Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares

ilustraciones, gráficas, tablas

Autores:
Porras Argüello, Julián David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82137
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82137
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Polymers
Polímeros
Acids, fatty
Capsules (Pharmacy)
Ácidos grasos
Cápsulas (Farmacia)
Química clic
Curcumina
Cannabidiol
Micelas
Ácidos grasos
Click chemistry
Curcumin
Cannabidiol
Micelles
Fatty acids
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6b3f57a041d79f6fddc79c8efbfd71f1
oai_identifier_str oai:repositorio.unal.edu.co:unal/82137
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
dc.title.translated.eng.fl_str_mv Design of copolymers based on PEG-PCL for encapsulation of apolar drugs
title Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
spellingShingle Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Polymers
Polímeros
Acids, fatty
Capsules (Pharmacy)
Ácidos grasos
Cápsulas (Farmacia)
Química clic
Curcumina
Cannabidiol
Micelas
Ácidos grasos
Click chemistry
Curcumin
Cannabidiol
Micelles
Fatty acids
title_short Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
title_full Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
title_fullStr Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
title_full_unstemmed Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
title_sort Diseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolares
dc.creator.fl_str_mv Porras Argüello, Julián David
dc.contributor.advisor.spa.fl_str_mv Pérez Pérez, León Darío
dc.contributor.author.spa.fl_str_mv Porras Argüello, Julián David
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Macromoléculas
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Polymers
Polímeros
Acids, fatty
Capsules (Pharmacy)
Ácidos grasos
Cápsulas (Farmacia)
Química clic
Curcumina
Cannabidiol
Micelas
Ácidos grasos
Click chemistry
Curcumin
Cannabidiol
Micelles
Fatty acids
dc.subject.decs.eng.fl_str_mv Polymers
dc.subject.decs.spa.fl_str_mv Polímeros
dc.subject.lemb.eng.fl_str_mv Acids, fatty
Capsules (Pharmacy)
dc.subject.lemb.spa.fl_str_mv Ácidos grasos
Cápsulas (Farmacia)
dc.subject.proposal.spa.fl_str_mv Química clic
Curcumina
Cannabidiol
Micelas
Ácidos grasos
dc.subject.proposal.eng.fl_str_mv Click chemistry
Curcumin
Cannabidiol
Micelles
Fatty acids
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-26T15:50:14Z
dc.date.available.none.fl_str_mv 2022-08-26T15:50:14Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82137
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82137
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv N. Boroumand, S. Samarghandian, and S. I. Hashemy, “Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin,” J. HerbMed Pharmacol., vol. 7, no. 4, pp. 211–219, 2018, doi: 10.15171/jhp.2018.33.
N. Bruni, C. Della Pepa, S. Oliaro-Bosso, E. Pessione, D. Gastaldi, and F. Dosio, “Cannabinoid Delivery Systems for Pain and Inflammation Treatment,” Molecules, vol. 23, no. 10, p. 2478, Sep. 2018, doi: 10.3390/molecules23102478.
P. Grossen, D. Witzigmann, S. Sieber, and J. Huwyler, “PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application,” J. Control. Release, vol. 260, no. April, pp. 46–60, 2017, doi: 10.1016/j.jconrel.2017.05.028.
E. R. Arias, V. Angarita-Villamizar, Y. Baena, C. Parra-Giraldo, and L. D. Perez, “Phospholipid-conjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b,” Polymers (Basel)., vol. 13, no. 11, 2021, doi: 10.3390/polym13111747.
Z. Song, W. Zhu, N. Liu, F. Yang, and R. Feng, “Linolenic acid-modified PEG-PCL micelles for curcumin delivery,” Int. J. Pharm., vol. 471, no. 1–2, pp. 312–321, 2014, doi: 10.1016/j.ijpharm.2014.05.059.
R. F. Storey and J. W. Sherman, “Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone,” Macromolecules, vol. 35, no. 5, pp. 1504–1512, 2002, doi: 10.1021/ma010986c.
V. D. Bock, H. Hiemstra, and J. H. Van Maarseveen, “Cu I-catalyzed alkyne-azide ‘click’ cycloadditions from a mechanistic and synthetic perspective,” European J. Org. Chem., no. 1, pp. 51–68, 2006, doi: 10.1002/ejoc.200500483.
H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,” Angew. Chemie - Int. Ed., vol. 40, no. 11, pp. 2004–2021, 2001, doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
R. Kretzschmar, “Colloid-Facilitated Sorption and Transport,” Encycl. Soils Environ., vol. 4, no. 1993, pp. 276–284, 2004, doi: 10.1016/B0-12-348530-4/00201-0.
M. L. Adams, A. Lavasanifar, and G. S. Kwon, “Amphiphilic block copolymers for drug delivery,” J. Pharm. …, vol. 92, no. 7, pp. 1343–1355, 2003.
S. C. Owen, D. P. Y. Chan, and M. S. Shoichet, “Polymeric micelle stability,” Nano Today, vol. 7, no. 1, pp. 53–65, 2012, doi: 10.1016/j.nantod.2012.01.002.
J. J. Sheng, “Surfactant Flooding,” Mod. Chem. Enhanc. Oil Recover., pp. 239–335, 2011, doi: 10.1016/b978-1-85617-745-0.00007-3.
R. Liu, Water-Insoluble Drug Formulation, 2nd ed. CRC Press, 2008.
W. B. Liechty, “Polymer for Drug Delivery,” Annu Rev Chem Biomol Eng., vol. 1, no. 1, pp. 149–173, 2010, doi: 10.1146/annurev-chembioeng-073009-100847.Polymers.
Y. J. Rodriguez, L. F. Quejada, J. C. Villamil, Y. Baena, C. M. Parra-Giraldo, and L. D. Perez, “Development of amphotericin b micellar formulations based on copolymers of poly(Ethylene glycol) and poly(ε-caprolactone) conjugated with retinol,” Pharmaceutics, vol. 12, no. 3, 2020, doi: 10.3390/pharmaceutics12030196.
M. Maniruzzaman, M. J. Snowden, M. S. Bradely, and D. Douroumis, “Studies of intermolecular interactions in solid dispersions using advanced surface chemical analysis,” RSC Adv., vol. 5, no. 91, pp. 74212–74219, 2015, doi: 10.1039/c5ra13176f.
S. Hewlings and D. Kalman, “Curcumin: A Review of Its’ Effects on Human Health,” Foods, vol. 6, no. 10, p. 92, 2017, doi: 10.3390/foods6100092.
P. F. Whiting et al., “Cannabinoids for medical use: A systematic review and meta-analysis,” JAMA - J. Am. Med. Assoc., vol. 313, no. 24, pp. 2456–2473, 2015, doi: 10.1001/jama.2015.6358.
T. Hložek et al., “Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC,” Eur. Neuropsychopharmacol., vol. 27, no. 12, pp. 1223–1237, 2017, doi: 10.1016/j.euroneuro.2017.10.037.
K. Y. Yang, L. C. Lin, T. Y. Tseng, S. C. Wang, and T. H. Tsai, “Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 853, no. 1–2, pp. 183–189, 2007, doi: 10.1016/j.jchromb.2007.03.010.
D. J. McClements and H. Xiao, “Potential biological fate of ingested nanoemulsions: Influence of particle characteristics,” Food Funct., vol. 3, no. 3, pp. 202–220, 2012, doi: 10.1039/c1fo10193e.
J. Aparicio-Blanco, V. Sebastián, J. P. Benoit, and A. I. Torres-Suárez, “Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters,” Eur. J. Pharm. Biopharm., vol. 134, pp. 126–137, 2019, doi: 10.1016/j.ejpb.2018.11.020.
A. P. Matarazzo et al., “Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain,” Eur. J. Pharm. Sci., vol. 159, no. December 2020, 2021, doi: 10.1016/j.ejps.2020.105698.
V. De Leo et al., “Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process,” Molecules, vol. 23, no. 4, pp. 1–15, 2018, doi: 10.3390/molecules23040739.
S. Lawson, K. Newport, N. Pederniera, A. A. Rownaghi, and F. Rezaei, “Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family,” ACS Appl. Bio Mater., vol. 4, no. 4, pp. 3423–3432, 2021, doi: 10.1021/acsabm.1c00009.
R. Karimi Alavijeh and K. Akhbari, “Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin,” Inorg. Chem., vol. 59, no. 6, pp. 3570–3578, 2020, doi: 10.1021/acs.inorgchem.9b02756.
J. Charmi, H. Nosrati, J. Mostafavi Amjad, R. Mohammadkhani, and H. Danafar, “Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery,” Heliyon, vol. 5, no. 4, p. e01466, 2019, doi: 10.1016/j.heliyon.2019.e01466.
X. Shi et al., “Heparin-reduced graphene oxide nanocomposites for curcumin delivery:: In vitro, in vivo and molecular dynamics simulation study,” Biomater. Sci., vol. 7, no. 3, pp. 1011–1027, 2019, doi: 10.1039/c8bm00907d.
R. Pushpalatha, S. Selvamuthukumar, and D. Kilimozhi, “Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity,” J. Drug Deliv. Sci. Technol., vol. 45, no. November 2017, pp. 45–53, 2018, doi: 10.1016/j.jddst.2018.03.004.
M. M. Lübtow et al., “Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models,” J. Control. Release, vol. 303, no. February, pp. 162–180, 2019, doi: 10.1016/j.jconrel.2019.04.014.
Y. Liu et al., “Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation,” Angew. Chemie - Int. Ed., vol. 59, no. 12, pp. 4720–4728, 2020, doi: 10.1002/anie.201913539.
R. K. Prud and J. Nicholas, “Application Publication ( 10 ) Pub . No .: US 2020/0368163 A1,” vol. 2020, 2020.
S. He et al., “Metal-organic frameworks for advanced drug delivery,” Acta Pharm. Sin. B, vol. 11, no. 8, pp. 2362–2395, 2021, doi: 10.1016/j.apsb.2021.03.019.
P. Horcajada et al., “Metal–Organic Frameworks in Biomedicine,” Chem. Rev., vol. 112, no. 2, pp. 1232–1268, 2012.
L. Dongmei, W. Zhiwei, Z. Qi, C. Fuyi, S. Yujuan, and L. Xiaodong, “Drinking water toxicity study of the environmental contaminant--Bromate,” Regul. Toxicol. Pharmacol., vol. 73, no. 3, pp. 802–810, 2015, doi: 10.1016/j.yrtph.2015.10.015.
M. E. Davis, Z. Chen, and D. M. Shin, “Nanoparticle therapeutics: An emerging treatment modality for cancer,” Nat. Rev. Drug Discov., vol. 7, no. 9, pp. 771–782, 2008, doi: 10.1038/nrd2614.
D. Press, “High drug-loading nanomedicines : progress , current status , and prospects,” pp. 4085–4109, 2017.
X. Zhang et al., “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon N. Y., vol. 49, no. 3, pp. 986–995, 2011, doi: 10.1016/j.carbon.2010.11.005.
A. Aghabegi Moghanjoughi, D. Khoshnevis, and A. Zarrabi, “A concise review on smart polymers for controlled drug release,” Drug Deliv. Transl. Res., vol. 6, no. 3, pp. 333–340, 2016, doi: 10.1007/s13346-015-0274-7.
J. Ulbricht, R. Jordan, and R. Luxenhofer, “On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s,” Biomaterials, vol. 35, no. 17, pp. 4848–4861, 2014, doi: 10.1016/j.biomaterials.2014.02.029.
C. Y. Gong et al., “Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic drug delivery, part 2: In vitro and in vivo toxicity evaluation,” J. Nanoparticle Res., vol. 13, no. 2, pp. 721–731, 2011, doi: 10.1007/s11051- 010-0071-7.
M. Zamani, K. Rostamizadeh, H. Kheiri Manjili, and H. Danafar, “In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery,” Eur. Polym. J., vol. 103, no. April, pp. 260–270, 2018, doi: 10.1016/j.eurpolymj.2018.04.020.
H. Xin, X. Sha, X. Jiang, W. Zhang, L. Chen, and X. Fang, “Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles,” Biomaterials, vol. 33, no. 32, pp. 8167–8176, 2012, doi: 10.1016/j.biomaterials.2012.07.046.
F. Landi, C. M. Johansson, D. J. Campopiano, and A. N. Hulme, “Synthesis and application of a new cleavable linker for ‘click’-based affinity chromatography,” Org. Biomol. Chem., vol. 8, no. 1, pp. 56–59, 2010, doi: 10.1039/b916693a.
L. Zhou, H. He, M. C. Li, S. Huang, C. Mei, and Q. Wu, “Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property,” Carbohydr. Polym., vol. 189, no. January, pp. 331–341, 2018, doi: 10.1016/j.carbpol.2018.02.039.
R. S. Kalhapure and K. G. Akamanchi, “Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system,” Int. J. Pharm., vol. 425, no. 1–2, pp. 9–18, 2012, doi: 10.1016/j.ijpharm.2012.01.004.
D. B Gugulothu and C. B Fernandes, “A Versatile High Performance Liquid Chromatography Method for Simultaneous Determination of Three Curcuminoids in Pharmaceutical Dosage forms,” Pharm. Anal. Acta, vol. 03, no. 04, 2012, doi: 10.4172/2153-2435.1000156.
D. Hernan Perez De La Ossa et al., “Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy,” J. Control. Release, vol. 161, no. 3, pp. 927–932, 2012, doi: 10.1016/j.jconrel.2012.05.003.
S. Atta, J. Cohen, J. Kohn, and A. J. Gormley, “Ring opening polymerization of ϵ-caprolactone through water,” Polym. Chem., vol. 12, no. 2, pp. 159–164, 2021, doi: 10.1039/d0py01481h.
H. Y. Li, B. Zhang, P. S. Chan, J. Weng, C. K. Tsang, and W. Y. T. Lee, “Convergent synthesis and characterization of fatty acid-conjugated poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanoparticles for improved drug delivery to the brain,” Eur. Polym. J., vol. 98, no. August 2017, pp. 394–401, 2018, doi: 10.1016/j.eurpolymj.2017.11.038.
A. V. Angarita-Villamizar, E. R. Arias, I. L. Diaz, and L. D. Perez, “Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity,” J. Polym. Res., vol. 28, no. 1, 2021, doi: 10.1007/s10965-020-02392-y.
I. L. Diaz, C. A. Sierra, V. Jérôme, R. Freitag, and L. D. Perez, “Target grafting of poly(2-(dimethylamino)ethyl methacrylate) to biodegradable block copolymers,” J. Polym. Sci., vol. 58, no. 16, pp. 2168–2180, 2020, doi: 10.1002/pol.20200204.
A. F. Zahoor, S. Naheed, M. Irfan, S. Ahmad, M. N. Anjum, and M. Yousaf, “Advances in the synthesis and reactivity of acyl azides (2005-2015),” Afinidad, vol. 75, no. 583, 2018.
I. Cano, E. Álvarez, M. C. Nicasio, and P. J. Pérez, “Regioselective formation of 2,5-disubstituted oxazoles via copper(I)-catalyzed cycloaddition of acyl azides and 1-alkynes,” J. Am. Chem. Soc., vol. 133, no. 2, pp. 191–193, 2011, doi: 10.1021/ja109732s.
S. Zhang, C. Campagne, and F. Salaün, “Influence of solvent selection in the electrospraying process of polycaprolactone,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030402.
C. Bordes et al., “Determination of poly(ε-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process,” Int. J. Pharm., vol. 383, no. 1–2, pp. 236–243, 2010, doi: 10.1016/j.ijpharm.2009.09.023.
L. Glavas, P. Olsén, K. Odelius, and A. C. Albertsson, “Achieving micelle control through core crystallinity,” Biomacromolecules, vol. 14, no. 11, pp. 4150–4156, 2013, doi: 10.1021/bm401312j.
V. Känkänen et al., “Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block polycaprolactone nanostructures,” Int. J. Pharm., vol. 590, no. September, pp. 1–11, 2020, doi: 10.1016/j.ijpharm.2020.119900.
L. Piao, Z. Dai, M. Deng, X. Chen, and X. Jing, “Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst,” Polymer (Guildf)., vol. 44, no. 7, pp. 2025–2031, 2003, doi: 10.1016/S0032-3861(03)00087-9.
R. Feng, Z. Song, and G. Zhai, “Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles,” Int. J. Nanomedicine, vol. 7, pp. 4089–4098, 2012, doi: 10.2147/IJN.S33607.
S. Sunoqrot, A. Alsadi, O. Tarawneh, and R. Hamed, “Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles,” Colloid Polym. Sci., vol. 295, no. 10, pp. 2051–2059, 2017, doi: 10.1007/s00396-017-4183-9.
M. Ukawala et al., “Investigation on design of stable etoposide-loaded PEG PCL micelles: Effect of molecular weight of PEG-PCL diblock copolymer on the in vitro and in vivo performance of micelles,” Drug Deliv., vol. 19, no. 3, pp. 155–167, 2012, doi: 10.3109/10717544.2012.657721.
A. Alalaiwe, G. Roberts, P. Carpinone, J. Munson, and S. Roberts, “Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats,” Drug Deliv., vol. 24, no. 1, pp. 591–598, 2017, doi: 10.1080/10717544.2017.1282554.
L. P. Sze et al., “Oral delivery of paclitaxel by polymeric micelles: A comparison of different block length on uptake, permeability and oral bioavailability,” Colloids Surfaces B Biointerfaces, vol. 184, no. October, p. 110554, 2019, doi: 10.1016/j.colsurfb.2019.110554.
M. Kakran, N. G. Sahoo, I. L. Tan, and L. Li, “Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods,” J. Nanoparticle Res., vol. 14, no. 3, 2012, doi: 10.1007/s11051- 012-0757-0.
R. Prasad, K. M. Gupta, S. K. Poornachary, and S. V. Dalvi, “Elucidating the polymorphic behavior of curcumin during antisolvent crystallization: Insights from Raman spectroscopy and molecular modeling,” Cryst. Growth Des., vol. 20, no. 9, pp. 6008–6023, 2020, doi: 10.1021/acs.cgd.0c00728.
S. Som et al., “Quality by Design-Based Crystallization of Curcumin Using Liquid Antisolvent Precipitation: Micromeritic, Biopharmaceutical, and Stability Aspects,” Assay Drug Dev. Technol., vol. 18, no. 1, pp. 11–33, 2020, doi: 10.1089/adt.2018.913.
A. A. Thorat and S. V. Dalvi, “Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective,” Chem. Eng. J., vol. 181–182, pp. 1–34, 2012, doi: 10.1016/j.cej.2011.12.044.
R. W. Welker, Basics and Sampling of Particles for Size Analysis and Identification, vol. 4. Elsevier, 2012.
R. Balu, T. S. Sampath Kumar, M. Ramalingam, and S. Ramakrishna, “Electrospun polycaprolactone/Poly(1,4-butylene adipate-co polycaprolactam) blends: Potential biodegradable scaffold for bone tissue regeneration,” J. Biomater. Tissue Eng., vol. 1, no. 1, pp. 30–39, 2011, doi: 10.1166/jbt.2011.1004.
J. Li, L. He, T. Liu, X. Cao, and H. Zhu, “Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 118, pp. 48–53, 2013, doi: 10.1016/j.solmat.2013.07.017.
P. Sanphui, N. R. Goud, U. B. R. Khandavilli, S. Bhanoth, and A. Nangia, “New polymorphs of curcumin,” Chem. Commun., vol. 47, no. 17, pp. 5013– 5015, 2011, doi: 10.1039/c1cc10204d.
A. L. Stinchcomb, S. Valiveti, D. C. Hammell, and D. R. Ramsey, “Human skin permeation of Δ8-tetrahydrocannabinol, cannabidiol and cannabinol,” J. Pharm. Pharmacol., vol. 56, no. 3, pp. 291–297, 2003, doi: 10.1211/0022357022791.
N. Francke, L. Grüne, and H. Bunjes, “Formulation of Cannabidiol in Lipid Carriers,” Symp. Pharm. Eng. Res. Sph., no. September, pp. 25–27, 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 116 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82137/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82137/2/1014272427.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82137/3/1014272427.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4779b66d2f26dbc5c9ec5f19753c681c
352e5352c35586f081f5e69b2b7f8a36
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090056859648000
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pérez Pérez, León Daríoa85c642b1834ea9bb160b576c9ba2f87Porras Argüello, Julián David21c629fde991b5db8f015ccc46a116bdGrupo de Investigación en Macromoléculas2022-08-26T15:50:14Z2022-08-26T15:50:14Z2022https://repositorio.unal.edu.co/handle/unal/82137Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEn la actualidad existen múltiples moléculas con interés farmacológico de carácter lipofílico que presentan baja solubilidad en agua y baja biodisponibilidad, por ejemplo, la curcumina con propiedades antioxidantes y los cannabinoides como el cannabidiol (CBD) y Δ-9-tetrahidrocannabinol (THC) que interactúan con el sistema endocannabinoide. Se han desarrollado diferentes vehículos de transporte para abordar los anteriores problemas, que han mostrado la capacidad de aumentar la biodisponibilidad de los fármacos, sin embargo, presentan desventajas asociadas principalmente a su baja capacidad de carga de fármaco y toxicidad. Por esta razón se plantea el desarrollo de un vehículo polimérico funcionalizado con ácidos grasos en esta investigación. Para la obtención de este polímero, en primer lugar, se llevó a cabo la síntesis de copolímeros de polietilenglicol (PEG), con ϵ-caprolactona (ϵ-CL) y 5-metil-5-propargiloxicarbonil-1,3-dioxan-2-ona (MCP), mediante polimerización por apertura de anillo (ROP, por sus siglas en ingles). Seguido de ello, se probaron diferentes metodologías de reacción por química clic que incluyen el uso de una azida de acilo o una 3-azidopropilamida basada en ácido linoleico como sustratos, solventes como DMF o anisol y varias temperaturas. La tendencia general de estas reacciones fue evaluada usando resonancia magnética nuclear de protón (RMN-1H), en donde las condiciones que aumentan la solubilidad del polímero se correlacionaron con un aumento de la conversión de los grupos funcionales. Los polímeros obtenidos fueron caracterizados mediante el uso de cromatografía por permeación en gel (GPC), RMN-1H y espectroscopia infrarroja (FT-IR). La encapsulación de los fármacos se llevó a cabo usando nanoprecipitación. Se evaluó el efecto de los polímeros modificados, solventes usados, velocidad de agitación y evaporación por vacío sobre la encapsulación de curcumina (CUR), la cual fue cuantificada por cromatografía líquida de alta resolución (HPLC). Estos experimentos permitieron concluir que hay un efecto cinético asociado a la velocidad en la cual se forman los núcleos de las micelas y el fármaco, en donde el uso de evaporación por vacío fue el método que permitió obtener mayores valores de encapsulación (aproximadamente 40% en peso curcumina/ peso micela cargada). Por otra parte, los valores de encapsulación de CBD fueron mucho más altos que los de curcumina (aproximadamente 60% en peso CBD/peso micela cargada), lo que se asoció a la partición del principio activo desde el medio continuo hacia el núcleo micelar, aun cuando los coloides ya están formados. Debido a las altas cargas de fármaco, se estudió la estabilidad coloidal de las micelas cargadas con CBD y la degradación del fármaco encapsulado. Se observó que los polímeros con 5 ácidos grasos en su estructura alcanzaron micelas más estables que los que tenían 2 ácidos y se observaron sistemas estables con PEG-PCL. La degradación del CBD en el interior del núcleo micelar fue significativa luego de varios meses de almacenamiento en las micelas con mayor carga de fármaco. Por último, se llevó a cabo la encapsulación y la liberación de extractos enriquecidos en CBD y THC. Las encapsulaciones de los extractos fueron menos eficientes que las encontradas con el CBD puro, lo cual fue asociado a efectos antagónicos de los componentes del extracto. Los valores obtenidos para las cinéticas de liberación ajustaron principalmente al modelo de Higuchi, lo que sugiere una liberación mediada por difusión. Además, se realizaron ensayos in-vivo usando las formulaciones obtenidas que mostraron un efecto analgésico sostenido en el tiempo. (Texto tomado de la fuente).Currently, there are multiple lipophilic drugs with pharmacological interest which present low water solubility and poor bioavailability, for instance, curcumin with antioxidant properties and cannabinoids such as cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC) that interact with the endocannabinoid system. Different vehicles have been developed to tackle those problems which increase the bioavailability of drugs; however, they have drawbacks associated with their low drug loading capacity and toxicity. For this reason, a modified polymeric vehicle with fatty acids is proposed in this research. To obtain this polymer, firstly, the synthesis of polyethylene glycol (PEG) copolymers with ϵ-caprolactone (ϵ-CL), and 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one (MCP) was conducted by ring-opening polymerization (ROP). Then, different click chemistry reaction methodologies were tested including an acyl-azide or a 3-azidopropylamide based on linoleic acid as substrates, DMF or anisole as solvents, and various temperatures. General tendency of these reactions was evaluated using proton nuclear magnetic resonance (1H-NMR), where conditions that increase solubility of the polymer were correlated with an increment in the conversion of the functional groups. Obtained polymers were characterized by gel permeation chromatography (GPC), 1H-NMR and infrared spectroscopy (FT-IR). Drug encapsulation was conducted by nanoprecipitation. Effect of modified polymers, solvents, speed of stirring and rotaevaporation were evaluated on curcumin encapsulation, which was quantified by high performance liquid chromatography (HPLC). These experiments allowed to conclude that there is a possible kinetic effect associated to the speed at which the nuclei of the micelles and the drug are formed, where the highest drug loading capacity was obtained with rotaevaporation (approximately 40 % weight curcumin/ weight of charged micelle). On the other hand, encapsulation values of CBD were higher than those of curcumin (approximately 60 % weight CBD/ weight of charged micelle), which was associated with partition of the compound from the continuous phase into the micellar nucleus, even when colloids were already formed. Considering their high drug loading capacity, colloidal stability of micelles loaded with CBD and degradation of the encapsulated drug were studied. It was observed that polymers with 5 fatty acids in their structure were more stable micelles than those with 2 acids, although stable systems with PEG-PCL were obtained. Degradation of CBD was significant after several months of storing for micelles with highest drug loading capacity. Finally, the encapsulation and release profiles of extracts CBD and THC rich were conducted. Encapsulation of the extracts was lower than those found with pure CBD, which was associated with antagonistic effects of the components of the extract. Release´s profiles adjusted mainly to the Higuchi model, which suggests a release mediated by diffusion. Also, In-vivo essays were done with extracts encapsulated using modified polymers that presented an analgesic sustained effect during days.Incluye anexosMaestríaMagíster en Ciencias - QuímicaSíntesis de polímeros116 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesPolymersPolímerosAcids, fattyCapsules (Pharmacy)Ácidos grasosCápsulas (Farmacia)Química clicCurcuminaCannabidiolMicelasÁcidos grasosClick chemistryCurcuminCannabidiolMicellesFatty acidsDiseño de copolímeros basados en PEG-PCL para encapsulación de fármacos apolaresDesign of copolymers based on PEG-PCL for encapsulation of apolar drugsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeN. Boroumand, S. Samarghandian, and S. I. Hashemy, “Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin,” J. HerbMed Pharmacol., vol. 7, no. 4, pp. 211–219, 2018, doi: 10.15171/jhp.2018.33.N. Bruni, C. Della Pepa, S. Oliaro-Bosso, E. Pessione, D. Gastaldi, and F. Dosio, “Cannabinoid Delivery Systems for Pain and Inflammation Treatment,” Molecules, vol. 23, no. 10, p. 2478, Sep. 2018, doi: 10.3390/molecules23102478.P. Grossen, D. Witzigmann, S. Sieber, and J. Huwyler, “PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application,” J. Control. Release, vol. 260, no. April, pp. 46–60, 2017, doi: 10.1016/j.jconrel.2017.05.028.E. R. Arias, V. Angarita-Villamizar, Y. Baena, C. Parra-Giraldo, and L. D. Perez, “Phospholipid-conjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b,” Polymers (Basel)., vol. 13, no. 11, 2021, doi: 10.3390/polym13111747.Z. Song, W. Zhu, N. Liu, F. Yang, and R. Feng, “Linolenic acid-modified PEG-PCL micelles for curcumin delivery,” Int. J. Pharm., vol. 471, no. 1–2, pp. 312–321, 2014, doi: 10.1016/j.ijpharm.2014.05.059.R. F. Storey and J. W. Sherman, “Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone,” Macromolecules, vol. 35, no. 5, pp. 1504–1512, 2002, doi: 10.1021/ma010986c.V. D. Bock, H. Hiemstra, and J. H. Van Maarseveen, “Cu I-catalyzed alkyne-azide ‘click’ cycloadditions from a mechanistic and synthetic perspective,” European J. Org. Chem., no. 1, pp. 51–68, 2006, doi: 10.1002/ejoc.200500483.H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,” Angew. Chemie - Int. Ed., vol. 40, no. 11, pp. 2004–2021, 2001, doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.R. Kretzschmar, “Colloid-Facilitated Sorption and Transport,” Encycl. Soils Environ., vol. 4, no. 1993, pp. 276–284, 2004, doi: 10.1016/B0-12-348530-4/00201-0.M. L. Adams, A. Lavasanifar, and G. S. Kwon, “Amphiphilic block copolymers for drug delivery,” J. Pharm. …, vol. 92, no. 7, pp. 1343–1355, 2003.S. C. Owen, D. P. Y. Chan, and M. S. Shoichet, “Polymeric micelle stability,” Nano Today, vol. 7, no. 1, pp. 53–65, 2012, doi: 10.1016/j.nantod.2012.01.002.J. J. Sheng, “Surfactant Flooding,” Mod. Chem. Enhanc. Oil Recover., pp. 239–335, 2011, doi: 10.1016/b978-1-85617-745-0.00007-3.R. Liu, Water-Insoluble Drug Formulation, 2nd ed. CRC Press, 2008.W. B. Liechty, “Polymer for Drug Delivery,” Annu Rev Chem Biomol Eng., vol. 1, no. 1, pp. 149–173, 2010, doi: 10.1146/annurev-chembioeng-073009-100847.Polymers.Y. J. Rodriguez, L. F. Quejada, J. C. Villamil, Y. Baena, C. M. Parra-Giraldo, and L. D. Perez, “Development of amphotericin b micellar formulations based on copolymers of poly(Ethylene glycol) and poly(ε-caprolactone) conjugated with retinol,” Pharmaceutics, vol. 12, no. 3, 2020, doi: 10.3390/pharmaceutics12030196.M. Maniruzzaman, M. J. Snowden, M. S. Bradely, and D. Douroumis, “Studies of intermolecular interactions in solid dispersions using advanced surface chemical analysis,” RSC Adv., vol. 5, no. 91, pp. 74212–74219, 2015, doi: 10.1039/c5ra13176f.S. Hewlings and D. Kalman, “Curcumin: A Review of Its’ Effects on Human Health,” Foods, vol. 6, no. 10, p. 92, 2017, doi: 10.3390/foods6100092.P. F. Whiting et al., “Cannabinoids for medical use: A systematic review and meta-analysis,” JAMA - J. Am. Med. Assoc., vol. 313, no. 24, pp. 2456–2473, 2015, doi: 10.1001/jama.2015.6358.T. Hložek et al., “Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC,” Eur. Neuropsychopharmacol., vol. 27, no. 12, pp. 1223–1237, 2017, doi: 10.1016/j.euroneuro.2017.10.037.K. Y. Yang, L. C. Lin, T. Y. Tseng, S. C. Wang, and T. H. Tsai, “Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 853, no. 1–2, pp. 183–189, 2007, doi: 10.1016/j.jchromb.2007.03.010.D. J. McClements and H. Xiao, “Potential biological fate of ingested nanoemulsions: Influence of particle characteristics,” Food Funct., vol. 3, no. 3, pp. 202–220, 2012, doi: 10.1039/c1fo10193e.J. Aparicio-Blanco, V. Sebastián, J. P. Benoit, and A. I. Torres-Suárez, “Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters,” Eur. J. Pharm. Biopharm., vol. 134, pp. 126–137, 2019, doi: 10.1016/j.ejpb.2018.11.020.A. P. Matarazzo et al., “Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain,” Eur. J. Pharm. Sci., vol. 159, no. December 2020, 2021, doi: 10.1016/j.ejps.2020.105698.V. De Leo et al., “Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process,” Molecules, vol. 23, no. 4, pp. 1–15, 2018, doi: 10.3390/molecules23040739.S. Lawson, K. Newport, N. Pederniera, A. A. Rownaghi, and F. Rezaei, “Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family,” ACS Appl. Bio Mater., vol. 4, no. 4, pp. 3423–3432, 2021, doi: 10.1021/acsabm.1c00009.R. Karimi Alavijeh and K. Akhbari, “Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin,” Inorg. Chem., vol. 59, no. 6, pp. 3570–3578, 2020, doi: 10.1021/acs.inorgchem.9b02756.J. Charmi, H. Nosrati, J. Mostafavi Amjad, R. Mohammadkhani, and H. Danafar, “Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery,” Heliyon, vol. 5, no. 4, p. e01466, 2019, doi: 10.1016/j.heliyon.2019.e01466.X. Shi et al., “Heparin-reduced graphene oxide nanocomposites for curcumin delivery:: In vitro, in vivo and molecular dynamics simulation study,” Biomater. Sci., vol. 7, no. 3, pp. 1011–1027, 2019, doi: 10.1039/c8bm00907d.R. Pushpalatha, S. Selvamuthukumar, and D. Kilimozhi, “Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity,” J. Drug Deliv. Sci. Technol., vol. 45, no. November 2017, pp. 45–53, 2018, doi: 10.1016/j.jddst.2018.03.004.M. M. Lübtow et al., “Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models,” J. Control. Release, vol. 303, no. February, pp. 162–180, 2019, doi: 10.1016/j.jconrel.2019.04.014.Y. Liu et al., “Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation,” Angew. Chemie - Int. Ed., vol. 59, no. 12, pp. 4720–4728, 2020, doi: 10.1002/anie.201913539.R. K. Prud and J. Nicholas, “Application Publication ( 10 ) Pub . No .: US 2020/0368163 A1,” vol. 2020, 2020.S. He et al., “Metal-organic frameworks for advanced drug delivery,” Acta Pharm. Sin. B, vol. 11, no. 8, pp. 2362–2395, 2021, doi: 10.1016/j.apsb.2021.03.019.P. Horcajada et al., “Metal–Organic Frameworks in Biomedicine,” Chem. Rev., vol. 112, no. 2, pp. 1232–1268, 2012.L. Dongmei, W. Zhiwei, Z. Qi, C. Fuyi, S. Yujuan, and L. Xiaodong, “Drinking water toxicity study of the environmental contaminant--Bromate,” Regul. Toxicol. Pharmacol., vol. 73, no. 3, pp. 802–810, 2015, doi: 10.1016/j.yrtph.2015.10.015.M. E. Davis, Z. Chen, and D. M. Shin, “Nanoparticle therapeutics: An emerging treatment modality for cancer,” Nat. Rev. Drug Discov., vol. 7, no. 9, pp. 771–782, 2008, doi: 10.1038/nrd2614.D. Press, “High drug-loading nanomedicines : progress , current status , and prospects,” pp. 4085–4109, 2017.X. Zhang et al., “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon N. Y., vol. 49, no. 3, pp. 986–995, 2011, doi: 10.1016/j.carbon.2010.11.005.A. Aghabegi Moghanjoughi, D. Khoshnevis, and A. Zarrabi, “A concise review on smart polymers for controlled drug release,” Drug Deliv. Transl. Res., vol. 6, no. 3, pp. 333–340, 2016, doi: 10.1007/s13346-015-0274-7.J. Ulbricht, R. Jordan, and R. Luxenhofer, “On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s,” Biomaterials, vol. 35, no. 17, pp. 4848–4861, 2014, doi: 10.1016/j.biomaterials.2014.02.029.C. Y. Gong et al., “Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic drug delivery, part 2: In vitro and in vivo toxicity evaluation,” J. Nanoparticle Res., vol. 13, no. 2, pp. 721–731, 2011, doi: 10.1007/s11051- 010-0071-7.M. Zamani, K. Rostamizadeh, H. Kheiri Manjili, and H. Danafar, “In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery,” Eur. Polym. J., vol. 103, no. April, pp. 260–270, 2018, doi: 10.1016/j.eurpolymj.2018.04.020.H. Xin, X. Sha, X. Jiang, W. Zhang, L. Chen, and X. Fang, “Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles,” Biomaterials, vol. 33, no. 32, pp. 8167–8176, 2012, doi: 10.1016/j.biomaterials.2012.07.046.F. Landi, C. M. Johansson, D. J. Campopiano, and A. N. Hulme, “Synthesis and application of a new cleavable linker for ‘click’-based affinity chromatography,” Org. Biomol. Chem., vol. 8, no. 1, pp. 56–59, 2010, doi: 10.1039/b916693a.L. Zhou, H. He, M. C. Li, S. Huang, C. Mei, and Q. Wu, “Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property,” Carbohydr. Polym., vol. 189, no. January, pp. 331–341, 2018, doi: 10.1016/j.carbpol.2018.02.039.R. S. Kalhapure and K. G. Akamanchi, “Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system,” Int. J. Pharm., vol. 425, no. 1–2, pp. 9–18, 2012, doi: 10.1016/j.ijpharm.2012.01.004.D. B Gugulothu and C. B Fernandes, “A Versatile High Performance Liquid Chromatography Method for Simultaneous Determination of Three Curcuminoids in Pharmaceutical Dosage forms,” Pharm. Anal. Acta, vol. 03, no. 04, 2012, doi: 10.4172/2153-2435.1000156.D. Hernan Perez De La Ossa et al., “Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy,” J. Control. Release, vol. 161, no. 3, pp. 927–932, 2012, doi: 10.1016/j.jconrel.2012.05.003.S. Atta, J. Cohen, J. Kohn, and A. J. Gormley, “Ring opening polymerization of ϵ-caprolactone through water,” Polym. Chem., vol. 12, no. 2, pp. 159–164, 2021, doi: 10.1039/d0py01481h.H. Y. Li, B. Zhang, P. S. Chan, J. Weng, C. K. Tsang, and W. Y. T. Lee, “Convergent synthesis and characterization of fatty acid-conjugated poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanoparticles for improved drug delivery to the brain,” Eur. Polym. J., vol. 98, no. August 2017, pp. 394–401, 2018, doi: 10.1016/j.eurpolymj.2017.11.038.A. V. Angarita-Villamizar, E. R. Arias, I. L. Diaz, and L. D. Perez, “Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity,” J. Polym. Res., vol. 28, no. 1, 2021, doi: 10.1007/s10965-020-02392-y.I. L. Diaz, C. A. Sierra, V. Jérôme, R. Freitag, and L. D. Perez, “Target grafting of poly(2-(dimethylamino)ethyl methacrylate) to biodegradable block copolymers,” J. Polym. Sci., vol. 58, no. 16, pp. 2168–2180, 2020, doi: 10.1002/pol.20200204.A. F. Zahoor, S. Naheed, M. Irfan, S. Ahmad, M. N. Anjum, and M. Yousaf, “Advances in the synthesis and reactivity of acyl azides (2005-2015),” Afinidad, vol. 75, no. 583, 2018.I. Cano, E. Álvarez, M. C. Nicasio, and P. J. Pérez, “Regioselective formation of 2,5-disubstituted oxazoles via copper(I)-catalyzed cycloaddition of acyl azides and 1-alkynes,” J. Am. Chem. Soc., vol. 133, no. 2, pp. 191–193, 2011, doi: 10.1021/ja109732s.S. Zhang, C. Campagne, and F. Salaün, “Influence of solvent selection in the electrospraying process of polycaprolactone,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030402.C. Bordes et al., “Determination of poly(ε-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process,” Int. J. Pharm., vol. 383, no. 1–2, pp. 236–243, 2010, doi: 10.1016/j.ijpharm.2009.09.023.L. Glavas, P. Olsén, K. Odelius, and A. C. Albertsson, “Achieving micelle control through core crystallinity,” Biomacromolecules, vol. 14, no. 11, pp. 4150–4156, 2013, doi: 10.1021/bm401312j.V. Känkänen et al., “Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block polycaprolactone nanostructures,” Int. J. Pharm., vol. 590, no. September, pp. 1–11, 2020, doi: 10.1016/j.ijpharm.2020.119900.L. Piao, Z. Dai, M. Deng, X. Chen, and X. Jing, “Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst,” Polymer (Guildf)., vol. 44, no. 7, pp. 2025–2031, 2003, doi: 10.1016/S0032-3861(03)00087-9.R. Feng, Z. Song, and G. Zhai, “Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles,” Int. J. Nanomedicine, vol. 7, pp. 4089–4098, 2012, doi: 10.2147/IJN.S33607.S. Sunoqrot, A. Alsadi, O. Tarawneh, and R. Hamed, “Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles,” Colloid Polym. Sci., vol. 295, no. 10, pp. 2051–2059, 2017, doi: 10.1007/s00396-017-4183-9.M. Ukawala et al., “Investigation on design of stable etoposide-loaded PEG PCL micelles: Effect of molecular weight of PEG-PCL diblock copolymer on the in vitro and in vivo performance of micelles,” Drug Deliv., vol. 19, no. 3, pp. 155–167, 2012, doi: 10.3109/10717544.2012.657721.A. Alalaiwe, G. Roberts, P. Carpinone, J. Munson, and S. Roberts, “Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats,” Drug Deliv., vol. 24, no. 1, pp. 591–598, 2017, doi: 10.1080/10717544.2017.1282554.L. P. Sze et al., “Oral delivery of paclitaxel by polymeric micelles: A comparison of different block length on uptake, permeability and oral bioavailability,” Colloids Surfaces B Biointerfaces, vol. 184, no. October, p. 110554, 2019, doi: 10.1016/j.colsurfb.2019.110554.M. Kakran, N. G. Sahoo, I. L. Tan, and L. Li, “Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods,” J. Nanoparticle Res., vol. 14, no. 3, 2012, doi: 10.1007/s11051- 012-0757-0.R. Prasad, K. M. Gupta, S. K. Poornachary, and S. V. Dalvi, “Elucidating the polymorphic behavior of curcumin during antisolvent crystallization: Insights from Raman spectroscopy and molecular modeling,” Cryst. Growth Des., vol. 20, no. 9, pp. 6008–6023, 2020, doi: 10.1021/acs.cgd.0c00728.S. Som et al., “Quality by Design-Based Crystallization of Curcumin Using Liquid Antisolvent Precipitation: Micromeritic, Biopharmaceutical, and Stability Aspects,” Assay Drug Dev. Technol., vol. 18, no. 1, pp. 11–33, 2020, doi: 10.1089/adt.2018.913.A. A. Thorat and S. V. Dalvi, “Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective,” Chem. Eng. J., vol. 181–182, pp. 1–34, 2012, doi: 10.1016/j.cej.2011.12.044.R. W. Welker, Basics and Sampling of Particles for Size Analysis and Identification, vol. 4. Elsevier, 2012.R. Balu, T. S. Sampath Kumar, M. Ramalingam, and S. Ramakrishna, “Electrospun polycaprolactone/Poly(1,4-butylene adipate-co polycaprolactam) blends: Potential biodegradable scaffold for bone tissue regeneration,” J. Biomater. Tissue Eng., vol. 1, no. 1, pp. 30–39, 2011, doi: 10.1166/jbt.2011.1004.J. Li, L. He, T. Liu, X. Cao, and H. Zhu, “Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 118, pp. 48–53, 2013, doi: 10.1016/j.solmat.2013.07.017.P. Sanphui, N. R. Goud, U. B. R. Khandavilli, S. Bhanoth, and A. Nangia, “New polymorphs of curcumin,” Chem. Commun., vol. 47, no. 17, pp. 5013– 5015, 2011, doi: 10.1039/c1cc10204d.A. L. Stinchcomb, S. Valiveti, D. C. Hammell, and D. R. Ramsey, “Human skin permeation of Δ8-tetrahydrocannabinol, cannabidiol and cannabinol,” J. Pharm. Pharmacol., vol. 56, no. 3, pp. 291–297, 2003, doi: 10.1211/0022357022791.N. Francke, L. Grüne, and H. Bunjes, “Formulation of Cannabidiol in Lipid Carriers,” Symp. Pharm. Eng. Res. Sph., no. September, pp. 25–27, 2019.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82137/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1014272427.2022.pdf1014272427.2022.pdfMaestría en Ciencias - Químicaapplication/pdf2799487https://repositorio.unal.edu.co/bitstream/unal/82137/2/1014272427.2022.pdf4779b66d2f26dbc5c9ec5f19753c681cMD52THUMBNAIL1014272427.2022.pdf.jpg1014272427.2022.pdf.jpgGenerated Thumbnailimage/jpeg5256https://repositorio.unal.edu.co/bitstream/unal/82137/3/1014272427.2022.pdf.jpg352e5352c35586f081f5e69b2b7f8a36MD53unal/82137oai:repositorio.unal.edu.co:unal/821372023-08-08 23:03:51.861Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=