen. (2010). Extraction and three-phase partitioning behavior of proteases form papaya peels. Process Biochemistry, 45(7), 1172-1175. https://doi.org/10.1016/j.procbio.2010.03.019Chan, T.Y. (2011). Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicology Letters, 200(1-2), 107-108. https://doi.org/10.1016/j.toxlet.2010.11.002Chattopadhyay K., K.A., Amjad B., M.J., Layana, P. and Bushan, N., B. (2019). Chitosan gel addition in pre-emulsified fish mince – Effect on quality parameters of sausages under refrigerated storage. LWT, 110, 283-291. https://doi.org/10.1016/j.lwt.2019.04.081Cheok, C.Y., Adzahan, N.M., Rahman, R.A., Zainal, N.H., Hussain, N., Sulaiman, R. and Chong, G.H. (2018). Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition, 58(3), 335-361. https://doi.org/10.1080/10408398.2016.1176009Choe, J.H., Kim, H.Y., Lee, J.M., Kim, Y.J. and Kim, C.J. (2013). Quality of frankfurter-type sausages with added pig skin and wheat fiber mixture as fat replacers. Meat Science, 93(4), 849-854. https://doi.org/10.1016/j.meatsci.2012.11.054Choi, J.H., Song, D.H., Hong, S.H., Ham, Y.K., Ha, J.H., Choi, Y.S. and Kim, H.W. (2019). Nitrite scavenging impact of fermented soy sauce in vitro and in a pork sausage model. Meat Science, 131, 36-42. https://doi.org/10.1016/j.meatsci.2019.01.001Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E. and García-Villabona, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44, 2047-2053. https://doi.org/10.1016/j.foodres.2010.11.003Coutinho de Oliveira, T.L., Malfitano de Carvalho, S., de Araújo Soares, R., Andrade, M.A, Cardoso, M.D.G., Ramos, E.M. and Piccoli, R.H. (2012). Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT – Food Science and Technology, 45(2), 204-212. https://doi.org/10.1016/j.lwt.2011.09.006Cui, H., Gabriel, A.A. and Nakano, H. (2010). Antimicrobial efficacies of plant extracts and sodium nitrite against Clostridium botulinum. Food Control, 21(7), 1030-1036. https://doi.org/10.1016/j.foodcont.2009.12.023Cury, K., Aguas, Y., Martínez, A., Olivero, R., & Ch, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal-RECIA, 122-132. https://doi.org/10.24188/reciav9.nS.2017.53DANE. (2020). Departamento Administrativo Nacional de Estadísticas. Encuesta Nacional Agropecuaria. Bogotá, Colombia. [Online]: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019-1.pdfDe Oliveira, S., Araújo, A.N., De Sousa, A.N., Magalhães, T.A., Lopes, G.S., Rodrigues, S., Correia da Costa, J.M., Narciso, F.A. and Vasconcelos, M.G. (2015). Characterization of he industrial residues of seven fruits and prospection of their potential application as food supplements. Journal of Chemistry, Article ID 264284, 1-9. https://doi.org/10.1155/2015/2645284De Souza P., C., De Figueredo F., G., Honorio, A.R., Mokarsel, L., Da Silva V., V.A., Badan R., A.P., Lopes C., R. and Rodrigues P., M.A. (2019). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20, 100105. https://doi.org/10.1016/j.foostr.2019.100105Deda, M.S., Bloukas, J.G. and Fista, G.A. (2007). Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Science, 76(3), 501-508. https://doi.org/10.1016/j.meatsci.2007.01.004Delgado-Vargas, F., Jiménez, A.R. and Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins and Betalains – characteristics, biosynthesis, processing and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. https://doi.org/10.10810/10408690091189257Dey, S. and Rathod, V.K. (2013), Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochemistry, 20(1), 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010Dhillon, G.S., Kaur, S. And Brar, S.K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renewable and Sustainable Energy Reviews, 27, 789-805. https://doi.org/10.1016/j.rser.2013.06.046Dong, C., Wang, B, Li, F., Zhong, Q., Xia, X. and Kong, B. (2020). Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Science, 159, 107919. https://doi.org/10.,1016/j.meatsci.2019.107919Du, G., Li, M, Ma, F. and Liang, D, (2009). Antioxidant capacity and relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. https://doi.org/10.1016/j.foodchem.2008.08.025Duizer, L.M. and Walker, S.B. (2016) The application of sensory science to the evaluation of grain-bassed foods. Encyclopedia of Food Grains, 3, 144-153. https://doi.org/10.1016/B978-0-08-100596-5.00134-7Dzudie, T., Scher, J. and Hardy, J. (2002). Common bean flour as an extender in beef sausages. Journal of Food Engineering, 52(2), 143-147. https://doi.org/10.1016/S0260-8774(01)00096-6Eldahshan, O. and Singab, A.N. (2013). Carotenoids. Journal of Pharmacognosy and Phytochemistry, 2(1), 225-234Ellong, E.N., Billard, C., Adenet, S. and Rochefort, K. (2015). Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food and Nutrition Sciences, 6, 299-313. https://doi.org/10.4236/fns.2015.63030ENCOLOMBIA. (2014). Cultivo de Guayaba. Bogotá, Colombia. [Online]: https://www.encolombia.com/economia/agroindustria/cultivo/cultivodeguayabaExotic Fruit Box. (2020). Málaga, España. [Online]. https://exoticfruitbox.com/frutas-exoticas/papayaEyiler, E., Oztan, A. (2011). Production of frankfurters with tomato powder as a natural additive. LWT – Food Science and Technology, 44(1), 307-311. https://doi.org/10.1016/j.lwt.2010.07.004FACTFISH. (2018). World Statistics and Data Research. Papayas, production quantity (tons) – for all countries. [Online]: https://www.factfish.com/statistic/papayas%2C%20production%20quantityFang, F.C. (1997). Perspectives series: host/pathogen interactions. Mechanism of nitric oxide-related antimicrobial activity. The Journal of Clinical Investigation, 99(12), 2818-2815. https://doi.org/10.1172/JC119473FAO. (2000). Organización de las Naciones Unidad para la Alimentación y la Agricultura. Manual de manejo poscosecha de frutas tropicales (papaya, piña, plátano, cítricos) Roma, Italia. [Online]: https://www.fao.org/inpho/content/documents/vlibrary/ac304s/ac304s00.htmFAO. (2019). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Fruta tropical. Roma, Italia. [Online]: https://www.fao.org/economic/est/est-commodities/frutas-tropicales/es/Faten, A.E. and Rehab, M.A. (2014). Antioxidant and anticancer activities of different constituents retrieved from Egyptian prickly cactus pear (Opuntia ficus indica) peel. Biochemistry & Analytical Biochemistry, 3(2), 1-9. https://doi.org/10.4172/2161-1009.1000158FEN. (2016). Fundación Española de la Nutrición. Carne roja y procesada: interpretación del informe de la OMS sobre la carcinogenicidad de su consumo. Madrid, España. [Online]: https://www.fen.org.es/blog/carne-roja-y-procesada-interpretacion-del-informe-de-la-oms-sobre-la-carcinogenicidad-de-su-consumo/Feng, C.H. and Makino, Y. (2020). Colour analysis in sausages stuffed in modified casings with different storage days using hyperspectral imaging – a feasibility study. Food Control, 111, 107047. https://doi.org/j.foodcont.2019.107047Fernández-López, J., Lucas-González, R., Viuda-Martos, M., Sayas-Barberá, E., Ballester-Sánchez, J., Haros, C.M., Martínez-Mayoral, A., Pérez-Álvarez, J.A. (2020). Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chemistry, 310, 125936. https://doi.org/10.1016/j.foodchem.2019.125936Ferrufino-Peña, P.J. (2017). Efecto del remplazo parcial de nitrito de sodio por achiote (Bixa orellana L.) en las propiedades de salchichas frankfurter. Tesis de grado en Ingeniería en Agroindustria Alimentaria. Zamorano, Honduras, 26 p.Fiorda, F.A., Soares, M., da Silva, F.A., Araújo, C.M. and Grossmann, M.V.E. (2015). Physical Quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusión variables. LWT – Food Science and Technology, 62(2), 1112-1119. https://doi.org/10.1016/j.lwt.2015.02.030Flores, J.D., Child, G., Baez, J.G., García-Alanis. K., Gallardo, C. and Castillo, S.L. (2018). Evaluación antimicrobiana, antioxidante y composición nutricia de subproductos bioprocesados de Carica Papaya L. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 3, 145-150.Formiga, A.S. Pinsetta J., J.S., Pereira, E.M., Cordeiro, I. and Mattiuz, B. (2019). Use of edible coatings bassed on hydroxypropyl methylcellulose and beeswax in the conservation of red guava “Pedro Sato”. Food Chemistry, 290, 144-151. https://doi.org/10.1016/j.foodchem.2019.03.142García, A., Izquierdo, P., Uzcátegui-Bracho, S., Faría, J.F., Alfara, M. and García, A.C. (2005). Formulación de salchichas con atún y carne: vida útil y aceptabilidad. Revista Científica FCV-LUZ, 15(3), 272-278Gassara, F., Kouassi, A.P., Brar, S.K. and Belkacemi, K. (2016). Green alternatives to nitrates and nitrites in meat-based products – a review. Critical Reviews in Food Science and Nutrition, 56(13), 2133-2148. https://doi.org/10.1080/10408398.2013.812610Gata F., V. (2017). Evidencia de la asociación entre cáncer colorrectal y la ingesta de carnes procesadas. Nutrición Clínica y Dietética Hospitalaria, 37(2), 69-74. https://doi.org/10.12873/372gataGayosso-García, L.E., Yahia, E.M., Martínez-Tellez, M.A., González-Aguilar, G.A. (2010). Effect of maturity stage of papaya Maradol on physiological and biochemical parameters. American Journal of Agricultural and Biological Sciences, 5(2), 194-203. https://doi.org/10.3844/ajabssp.2010.194.2003Ghafouri-Oskuei, H., Javadi, A., Saedi A., M.R., Azadmard-Damichi, S. and Armin, M. (2020). Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Science, 161, 107957. https://doi.org/10.1016/j.meatsci.2019.107957Ghalati, R.E., Shamilli, M. and Homaei, A. (2019). Guava (Psidium guajava L.) leaf protease activity enriched by controlled-stress and putrescine application. Scientia Horticulturae, 248, 105-111. https://doi.org/10.1016/j.scienta.2019.01.010Gil G., M.A., Bedoya M., V., Millán C., L.J. and Benavides P., Y. L. (2012). Papaína extraída a partir de la cascara de la papayuela perteneciente a la especie (Carica papaya L.), por medio de microondas con aplicación en el ablandamiento de la carne bovina. Journal of Engineering and Technology, 1(1), 18-25Gonçalves, L.G., Mazzutti, M., Vitali, L., Micke, G.A. and Salvador, S.R. (2019). Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology, 22, 101367. https://doi.org/10.1016/j.bcab.2019.101367Gonçalves, J. and Vitoria, A.P. (2011). Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders: an overview. Food Research International, 44(1), 1306-1313. https://doi.org/10.1016/j.foodres.2010.12.035Gong, H., Yang, Z., Liu, M., Shi, Z., Li, J., Chen, W. and Qiao, X. (2017). Time-dependent categorization of volatile aroma compound formation in stewed Chinese spicy beef using electron nose profile coupled with thermal desorption GC–MS detection. Food Science and Human Wellness, 6(3), 137-146. https://doi.org/10.1016/j.fshw.2017.07.001González, B. and Diez, V. (2002). The effect nitrite and starter culture on microbiological Quality of chorizo-a Spanish dry cured sausage. Meat Science, 60(3), 295-298. https://doi.org/10.1016/S0309-1740(01)00137-1Goula, A.M., Ververi, M., Adamopoulou, A. and Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821-830. https://doi.org/10.1016/j.ultsonch.2016.07.022Govari, M. and Pexara, A. Nitrates and nitrites in meat products. Journal of Hellenic Veterinary Medical Society, 66(3), 127-140. https://doi.org/10.12681/jhvms.15856Grompone, M.A. (1991). El índice de anisidina como medida del deterioro latente de un material graso. Grasas y aceites revistas csic. Es, 42(1), 8-13Grune, T., Lietz, G. Palou, A., Ross, A.C., Stahl, W., Tang, G., Thumham, D., Yin, S.A. and Biesalki, H.K. (2010). Beta-carotene is an important vitamin A source for humans. Journal of Nutrition, 140(12), 2268-2285. https://doi.org/10.3945/jn.109.119024Guavita-Vargas, J., Avellaneda-Torres, L.M., Solarte, M.E. and Melgarejo, L.M. (2018). Carotenoides, clorofilas y pectinas durante la maduración de variedades de guayaba (Psidium guajava L.) de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(2), 379-389. https://doi.org/10.17584/rech.2018v12i2.7713Gurak, P.D., De Bona, G.S., Tessaro, I.C. and Ferreira, D. (2014). Jaboticaba pomace powder obtained as a co-product o juice extraction: a comparative study of powder obtained from peel and whole fruit. Food Research International, 62, 786-792. https://doi.org/10.1016/j.foodres.2014.04.042Gutiérrez-Salinas, J., Mondragón-Terán, P., García-Ortiz, L., Hernández-Rodríguez, S., Ramírez-García, S. and Nuñez-Ramos, N. (2014). Breve descripción de los mecanismos moleculares de daño celular provocado por los radicales libres derivados de oxígeno y nitrógeno. Revista de Especialidades Médico-Quirúrgicas, 19(4), 446-454.Hamzaoui, A., Ghariani, M., Sellem, I., Hamdi, M., Feki, A, Jaballi, I., Nasri, M. and Amara, I.B. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages. International Journal of Biological Macromolecules, 148, 1156-1158. https://doi.org/10.1016/j.ijbiomac.2002.01.009Hammed, B.H. (2009). Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162(2-3), 939-944. https://doi.org/10.1016/j.hazmat.2008.05.120Hammes, W.P. (2012). Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiology, 29(2), 151-156. https://doi.org/10.1016/j.fm.2011.06.016Haskell, M.J. (2013). Provitamin A carotenoids as a dietary source of vitamin A. In S.A. Tanumihardjo S. (Eds) Carotenoids and Human Health. Butrition and Health. Humana Press, Totowa, N.J. pp. 249-260Hernández-Hernández, E., Ponce-Alquicira, E., Jaramillo-Flores, M.E. and Legarreta, I.G. (2009). Antioxidant effect Rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on TBARS and color of model raw pork batters. Meat Science, 81(2), 410-417. https://doi.org/j.meatsci.2008.09.004Hernández, Y., Lobo, M.G. and González, M. (2007). Optimización del tipo de troceado de papaya mínimamente procesada y su efecto en la translucidez. In: Grupo de postrecolección y refrigeración. UPCT (ed.) V Congreso Iberoamericano de Tecnología Poscosecha y Agroexportaciones. p. 751-759Herrera J., J.F. and Bello, V.J. (2015). Investigación del cultivo de guayaba media china. Universidad Autónoma de Chapingo, Departamento de Agronomía, Academia de Meteorología. Texcoco, México. [Online]: https://www.academia.edu/39171704/ACADEMIA_DE_METEOROLOGÍA_INVESTIGACIÓN_DEL_CULTIVO_DE_GUAYABA_MEDIA_CHINAHleap Z., J.I. and Molina C., A. (2008). Proceso de elaboración de salchiichas a partir de tilapia roja (Oreochromis sp) con adición de almidón de sagú (Marantha arundinacea). Manual de transferencia de Tecnología. Universidad Nacional de Colombia – Sede Palmira. 56 p.Hleap Z., J.I., Burbano P., M.Y. and Mora V., J.M. (2017). Evaluación fisicoquímica y sensorial de salchiichas con inclusión de harina de quinua (Chenopodium quinoa W.). Biotecnología en el Sector Agropecuario y Agroindustrial, 15(EE 2), 61-71. https://doi.org/10.18684/bsaa(v15)EdicionEspecial2.579Hleap Z., J.I., Rodríguez, G.C. and Dussán S., S. (2020). Efecto de la sustitución de grasas en salchichas de tilapia roja (Oreochromis sp.) por una mezcla de piel de cerdo y fibra de quinua. Revista U.D.C.A. Actualidad & Divulgación Científica, 23(1), 1-10. https://doi.org/10.31910/rudav.23.n1.2020.1149Horita, C.N., Farías-Campomanes, A.M., Barbosa, T.S., Esmerino, E.A., Gomes da Cruz, A., Bolini, H.M.A., Meireles, M.A.A. and Pollonio, M.A.R. (2016). The antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurters along shelf-life. Food Research International, 84, 1-8. https://doi.org/10.1016/j.foodres.2016.02.006Hospital, X.F., Carballo, J., Fernández, M., Arnau, J., Gratacós, M. and Hierro, E. (2015). Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: typical microbiota, residual nitrate and nitrite and volatile profile. Food Control, 57, 275-281. https://doi.org/10.1016/j.foodcont.2015.04.024Hwang, K.E., Kim, T.K., Kim, H.W., Seo, D.H., Kim, Y.B., Jeon, K.H. and Choi, Y.S. (2018). Effect of natural pre-converted nitrite sources on color development in raw and cooked pork sausage. Asian-Australasian Journal of Animal Sciences, 31(8), 1358-1365. https://doi.org/10.5713/ajas.17.0767ICONTEC. (1999a). Instituto Colombiano de Normas Técnicas y Certificación. Jugos de Frutas y Hortalizas. Determinación del contenido de sólidos solubles. Método refractométrico. NTC 4624. Bogotá, Colombia. pp 9.ICONTEC. (1999b). Instituto Colombiano de normas Técnicas y Certificación. Productos de Frutas y verduras. Determinación del pH. NTC 4592. Bogotá, Colombia. pp 4.ICONTEC. (1999c). Instituto Colombiano de Normas Técnicas y Certificación. Productos de Frutas y verduras. Determinación de la acidez titulable. NTC 4623. Bogotá, Colombia. pp 6.ICONTEC. (2008). Instituto Colombiano de Normas Técnicas y Certificación. Industrias Alimentarias. Productos Cárnicos procesados no enlatados. NTC 1325. Bogotá, Colombia. pp 32.Ingkasupart, P., Manochai, B., Song, W.T. and Hong, J.H. (2015). Antioxidant activities and lutein content of 11 marigold cultivars (Tagetes spp.) grown in Thailand. Food Science and Technology, 35(2), 380-385. https://doi.org/10.1590/1678-457X.6663Izquierdo, P., García, A., Allara, M., Rojas, E., Torres, G. and González, P. (2007). Análisis proximal, microbiológico y evaluación sensorial de salchichas elaboradas a base de cachama negra (Colossoma macropomum). Revista Científica FVC-LUZ, 17(3), 294-300.Jamal, P., Akbar, I., Jaswir, I. and Zuhanis, Y. (2017). Quantification of total phenolic compounds in papaya fruit peel. Tropical Agricultural Science, 40(1), 87-98.Jayasena, D.D. and Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends in Food Science and Technology, 34(2), 96-108. https://doi.org/10.1016/j.tifs.2013.09.002Jiménez, M.E., Zambrano, M.L. and Aguilar, M.R. (2004). Estabilidad de pigmentos en frutas sometidas a tratamiento con energía de microondas. Información Tecnológica, 15(3), 61-66. https://doi.org/10.4067/50718-07642004000300009Jin, S.K., Choi, J.S., Yang, H.S., Park, T.S. and Yim, D.G. (2018). Natural curing agents as nitrite alternatives and their effects on the Physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Science, 146, 34-40. https://doi.org/10.1016/j.meatsci.2018.07.032Kassegn, H.H. (2018). Determination of proximate composition and bioactive compounds of the Abyssinian purple wheat. Food Science & Technology, 4, 1-9. https://doi.org/10.1080/23311932.2017.1421415Ke, P.I. and Woyewoda, A.D. (1979). Microdetermination of thiobarbituric acid values in marine lipids by a direct spectrophotometric method whit a monophasic reaction system. Analytical Chimica Acta, 106(12), 279-284. https://doi.org/10.1016/S0003-2670(01)85011-XKim, Y.H., Nam, K.C. and Ahn, D.U. (2002). Color, oxidation-reduction potential, and gas production of irradiated meats from different animal species. Journal of Food Science, 67(5), 1692-1695. https://doi.org/10.1111/j.1365-2621.2002.tb08707.xKim, H.W., Hwang, K.E., Song, D.H., Kim, Y.J., Ham, Y.K., Lim, Y.B., Jeong, T.J., Choi, Y.S. and Kim, C.J. (2015). Wheat fiber colored with a safflower (Carthamus tinctorius L.) red pigment as a natural colorant and antioxidant in cooked sausages. LWT – Food Science and Technology, 64(1), 350-355. https://doi.org/10.1016/j.lwt.2015.05.064Lang, E., Chemial, L., Molin. P., Guyot, S., Alvarez-Martín, P., Perrier-Cornet, J.M., Dantigny, P. and Gervais, P. (2017). Modeling the heat inactivation of foodborne pathogens in milk powder: high relevance of the substrate water activity. Food Research International, 99(1), 577-585. https://doi.org/10.1016/j.foodres.2017.06.028Lee, W.J., Lee, M.H. and Su, N.W. (2011). Characteristics of papaya seed oils obtained by extrusion-expelling processes. Journal of the Science of Food and Agriculture, 91(13), 2348-2354. https://doi.org/10.1002/j.sfa.4466Li, Z., Keasling, J.D. and Nigoyi, K.K. (2012). Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiology, 158, 313-323. https://doi.org/10.1104/pp.111.181230Li, Y., Fabiano-Tixier, A.S., Tomao, V., Cravotto, G. and Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids Based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12-18. https://doi.org/10.1016/j.ultsonch.2012.07.005Li, X., Wang, T., Zhou, B, Gao, W., Cao, J. And Huang, L. (2014). Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chemistry, 152(1), 531-538. https://doi.org/10.1016/j.foodchem.2013.12.010Linnewiel-Hermoni, K., Khanin, M., Danilenko, M., Zango, G., Amosi, Y., Levy, J. and Sharoni, Y. (2015). The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, 572, 28-35. https://doi.org/10.1016/j.abb.2015.02.018Liu, D.C., Wu, S.W., and Tan, F.J. (2010). Effects of addition of anka rice on the qualities of low-nitrite Chinese sausages. Food Chemistry, 118(2), 245-250. https://doi.org/10.1016/j.foodchem.2009.04.114Lundberg, J.O., Weitzberg, E., Cole, J.A. and Benjamin, N. (2004). Nitrate, bacteria and human health. Nature Reviews. Microbiology, 2(7), 593-602. https://doi.org/10.1038/nrmicro929Madrid V., A. (2014). La carne y los productos cárnicos. Ciencia y Tecnología. 1a. Ed. Editor: Antonio Madrid Vicente, Madrid, España. 320 p.Majul, E.M., Morón M.J., Ramón, A.N. (2004). Estimación de la ingesta potencial de nitritos en productos cárnicos de mayor consumo en adolescentes. RESPYN Revista Salud Pública y Nutrición, 5(3), 1-11.Marchetti, L., Argel, N., Andrés, S. C., & Califano, A. N. (2015). Sodium-reduced lean sausages with fish oil optimized by a mixture design approach. Meat science, 104, 67-77. https://doi.org/10.1016/j.meatsci.2015.02.005Marelli de Souza, L., Silva, K., Paes, J.B. and Lopes, S. (2008). L-ascorbic acid, β-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles. Scientia agrícola, 65(3), 246-250. https://doi.org/10.1590/S0103-90162008000300004Marti-Quijal, F.J., Zamuz, S., Tomaševic, I., Gómez, B., Rocchetti, G., Lucini, L., Remize, F. Barba, F.J. and Lorenzo, M. (2019). Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. LWT, 110, 316-323. https://doi.org/10.1016/j.lwt.2019.04.097Martín-Sánchez, A.M., Ciro-Gómez, G., Vilella-Esplá, J., Pérez-Álvarez, J.A. and Sayas-Barberá, E. (2014). Influence of fresh date palm co-products on the ripening of a paprika added dry-cured sausage model system. Meat Science, 97(2), 130-136. https://doi.org/10.1016/j.meatsci.203.12.005Martínez-Girón, J., Rodríguez-Rodríguez, X., Pinzón-Zárate, L.X. y Ordoñez-Santos, L.E. (2017). Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Ciencia y tecnología Agropecuaria, 18(3), 599-613. https://doi.org/1’0.21930/rcta.vol18_num3_art:747Martínez-Girón, J., Ordoñez-Santos, L.E. and Rodríguez-Rodríguez, D.X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA, 86(209), 91-96. https://doi.org/10.15446/dyna.v86n209.74840Martínez-Ortiz, M.A., Palma-Rodríguez, H.M., Montalvo-González, E., Sáyago-Ayerdi, S.G., Utrilla-Coello, R. and Vargas-Torres, A. (2019). Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Scientia-Horticulturae, 256, 108604. https://doi.org/10.1016/j.scienta.2019.108604Meléndez-Martínez, A.J., Vicario, I.M. and Heredia, F.J. 2007. Pigmentos carotenoides: consideraciones estructurales y fisicoquímicas. Archivos Latinoamericanos de Nutrición, 57(2), 109-117.Mendy, T.K., Misran, A., Mahmud, T.M.M. and Ismail, S.I. (2019). Application of aloe vera coating delays the ripening and extend shelf life of papaya fruit. Scientia Horticulturae, 246, 769-776. https://doi.org/10.1016/j.scienta.2018.11.054Merino, L., Darnerud, P.O., Toldrá, F. and Ilbäck, N.G. (2016). Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrate intake estimation. Food Additives and Contaminants, 3(2), 186-192. https://doi.org/10.1080/19440049.2015.1125530Moon, P., Fu, Y., Bai, J., Plotto, A., Crane, J. and Chambers, A. (2018). Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages. Scientia Horticulturae, 238, 375-383. https://doi.org/10.1016/j.scienta.2018.04.067Morais, D.M., Rotta, E.M., Sargi, S.C., Schmidt, M.S., Bonafe, E.G., Eberlin, M.N., Sawaya, A. and Visentainer, J.V. (2015). Antioxidant activity phenolics and UPLC-ESE (-) – MS of extracts tropical fruits from different parts and processed peels. Food Research International, 77(3), 392-399. https://doi.org/10.1016/j.foodres.2015.08.036Morita, H., Yoshikawa, H., Suzuki, T. Hisamatsu, S., Kato, Y, Sakata, R., Nagata, Y. and Yoshimura, T. (2004). Anti-microbial action against verotoxigenic Escherichia coli O157:H7 of nitric oxide derived from sodium nitrite. Bioscience, Biotechnology and Biochemistry, 68(5), 1027-1034. https://doi.org/10.1271/bbb.68.1027Murador, D.C., Salafia, F., Zoccali, M., Martins, P.L., Ferreira, A.G., Dugo, P., Mondello, L., de Resso, V. and Giuffrida, D. (2019) Green extraction approaches for carotenoids and esters: characterization of native composition from orange peel. Antioxidants, 8(12), 613-631. https://doi.org/10.3390/antiox8120613Murmu, S.B. and Mishra, H.N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil cinnamon and lemon grass on guava. Food Chemistry, 245, 820-828. https://doi.org/10.1016/j.foodchem.2017.11.104Mustafa, F.A. (2013). Effect of green tea extract on color and lipid oxidation in ground beef meat. Journal of Tikrit University for Agriculture Sciences, 13(1), 351-354.Nair, M.S., Saxena, A. and Kaur, C. (2018). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry, 240, 245-252. https://doi.org/10.1016/j.foodchem.2017.07.122Nasir, M., Boot, M., Anium, F., Sharif, K. and Minhas, R. (2003). Effect of moisture on the shelf life of wheat flour. International Journal of Agriculture & Biology, 5(4), 458-459Navarro-Cruz, A., Rojas-Zenteno, E., Lazcano-Hernández M. and Vera-López, O. (2016). Propiedades funcionales de semillas de papaya (Carica papaya L.). Revista de Ciencias de la Salud, 3(7), 48-56.Nayak, B.S., Ramdeen, R., Adogwa, A., Ramsubhag, A. and Marshall, J.R. (2012). Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. International Wound Journal, 9(6), 650-655. https://doi.org/10.1111/j.1742-481X.2011.00933.xNg, L.Y., Ang, Y.K., Khoo, H.E. and Yim, H.S. (2012). Influence of different extraction parameters on antioxidant properties of Carica papaya peel and seed. Research Journal of Phytochemistry, 6, 61-74. https://doi.org/10.3923/rrjphyto.2012.61.74Nikousaleh, A. and Prakash, J. (2016). Antioxidant properties of selected spices used in Iranian cuisine and their efficacy in preventing lipid peroxidation in meat sausages. Journal of Agricultural Science and Technology, 18(1), 67-78Noronha, K.A., Lima, P., Pereira, A.P., Zerlotti, A., and Campos, R. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. https://doi.org/10.1016/j.foodchem.2018.08.053Nowak, A., Czyzowska, A., Efenberger, M. and Krala L. (2016). Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiology, 59, 142-149. https://doi.org/10.1016/j.fm.2016.06.004Oliveira, D., Lobato, A.L., Ribeiro, S.M., Santana, A.M. Chaves, J.B. and Pinheiro-Sant’Ana, H.M. (2010). Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. Journal of Agricultural and Food Chemistry, 58(10), 6166-6172. https://doi.org/10.1021/jf903734xOliveira de Araújo, N. (2016). Variación espacial de las características fisicoquímicas en frutas de la papaya Formosa. Idesia (Arica), 34(5), 5-9. https://doi.org/10.4067/S0718-34292016005000023OMS. (2015). Organización Mundial de la Salud. Carcinogenicidad del consumo de carne roja y de la carne procesada. [Online]: https://www.who.int/features/qa/cancer-red-meat/es/Ordoñez-Santos, L.E., Hurtado-Aguilar, P., Ríos-Solarte, O.D. and Arias-Jaramillo, M.E. (2014). Concentración de carotenoides totales en residuos de frutas tropicales. Producción + Limpia, 9(1), 91-98.Ordoñez-Santos, L.E., Pinzón-Zárate, L.X. and González-Salcedo, L.O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm Fruit (Bactris gasipaes) by-products with sun flower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560-566. https://doi.org/10.1016/j.ultsonch.2015.04.010Ordoñez-Santos, L.E., Esparza-Estrada, J. and Osorio-Mora, O. (2019a). Valorization of mulberry (Rubus glaucus) by-products: ultrasound-assisted extraction of total anthocyanins. Revista de la Facultad de Ciencias Agrarias UNCUYO, 51(2), 367-380.Ordoñez-Santos, L.E., Osorio-Mora, O. and Pinchao, Y.A. (2019b). Evaluation of the effect of different factors on the ultrasound assisted extraction of phenolic compounds of the pea pod. DYNA, 86(210), 211-215. https://doi.org/10.15446/dyna.v86n210.72880Ordoñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2020). Potencial agroindustrial del epicarpio de mandarina como alternativa de colorante natural en pan. TecnoLógicas, 23(48), 17-29. https://doi.org/10.22430/22565337.1465Ozaki, M.M., Munekata, P.E., De Souza L., A., Da Silva N., M., Paleiro, M., Lorenzo, J.M. and Rodrigues, M.A. (2020). Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Science, 167, 108165. https://doi.org/10.1016/j.meatsci.2020.108165Palavecino F., F. and Palacio, M.I. (2017). Determinación de la Concentración de nitritos en salchiichas Viena de marcas comerciales. Tesis de grado en Licenciatura en Tecnología de Alimentos. Tandil, Argentina, 36 p.Parni, B. and Verma, Y. (2014). Biochemical properties in peel, pulp and seeds of Carica papaya. Plant Archives, 14(1), 565-568.Parthasarathy, D. and Bryan, N. (2012). Sodium nitrite: the “cure” for nitric oxide insufficiency. Meat Science, 92(3), 274-279. https://doi.org/10.1016/j.meatsci.2012.03.001Pateiro, M., Franco, D., Carril, J.A. and Lorenzo, J.M. (2015). Changes on physico-chemical properties, Lipid oxidation and volatile compounds during the manufacture of celta dry-cured loin. Journal of Food Science and Technology, 8, 4808-4818. https://doi.org/10.1007/s13197-014-1561-xPinzón-Zárate, L.X., Hleap-Zapata, J.I. and Ordoñez-Santos, L.E. (2015). Análisis de los parámetros de color en salchiichas Frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris gasipaes). Información Tecnológica, 26(5), 45-54. https://doi.org/10.4067/S0718-07642015000500007Prasad, K., Singh, J. and Chandra, D. (2014). Quantification of antioxidant phytochemicals in fresh vegetables using high performance liquid chromatography. Research Journal of Photochemistry, 8(4), 162-167. https://doi.org/10.3923/rjphyto.2014.162.167Pritwani, R. and Mathur, P. (2017). Β-carotene content of some commonly consumed vegetables and fruits available in Delhi, India. Journal of Nutrition & Food Sciences, 7(5), 2-7. https://doi.org/10.4172/2155-9600.1000625PROEXANT. (2012). Promoción de exportaciones agrícolas no tradicionales. Producción de la guayaba. La industria se moderniza. [Online]: https://www.issuu.com/diario_larepublica/docs/agronegocios_junio_06_de_2012Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S. and Cortés, M. (2010), Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International, 44(7), 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034Raja, K.S., Taip, F.S., Zakuan, M.M. and Islam, M.R. (2019). Effect of pre-treatment and different drying methods on the physicochemical properties of Carica papaya L. leaf powder. Journal of the Saudi Society of Agricultural Sciences, 18(2), 150-156. https://doi.org/10.1016/j.jssas.2017.04.001Repo de Carrasco, R. and Encina Z., C.R. (2008). Determinación de la capacidad antioxidante y compuestos bioactivos de frutas nativas peruanas. Revista de la Sociedad Química del Perú, 74(2), 108-124.Restrepo M., D.A. (2018). La carne: ciencia, tecnología y salud. 1a. Ed. Editor: Instituto de Ciencia y Tecnología Alimentaria – INTAL y Universidad Nacional de Colombia. Medellín, Colombia 440 p.Reyes, L. and González, E. (2002). Origen. En el libro: Guayaba su cultivo en México. Libro técnico No. 1 Capítulo 7. Campo experimental piloto, México. pp. 5-9.Reyes-Munguía, A., Alanis-Campos, L.G., Vásquez-Elorza, A. and Carrillo-Inungaray, M.A. (2016). Propiedades antioxidantes de extractos acuosos frescos y secos de cáscara de C. papaya L. Revista de Ciencias de la Salud, 3(6), 44-49.Riazi, F., Zeynali, F., Hoseini, E., Behmadi, H. and Savadkoohi, S. (2016). Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Science, 121, 350-358. https://doi.org/10.1016/j.meatsci.2016.07.008Riel, G., Boulaaba, A., Popp, J., Klein, G. (2017). Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella- type sausages – Impact on microbiological, physicochemical and sensory aspects. Meat Science, 131, 166-175. https://doi.org/10.1016/j.meatsci.2017.05.007Rinaldi, M., De Lima, T., and Ramírez, D. (2010). Caracterizao física de frutos de mamão e química de cascas e sementes. Planaltina. Embrapa Cerrados, D.F. 1-18Rodas H., M. (2005). Determinación de la concentración de nitritos y nitratos en salchicha ofertada que se comercializa en los supermercados de la ciudad capital. Tesis de grado en Química Farmacéutica. Ciudad de Guatemala, Guatemala, 69 p.Rodrigues-Amaya, D.B. (2018). Natural Food Pigments and Colorants. In: Merillon, J.M., Ramawat, K. (Eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. pp. 1-35Rodríguez-Leyton, M. (2019). Desafíos para el consumo de frutas y verduras. Revista de la Facultad de Medicina Humana, 19(2), 105-112. https://doi.org/10.25176/RFMH.v19n.2.2077Rojas-Garbanzo, C., Gleichenhagen, M.P., Heller, A., Esquivel, P., Schulze, N. and Scheiber, A. (2017). Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guava L. cv. “Criolla”) during fruit ripening. Journal of Agricultural and Food Chemistry, 65(18), 3737-3747. https://doi.org/10.1021/acs.jafc.6b04560Rubio, R., Martínez, B., García-Cachán, D., Rovira, J. and Jaime, I. (2008). Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichón manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Science, 80(4), 1182-1187. https://doi.org/10.1016/j.meatsci.2008.05.012Ruiz-Capillas, C., Tahmouzi, S., Triki, M., Rodríguez-Salas, L. Jiménez-Colmenero, F. and Herrero, A.M. (2015). Nitrite-free Asian hot dog sausages reformulated with nitrite replacers. Journal of Food Science and Technology, 52(7), 4333-4341. https://doi.org/10.1007/s13197-014-1460-1Saini, R.K., Nile, S.H. and Park, S.W. (2015). Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76(3), 735-750. https://doi.org/10.1016/j.foodres.2015.07.047Saldaña, E., Behrens, J.H., Serrano, J.S., Ribeiro, F., Almeida, M.A. and Contreras-Castillo, C.J. (2015). Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Structure, 6, 13-20. https://doi.org/10.1016/j.foostr.2005.09.001Sánchez Z., Micro. (2008). Efectos de los trihalometanos sobre la salud. Higiene y Sanidad Ambiental, 8, 280-290Santamaría, F., Kauri, E., Swords, G., Díaz, R., Larqué, A. and Santamaría, J.M. (2009). Postharvest ripening and maturity indices for Maradol papaya. Interciencia, 34(8), 583-588.Santos, M.M.F., Lima, D.A.S., Madruga M.S. and Silva, F.A.P. (2020). Lipid and protein oxidation of emulsified chicken patties prepared using abdominal fat and skin. Poultry Science, 99(3), 1777-1787. https://doi.org/10.1016/j.psj.2019.11.027Savadkoohi, S., Hoogenkamp, H., Shamsi, K. and Farahnaky, A. (2014). Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Science, 97(4), 410-418. https://doi.org/10.1016/j.meatsci.2014.03.017Serna-Cock, L., Torres-Leon, C. and Ayala-Aponte, A. (2015). Evaluación de polvos alimentarios obtenidos de cáscaras de mango (Mangifera índica) como fuente de ingredientes funcionales. Información Tecnológica, 26(2), 41-50. https://doi.org/10.4067/S0718-07642015000200006Shahat, M., Ibrahim, M.I., Osheba, A.S. and Taha, I.M. (2016). Effect of plant powders as natural nitrate source on reduction of nitrosamine compounds in beef burgers. Middle East Journal of Applied Sciences, 6(1), 198-206Shahidi, F., Rubin, L.J. and D’Souza, L.A. (1986). Meat flavor volatiles: a review of the composition, techniques of analysis, and sensory evaluation. Critical Reviews in Food Science and Nutrition, 24(2), 141-243. https://doi.org/10.1080/10408398609527435Shete, V. and Quadro, L. (2013). Mammalian metabolism of β-carotene; gaps in knowledge. Nutrients, 5(12), 4849-4868. https://doi.org/10.3390/nu5124849Silva, W.B., Cosme, G.M., Bortolini, D., Rodrigues, A., Barbosa, D., Belghith, I., Martins, N., Meneses, M.E. and Misobutsi, G.P. (2018), Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, 242, 232-238. https://doi.org/10.1016/j.foodchem.2017.09.052Sindelar, J. and Milkowski, A. (2011). Sodium nitrite in processed meat and poultry meats: a review of curing and examining the risk/benefit of its use. American neat Science Association White Paper Series No. 3, 1-14Singh, O. and Ali, M. (2011). Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian Journal of Pharmaceutical Sciences, 73(4), 447-451. https://doi.org/10.4103/0250-474X.95648Singleton, V.L., Orthofer, R. and Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1Šojić, B., Tomović, V., Jokanović, M., Ikonić, P., Džinić, N., Kocić-Tanackov, S., Popović, L., Tasić, T., Savanović, J. and Živković, N. (2017). Antioxidant activity of Juniperus communis L. essential oil in cooked pork sausages. Czech Journal of Food Sciences, 35, 189-193. https://doi.org/10.17221/210/2016-CJFSŠojić, B., Pavlić, B., Ikonić, P., Tomović, V., Ikonić, B., Zeković, Z., Kocić-Tanackov, S., Jokanović, M., Skaljać, S. and Ivić, M. (2019). Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Science, 157, 107879. https://doi.org/10.1016/j.meatsci.2019.107879Souza, M.S.B., Morais, L., Marques, M.J. and De Lima, A. (2011). Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciencia e Agrotecnología, 35(3), 554-559. https://doi.org/10.1590/S1413-70542011000300017Stahl, W. and Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740(2), 101-107. https://doi.org/10.1016/j.bbadis.2004.12.006Suares, S., Lindsay, M., Pedrozo, J.E., Canniatti-Brazaca, S.G. and Duarte, P.E. (2018). Ultrasound processing of guava juice: effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594-601. https://doi.org/10.1016/j.foodchem.2018.06.127Sucu, C. and Turp, G.Y. (2018). The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science, 140, 158-166. https://doi.org/10.1016/j.meatsci.2018.03.012Tanaka, Y., Sasaki, N. and Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.xTang, S.Z., Ou, S.Y., Huang, X.S., Li, W., Kerry, J.P. and Buckley, D.J. (2006). Effects of added tea catechins on color stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packaging conditions. Journal of Food Engineering, 77(2), 248-253. https://doi.org/10.1016/j.jfoodeng.2005.06.025Tao, Y. and Sun, D.W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594. https://doi.org/10.1080/10408398.2012.667849Tofiño-Rivera, A., Ortega-Cuadros, M., Herrera-Hinojosa, B.K., Fragoso-Castilla, P. and Pedraza-Claros, B. (2017). Conservación microbiológica de embutido cárnico artesanal on aceites esenciales Eugenia caryophyllata y Thymus vulgaris. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(ee2), 30-41. https://doi.org/10.18684/bsaa(v15)EdicionEspecialn2.576Tripathi, S., Suzuki, J.Y., Carr, J.B., McQuate G.T., Ferreira, S.A., Manshardt, R.M., Pitz, K.Y., Wall, M.M. and Gonsalves, D. (2011). Nutritional composition of Rainbow papaya, the first commercialized transgenic fruit crop. Journal of Food Composition and Analysis, 24(2), 140-147. https://doi.org/10.1016/j.jfca.2010.07.003Tsoukalas, D.S., Katsandis, E., Marantidou, S. and Bloukas, J.G. (2011). Effect of freeze-dried leek powder (FDLP) and nitrite level on processing and quality characteristics of fermented sausages. Meat Science, 87(2), 140-145. https://doi.org/10.1016/j.meatsci.2010.10.003Urango, L.A., Montoya, G.A., Cuadros, M.A., Henao D.C., Zapata, P.A., Mira, L.L., Castaño, E., Serna, A.M., Vanegas, C.V., Loaiza, M.C. and Gómez, B.D. (2009). Efecto de los compuestos bioactivos de algunos alimentos en la salud. Perspectivas en Nutrición Humana, 11(1), 27-38.USDA, N. (2019). Natural Resources Conservation Service. United States Departmentof Agriculture. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169926/nutrientsVasconcelos, A.G., Amorim, A., Dos Santos, R.C., Souza, J.M., De Souza, L.K., Araújo, T, Nicolau, L.A.D., Carvalho, L.L., Aquino, P.E., Martins, C.S., Ropke, C.D., Soares, P.M.G., Aparecida, S., Kuckelhaus, S., Medeiros, J.V.R. and Leite, J.R. (2017). Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Research International, 99(Pt 2), 959-968. https://doi.org/10.1016/j.foodres.2017.01.017Veda, S., Platel, K. and Srinivasan, K. (2007). Varietal differences in the bioaccessibility of β-carotene from mango (Mangifera indica) and papaya (Carica papaya) fruits. Journal of Agricultural and Food Chemistry, 55(19), 7931-7935. https://doi.org/10.1021/jf0712604Velasco, J., Marmesat, S., Holgado, F., Marquez-Ruiz, G. and Dobarganes, C. (2008). Influence of two Lipid extraction procedures on the peroxide value in powered infant formulas. European Food Research and Technology, 226, 1159-1166. https://doi.org/10.1007/s00217-007-0645-5Ventanas, S., Martín, D, Estévez, M., Ruiz, J. (2004). Nitratos, nitritos y nitrosaminas en productos cárnicos (i). Eurocarne, 129, 1-15Vij, T. and Prashar, Y. 2015. A review on medicinal properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 5(1), 1-6. https://doi.org/10.1016/S2222-1808(14)60617-4Vindas A., L., Rodríguez A., N. and Araya Q., Y. (2017). Variación del contenido de nitrito de sodio residual em diferentes lotes de salchiichas, de una misma formulación de una empresa productora costarricense. Revista Pensamiento Actual, 17(28), 88-98.Wall, M.M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19(5), 434-455. https://doi.org/10.1016/j.jfca.2006.01.002Wang, L., Shen, F., Yuan, H., Zou, D. Liu, Y., Zhu, B. and Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34(12), 2627-2633. https://doi.org/10.1016/j.wasman.2014.08.005Wang, L., Guo, H, Liu, X., Jiang, G., Li, C., Li, X. and Li, Y. (2019). Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat Science, 156, 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016Wen, R., Hu, Y., Zhang, L., Wang, Y., Chen, Q. And Kong, B. (2019). Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Science, 156, 33-43. https://doi.org/10.1016/j.meatsci.2019.05.011Wolf, A.P. and Sylos, C.M. (2018), Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava L.) “Paluma” cv. Revista Brasileira de Fruticultura, 40(2), 1-10. https://doi.org/10.1590/0100-29452018011Xiang, R., Cheng, J., Zhu, M. and Liu, X. (2019). Effect of mulberry (Morus alba) polyphenols as antioxidant on physicochemical properties, oxidation and bio-safety in Cantonese sausages. LWT, 116, 108504. https://doi.org/10.1016/j.lwt.2019.108504Xu, Y. and Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrasonics Sonochemistry, 20(4), 1026-1032. https://doi.org/10.1016/j.ultsonch.2013.01.006Yahia, E.M. and Ormelas-Paz, J. J. (2010). Chemistry, stability and biological actions of carotenoids. In book: Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability, Chapter 7. Ed. Wiley-Blackwell, Ames, Iowa, USA. pp. 177-222.Yam T., J.A., Villaseñor P., C.A., Romantchik K., E., Soto E., M. and Peña P., Miguel A. (2010). Una revisión sobre la importancia del fruto de guayaba (Psidium guajava L.) y sus principales características en la postcosecha. Revista Ciencias Técnicas Agropecuarias, 19(4), 74-82Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M. and Toda, J. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719-727. https://doi.org/10.1080/00021369.1972.10860321Zahran, D.A. and Kassem, G.M.A. (2011). Residual nitrite in some Egyptian meat products and the reduction effect of electron beam irradiation. Advance Journal of Food Science and Technology, 3(5), 376-380.Zambrano-Zaragoza, M.L., Mercado-Silva, E., Ramírez-Zamorano, P., Cornejo-Villegas, M.A., Gutiérrez-Cortez, E. and Quintana-Guerrero, D. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food research International, 51(2), 946-953Zanardi, E., Dorigoni, V., Badiani, A. and Chizzolini, R. (2002). Lipid and colour stability of Milano-type sausages: effect of packing conditions. Meat Science, 61(1), 7-14. https://doi.org/10.1016/s0309-1740(01)00152-8Zanatta, C.F., Cuevas, E., Bobbio, F., Winterhalter, P. and Mercadante, A.Z. (2005). Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR. Journal of Agricultural and Food Chemistry, 53(24), 9531-9535. https://doi.org/10.1021/jf051357vZarringhalami, S., Sahari, M.A. and Hamidi-Esfehani, Z. (2009). Partial replacement of nitrite by annatto as a color additive in sausage. Meat Science, 81, 281-284. https://doi.org/10.1016/j.meatsci.2008.08.003Zhang, W., Zeng, G., Pan, Y., Chen, W., Huang, W. and Chen, H. (2017). Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline ultrasound assisted extraction. Carbohydrate Polymers, 172, 102-112. https://doi.org/10.1016/j.carbpol.2017.05.030.Zhao, B., Zhou, H., Zhang, S., Pan, X., Li, S., Zhu, N., Wu, Q., Wang, S., Qiao, X. and Chen, W. (2020). Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Science and Human Wellness, In Press, https://doi.org/10.1016/j.fshw.2020.04.013Zhoh, C.K., Kwon, H.J. and AHN, S.R. (2010). Antioxidative and antimicrobial effects to skin flora of extracts from peel of Allium cepa L. Journal of Aesthetics Cosmetics Soc, 8, 49-58ORIGINAL1113619347.2020.pdf.pdf1113619347.2020.pdf.pdfapplication/pdf2730440https://repositorio.unal.edu.co/bitstream/unal/78311/1/1113619347.2020.pdf.pdffd255770217b87ead66ad51bdaf8e209MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78311/2/license.txte2f63a891b6ceb28c3078128251851bfMD52THUMBNAIL1113619347.2020.pdf.pdf.jpg1113619347.2020.pdf.pdf.jpgGenerated Thumbnailimage/jpeg4149https://repositorio.unal.edu.co/bitstream/unal/78311/3/1113619347.2020.pdf.pdf.jpgc6b951306e57888bbd3308df3313ab1aMD53unal/78311oai:repositorio.unal.edu.co:unal/783112024-07-06 23:53:46.418Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==