Supervised group connectivity analysis for enhancing the interpretability of brain activity

Figuras, tablas

Autores:
Padilla Buriticá, Jorge Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79758
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79758
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Computational neuroscience
Neurociencia computacional
Non-stationary
Change point detection
Functional connectivity
Supervised model
Dimensionality reduction
Clustering
Brain connectivity
Thresholding
No-estacionariedad
Detección de puntos de cambio
Conectividad funcional
Modelo supervisado
Reducción de dimensión
Clustering
Conectividad cerebral
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6b7aa6e635beec50a5dc1010a805243b
oai_identifier_str oai:repositorio.unal.edu.co:unal/79758
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Supervised group connectivity analysis for enhancing the interpretability of brain activity
dc.title.translated.spa.fl_str_mv Análisis de conectividad supervisado y de grupo para mejorar la interpretación de actividad cerebral
title Supervised group connectivity analysis for enhancing the interpretability of brain activity
spellingShingle Supervised group connectivity analysis for enhancing the interpretability of brain activity
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Computational neuroscience
Neurociencia computacional
Non-stationary
Change point detection
Functional connectivity
Supervised model
Dimensionality reduction
Clustering
Brain connectivity
Thresholding
No-estacionariedad
Detección de puntos de cambio
Conectividad funcional
Modelo supervisado
Reducción de dimensión
Clustering
Conectividad cerebral
title_short Supervised group connectivity analysis for enhancing the interpretability of brain activity
title_full Supervised group connectivity analysis for enhancing the interpretability of brain activity
title_fullStr Supervised group connectivity analysis for enhancing the interpretability of brain activity
title_full_unstemmed Supervised group connectivity analysis for enhancing the interpretability of brain activity
title_sort Supervised group connectivity analysis for enhancing the interpretability of brain activity
dc.creator.fl_str_mv Padilla Buriticá, Jorge Iván
dc.contributor.advisor.none.fl_str_mv Castellanos Domínguez, César Germán
Ferrández Vicente, José Manuel
dc.contributor.author.none.fl_str_mv Padilla Buriticá, Jorge Iván
dc.contributor.researchgroup.spa.fl_str_mv Procesamiento Digital de Señales
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Computational neuroscience
Neurociencia computacional
Non-stationary
Change point detection
Functional connectivity
Supervised model
Dimensionality reduction
Clustering
Brain connectivity
Thresholding
No-estacionariedad
Detección de puntos de cambio
Conectividad funcional
Modelo supervisado
Reducción de dimensión
Clustering
Conectividad cerebral
dc.subject.lcsh.none.fl_str_mv Computational neuroscience
dc.subject.lemb.none.fl_str_mv Neurociencia computacional
dc.subject.proposal.eng.fl_str_mv Non-stationary
Change point detection
Functional connectivity
Supervised model
Dimensionality reduction
Clustering
Brain connectivity
Thresholding
dc.subject.proposal.spa.fl_str_mv No-estacionariedad
Detección de puntos de cambio
Conectividad funcional
Modelo supervisado
Reducción de dimensión
Clustering
Conectividad cerebral
description Figuras, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-02T17:54:48Z
dc.date.available.none.fl_str_mv 2021-07-02T17:54:48Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79758
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79758
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [Acharya et al., 2015] Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J., Koh, J. E., and Adeli, A. (2015). Computer-aided diagnosis of depression using EEG signals. European neurology, 73(5-6):329{336. [Allen et al., 2018] Allen, E., Damaraju, E., Eichele, T., Wu, L., and Calhoun, V. D. (2018). EEG signatures of dynamic functional network connectivity states. Brain Topography, 31(1):101{116. [Allen et al., 2014] Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3):663{676. [Astolfi et al., 2007] Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Marciani, M., Bufalari, S., Salinari, S., Colosimo, A., Ding, L., Edgar, J., et al. (2007). Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology, 44(6):880{893. [Aviyente et al., 2017] Aviyente, S., Tootell, A., and Bernat, E. M. (2017). Time-frequency phase-synchrony approaches with ERPs. International Journal of Psychophysiology, 111:88{97. [Babiloni et al., 2016] Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. I., Cordone, S., Gesualdo, L., and Del Percio, C. (2016). Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting-state EEG rhythms. International Journal of Psychophysiology, 103:88{102. [Baillet et al., 2001] Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal processing magazine, 18(6):14{30. [Bakhshayesh et al., 2019] Bakhshayesh, H., Fitzgibbon, S. P., Janani, A. S., Grummett, T. S., and Pope, K. J. (2019). Detecting synchrony in EEG: A comparative study of functional connectivity measures. Computers in Biology and Medicine, 105:1{15. [Bassett and Gazzaniga, 2011] Bassett, D. S. and Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in cognitive sciences, 15(5):200{209. [Bassett and Sporns, 2017] Bassett, D. S. and Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3):353. [Bastos and Scho elen, 2016] Bastos, A. M. and Schoffelen, J.-M. (2016). A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in systems neuroscience, 9:175. [Bathelt et al., 2013] Bathelt, J., O'Reilly, H., Clayden, J. D., Cross, J. H., and de Haan, M. (2013). Functional brain network organization of children between 2 and 5 years derived from the reconstructed activity of cortical sources of high-density EEG recordings. NeuroImage, 82:595{604. [Berger, 1934] Berger, H. (1934). Uber das Elektrenkephalogramm des Menschen. Deutsche Medizinische Wochenschrift, 60(51):1947{1949. [Betzel and Bassett, 2017] Betzel, R. F. and Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160:73{83. [Betzel et al., 2012] Betzel, R. F., Erickson, M. A., Abell, M., O'Donnell, B. F., Hetrick, W. P., and Sporns, O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Frontiers in computational neuroscience, 6:74. [Bielczyk et al., 2018] Bielczyk, N. Z., Walocha, F., Ebel, P. W., Haak, K. V., Llera, A., Buitelaar, J. K., Glennon, J. C., and Beckmann, C. F. (2018). Thresholding functional connectomes by means of mixture modeling. NeuroImage, 171:402{414. [Bijsterbosch et al., 2018] Bijsterbosch, J. D., Woolrich, M. W., Glasser, M. F., Robinson, E. C., Beckmann, C. F., Van Essen, D. C., Harrison, S. J., and Smith, S. M. (2018). The relationship between spatial confi guration and functional connectivity of brain regions. Elife, 7:e32992.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 114 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79758/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79758/2/1060647014.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79758/3/1060647014.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
189ea0bef40c92084d867fd74b0d59da
51080037c7df41fc1cfc0ff292917547
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089920482902016
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Domínguez, César Germánae15fbaaab595270cf72416c27b8b987Ferrández Vicente, José Manuel0dcd4c136cbd799b01c3f0af916c9ed9Padilla Buriticá, Jorge Iván3d2983fcca1bc8fa4b3963a07f17a5b5Procesamiento Digital de Señales2021-07-02T17:54:48Z2021-07-02T17:54:48Z2021https://repositorio.unal.edu.co/handle/unal/79758Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Figuras, tablasThis document presents a supervised group connectivity analysis methodology, in which three main problems must be addressed, the first problem to overcome is the non-stationary behavior of brain activity, the second problem is the high dimension of the connectivity matrices, and finally, the grouping to select the subjects of each set of analyzes. To carry out this methodology, three databases were used, the first related to auditory and visual stimuli under the oddball paradigm, the second and the third a database with motor imagery with a different number of subjects. The results obtained show that the segmentation of the recordings in time favors the estimation of connectivity, in addition, the proposal of a supervised rule to reduce dimension, guarantees the physiological interpretability of the results obtained. Finally, it was verified that the brain activity obtained depends on the groups of subjects that conform. The methodology was verified taking into account criteria of computational cost, numerical stability, probability of error, as well as the interpretability of the results obtained.En este documento se presenta una metodología de análisis de conectividad cerebral, en la cual deben abordarse tres problemas principales, el primer problema para superar es el comportamiento no estacionario de la actividad cerebral, el segundo problema es la alta dimensión de las matrices de conectividad y finalmente el agrupamiento para seleccionar los sujetos de cada conjunto de análisis. Para llevar a cabo esta metodología, fueron empleadas 3 bases de datos, la primera relacionada con estímulos auditivos y visuales bajo el paradigma oddball, la segunda y la tercera una base de datos son motor imagery con diferente número de sujetos. Los resultados obtenidos demuestran que la segmentación de los registros en el tiempo, favorece la estimación de conectividad, además, la propuesta de una regla supervisada para reducir dimensión, garantiza la interpretabilidad fisiológica de los resultados que se obtienen. Finalmente se verificó que la actividad cerebral obtenida depende de los grupos de sujetos que se conformen. Se verificó la metodología teniendo en cuenta criterios de costo computacional, estabilidad numérica, probabilidad de error, así como interpretabilidad de los resultados obtenidos.DoctoradoDoctor en Ingeniería - Ingeniería Automática114 páginasapplication/pdfeng000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresComputational neuroscienceNeurociencia computacionalNon-stationaryChange point detectionFunctional connectivitySupervised modelDimensionality reductionClusteringBrain connectivityThresholdingNo-estacionariedadDetección de puntos de cambioConectividad funcionalModelo supervisadoReducción de dimensiónClusteringConectividad cerebralSupervised group connectivity analysis for enhancing the interpretability of brain activityAnálisis de conectividad supervisado y de grupo para mejorar la interpretación de actividad cerebralTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de Ingeniería y ArquitecturaUniversidad Nacional de Colombia - Sede Manizales[Acharya et al., 2015] Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J., Koh, J. E., and Adeli, A. (2015). Computer-aided diagnosis of depression using EEG signals. European neurology, 73(5-6):329{336. [Allen et al., 2018] Allen, E., Damaraju, E., Eichele, T., Wu, L., and Calhoun, V. D. (2018). EEG signatures of dynamic functional network connectivity states. Brain Topography, 31(1):101{116. [Allen et al., 2014] Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3):663{676. [Astolfi et al., 2007] Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Marciani, M., Bufalari, S., Salinari, S., Colosimo, A., Ding, L., Edgar, J., et al. (2007). Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology, 44(6):880{893. [Aviyente et al., 2017] Aviyente, S., Tootell, A., and Bernat, E. M. (2017). Time-frequency phase-synchrony approaches with ERPs. International Journal of Psychophysiology, 111:88{97. [Babiloni et al., 2016] Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. I., Cordone, S., Gesualdo, L., and Del Percio, C. (2016). Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting-state EEG rhythms. International Journal of Psychophysiology, 103:88{102. [Baillet et al., 2001] Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal processing magazine, 18(6):14{30. [Bakhshayesh et al., 2019] Bakhshayesh, H., Fitzgibbon, S. P., Janani, A. S., Grummett, T. S., and Pope, K. J. (2019). Detecting synchrony in EEG: A comparative study of functional connectivity measures. Computers in Biology and Medicine, 105:1{15. [Bassett and Gazzaniga, 2011] Bassett, D. S. and Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in cognitive sciences, 15(5):200{209. [Bassett and Sporns, 2017] Bassett, D. S. and Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3):353. [Bastos and Scho elen, 2016] Bastos, A. M. and Schoffelen, J.-M. (2016). A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in systems neuroscience, 9:175. [Bathelt et al., 2013] Bathelt, J., O'Reilly, H., Clayden, J. D., Cross, J. H., and de Haan, M. (2013). Functional brain network organization of children between 2 and 5 years derived from the reconstructed activity of cortical sources of high-density EEG recordings. NeuroImage, 82:595{604. [Berger, 1934] Berger, H. (1934). Uber das Elektrenkephalogramm des Menschen. Deutsche Medizinische Wochenschrift, 60(51):1947{1949. [Betzel and Bassett, 2017] Betzel, R. F. and Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160:73{83. [Betzel et al., 2012] Betzel, R. F., Erickson, M. A., Abell, M., O'Donnell, B. F., Hetrick, W. P., and Sporns, O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Frontiers in computational neuroscience, 6:74. [Bielczyk et al., 2018] Bielczyk, N. Z., Walocha, F., Ebel, P. W., Haak, K. V., Llera, A., Buitelaar, J. K., Glennon, J. C., and Beckmann, C. F. (2018). Thresholding functional connectomes by means of mixture modeling. NeuroImage, 171:402{414. [Bijsterbosch et al., 2018] Bijsterbosch, J. D., Woolrich, M. W., Glasser, M. F., Robinson, E. C., Beckmann, C. F., Van Essen, D. C., Harrison, S. J., and Smith, S. M. (2018). The relationship between spatial confi guration and functional connectivity of brain regions. Elife, 7:e32992.Colciencias-Colfuturo MINCIENCIAS - convocatoria 647 de 2014 para doctorados nacionalesLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79758/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1060647014.2021.pdf1060647014.2021.pdfTesis de Doctorado en Ingeniería - Línea de Investigación en Automáticaapplication/pdf3012528https://repositorio.unal.edu.co/bitstream/unal/79758/2/1060647014.2021.pdf189ea0bef40c92084d867fd74b0d59daMD52THUMBNAIL1060647014.2021.pdf.jpg1060647014.2021.pdf.jpgGenerated Thumbnailimage/jpeg3838https://repositorio.unal.edu.co/bitstream/unal/79758/3/1060647014.2021.pdf.jpg51080037c7df41fc1cfc0ff292917547MD53unal/79758oai:repositorio.unal.edu.co:unal/797582024-07-23 23:35:40.4Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==