Lagrangian submanifolds under special conditions of degeneracy of symplectic structures

ilustraciones, diagramas

Autores:
Orozco Macana, Iván Andrés
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84302
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84302
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::516 - Geometría
Geometría
Topología
Geometry
Topology
Symplectic geometry
Lagrangian submanifold
Folded symplectic manifolds
b-symplectic manifolds
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6b877f7dc991cafc22fb842eb70623fe
oai_identifier_str oai:repositorio.unal.edu.co:unal/84302
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
dc.title.translated.spa.fl_str_mv Subvariedades Lagrangianas bajo condiciones especiales de degeneración de estructuras simplécticas
title Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
spellingShingle Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
510 - Matemáticas::516 - Geometría
Geometría
Topología
Geometry
Topology
Symplectic geometry
Lagrangian submanifold
Folded symplectic manifolds
b-symplectic manifolds
title_short Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
title_full Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
title_fullStr Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
title_full_unstemmed Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
title_sort Lagrangian submanifolds under special conditions of degeneracy of symplectic structures
dc.creator.fl_str_mv Orozco Macana, Iván Andrés
dc.contributor.advisor.none.fl_str_mv Martínez Alba, Nicolas
dc.contributor.author.none.fl_str_mv Orozco Macana, Iván Andrés
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::516 - Geometría
topic 510 - Matemáticas::516 - Geometría
Geometría
Topología
Geometry
Topology
Symplectic geometry
Lagrangian submanifold
Folded symplectic manifolds
b-symplectic manifolds
dc.subject.lemb.spa.fl_str_mv Geometría
Topología
dc.subject.lemb.eng.fl_str_mv Geometry
Topology
dc.subject.proposal.eng.fl_str_mv Symplectic geometry
Lagrangian submanifold
Folded symplectic manifolds
b-symplectic manifolds
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-27T15:03:41Z
dc.date.available.none.fl_str_mv 2023-07-27T15:03:41Z
dc.date.issued.none.fl_str_mv 2023-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84302
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84302
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Audin, M., Lafontaine, J., Eds.,. Holomorphic Curves in Symplectic Geometry. Progress in Mathematics 117,birkh¨auser verlag, Basel, 1994.
Cannas da Silva, Ana. Introduction to symplectic and Hamiltonian geometry. Publica¸c˜oes Matem´aticas do IMPA. Rio de Janeiro: Instituto Nacional de Matem´atica Pura e Aplicada (IMPA), 2003.
Cannas da Silva, Ana. Lectures on symplectic geometry. Lecture Notes in Mathematics 1764, Springer-Verlag, Berlin, (2001).
Cannas da Silva, Ana; Guillemin, Victor; Woodward, Christopher. On the unfolding of folded symplectic structures. Math. Res. Lett. 7, No. 1, 35-53, (2000).
Cavalcanti, Gil R.; Klaasse, Ralph L. Fibrations and logsymplectic structures. arXiv 1606.00156.
Geudens, Stephane; Zambon, Marco. Coisotropic submanifolds in b-symplectic geometry. Can. J. Math. 73, No. 3, 737-768 (2021).
Geudens, Stephane; Zambon, Marco. Deformations of Lagrangian submanifolds in log-symplectic manifolds. Adv. Math. 397, Article ID 108202, 85 p. (2022).
Guillemin, Victor; Miranda, Eva; Pires, Ana Rita. Symplectic and Poisson geometry on b-manifolds. arXiv 1206.2020v1.
Guillemin, Victor; Miranda, Eva; Pires, Ana Rita; Scott, Geoffrey. Toric actions on b-symplectic manifolds. arXiv 1309.1897.
Hockensmith, Daniel. A classification of toric, folded-symplectic manifolds. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2015
Lee, John M. Introduction to smooth manifolds. 2nd revised ed., Graduate Texts in Mathematics 218. New York, NY: Springer, (2013).
Marsden, Jerrold E.; Ratiu, Tudor S. Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems. 2nd ed. (English). Texts in Applied Mathematics. 17. New York, NY: Springer. xviii, 582 p. (1999).
Meinrenken, Eckhard. SYMPLECTIC GEOMETRY. Lecture Notes, University of Toronto. Available in https://www.math.toronto. edu/mein/teaching/LectureNotes/sympl.pdf
Pires, Ana Rita. Origami manifolds. Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June 2010.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv iv, 43 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84302/4/Lagrangian%20Submanifolds.pdf
https://repositorio.unal.edu.co/bitstream/unal/84302/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84302/5/Lagrangian%20Submanifolds.pdf.jpg
bitstream.checksum.fl_str_mv 41d238d097e43fe6937573c32973cc6c
eb34b1cf90b7e1103fc9dfd26be24b4a
a7d082fc4b79e16cfd2111945ad11286
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089188051517440
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Alba, Nicolas76cf2aaebf3f813a49484f6f39a44543Orozco Macana, Iván Andrés0b0150e9d1e9abf9c11272c0b09963032023-07-27T15:03:41Z2023-07-27T15:03:41Z2023-01https://repositorio.unal.edu.co/handle/unal/84302Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl objetivo de este proyecto es estudiar una versión de las subvariedades lagrangianas en estructuras folded-simplecticas y b-simplecticas. Empezaremos estudiando cómo podemos dar una definición de subvariedades isotrópicas, coisotrópicas y Lagrangianas en estas estructuras que sea consistente con la definición de la caso simpléctico, después de eso, a partir de una variedad, construiremos ejemplos canónicos de una subvariedad Lagrangiana en el caso folded-simpléctico y b-simpléctico. Finalmente, haremos una versión del teorema de la vecindad Lagrangiana en estas estructuras. (Texto tomado de la fuente)The aim of this project is to study a version of Lagrangian submanifolds in folded-symplectic and b-symplectic structures. We will start by studying how we can give a definition of isotropic, coisotropic an then Lagrangian submanifold in these structures that is consistent with the definition for the symplectic case, after that, we will considerate certain examples to construct, from a manifold, a canonical examples of a Lagrangian submanifold in a folded-symplectic and b-symplectic manifolds. Finally, we will study a version of Lagrangian neighborhood Theorem applied to folded-symplectic and b-symplectic manifold using the version of Lagrangian submanifolds studied above.MaestríaMagíster en Ciencias - MatemáticasGeometría simplécticaiv, 43 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::516 - GeometríaGeometríaTopologíaGeometryTopologySymplectic geometryLagrangian submanifoldFolded symplectic manifoldsb-symplectic manifoldsLagrangian submanifolds under special conditions of degeneracy of symplectic structuresSubvariedades Lagrangianas bajo condiciones especiales de degeneración de estructuras simplécticasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAudin, M., Lafontaine, J., Eds.,. Holomorphic Curves in Symplectic Geometry. Progress in Mathematics 117,birkh¨auser verlag, Basel, 1994.Cannas da Silva, Ana. Introduction to symplectic and Hamiltonian geometry. Publica¸c˜oes Matem´aticas do IMPA. Rio de Janeiro: Instituto Nacional de Matem´atica Pura e Aplicada (IMPA), 2003.Cannas da Silva, Ana. Lectures on symplectic geometry. Lecture Notes in Mathematics 1764, Springer-Verlag, Berlin, (2001).Cannas da Silva, Ana; Guillemin, Victor; Woodward, Christopher. On the unfolding of folded symplectic structures. Math. Res. Lett. 7, No. 1, 35-53, (2000).Cavalcanti, Gil R.; Klaasse, Ralph L. Fibrations and logsymplectic structures. arXiv 1606.00156.Geudens, Stephane; Zambon, Marco. Coisotropic submanifolds in b-symplectic geometry. Can. J. Math. 73, No. 3, 737-768 (2021).Geudens, Stephane; Zambon, Marco. Deformations of Lagrangian submanifolds in log-symplectic manifolds. Adv. Math. 397, Article ID 108202, 85 p. (2022).Guillemin, Victor; Miranda, Eva; Pires, Ana Rita. Symplectic and Poisson geometry on b-manifolds. arXiv 1206.2020v1.Guillemin, Victor; Miranda, Eva; Pires, Ana Rita; Scott, Geoffrey. Toric actions on b-symplectic manifolds. arXiv 1309.1897.Hockensmith, Daniel. A classification of toric, folded-symplectic manifolds. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2015Lee, John M. Introduction to smooth manifolds. 2nd revised ed., Graduate Texts in Mathematics 218. New York, NY: Springer, (2013).Marsden, Jerrold E.; Ratiu, Tudor S. Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems. 2nd ed. (English). Texts in Applied Mathematics. 17. New York, NY: Springer. xviii, 582 p. (1999).Meinrenken, Eckhard. SYMPLECTIC GEOMETRY. Lecture Notes, University of Toronto. Available in https://www.math.toronto. edu/mein/teaching/LectureNotes/sympl.pdfPires, Ana Rita. Origami manifolds. Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June 2010.EstudiantesInvestigadoresMaestrosORIGINALLagrangian Submanifolds.pdfLagrangian Submanifolds.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf431707https://repositorio.unal.edu.co/bitstream/unal/84302/4/Lagrangian%20Submanifolds.pdf41d238d097e43fe6937573c32973cc6cMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84302/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAILLagrangian Submanifolds.pdf.jpgLagrangian Submanifolds.pdf.jpgGenerated Thumbnailimage/jpeg4204https://repositorio.unal.edu.co/bitstream/unal/84302/5/Lagrangian%20Submanifolds.pdf.jpga7d082fc4b79e16cfd2111945ad11286MD55unal/84302oai:repositorio.unal.edu.co:unal/843022024-08-14 23:42:41.207Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=