Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas

gráficas, ilustraciones, tablas

Autores:
Carrillo Bohórquez, Orlando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82241
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82241
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Moléculas
Estructura molecular
Molecular structure
Molecules
Cálculos mecano-cuánticos
Fullerenos endohedrales
Modelos de interacción
Moléculas nanoconfinadas
Ruptura de simetrı́a
Endohedral fullerenes
Interaction models
Nanoconfined molecules
Quantum-mechanical calculations
Symmetry breaking
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6af59c8229329c635f0e86a7b5c98e10
oai_identifier_str oai:repositorio.unal.edu.co:unal/82241
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
dc.title.translated.eng.fl_str_mv Simulation of the spectroscopic, thermodynamic and energetic properties of nanoconfined molecules
title Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
spellingShingle Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
530 - Física::539 - Física moderna
Moléculas
Estructura molecular
Molecular structure
Molecules
Cálculos mecano-cuánticos
Fullerenos endohedrales
Modelos de interacción
Moléculas nanoconfinadas
Ruptura de simetrı́a
Endohedral fullerenes
Interaction models
Nanoconfined molecules
Quantum-mechanical calculations
Symmetry breaking
title_short Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
title_full Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
title_fullStr Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
title_full_unstemmed Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
title_sort Simulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadas
dc.creator.fl_str_mv Carrillo Bohórquez, Orlando
dc.contributor.advisor.none.fl_str_mv Valdés de Luxán, Álvaro
Prosmiti, Rita
dc.contributor.author.none.fl_str_mv Carrillo Bohórquez, Orlando
dc.contributor.researchgroup.spa.fl_str_mv Química Cuántica y Computacional
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Moléculas
Estructura molecular
Molecular structure
Molecules
Cálculos mecano-cuánticos
Fullerenos endohedrales
Modelos de interacción
Moléculas nanoconfinadas
Ruptura de simetrı́a
Endohedral fullerenes
Interaction models
Nanoconfined molecules
Quantum-mechanical calculations
Symmetry breaking
dc.subject.armarc.none.fl_str_mv Moléculas
dc.subject.lemb.spa.fl_str_mv Estructura molecular
dc.subject.lemb.eng.fl_str_mv Molecular structure
Molecules
dc.subject.proposal.spa.fl_str_mv Cálculos mecano-cuánticos
Fullerenos endohedrales
Modelos de interacción
Moléculas nanoconfinadas
Ruptura de simetrı́a
dc.subject.proposal.eng.fl_str_mv Endohedral fullerenes
Interaction models
Nanoconfined molecules
Quantum-mechanical calculations
Symmetry breaking
description gráficas, ilustraciones, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-02T14:08:40Z
dc.date.available.none.fl_str_mv 2022-09-02T14:08:40Z
dc.date.issued.none.fl_str_mv 2022-07-01
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82241
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82241
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Kei Kurotobi and Yasujiro Murata. A single molecule of water encapsulated in fullerene C60. Science, 333(6042):613–616, 2011.
Orlando Carrillo-Bohórquez, Álvaro Valdés, and Rita Prosmiti. Encapsulation of a water molecule inside C60 fullerene: The impact of confinement on quantum features. Journal of Chemical Theory and Computation, 17(9):5839–5848, 2021.
Orlando Carrillo-Bohórquez, Álvaro Valdés, and Rita Prosmiti. Unraveling the origin of symmetry breaking in H2O@C60 endofullerene through quantum computations. ChemPhysChem, 23(9):e202200034, 2022.
Carlo Beduz, Marina Carravetta, Judy Y.-C. Chen, Maria Concistrè, Mark Denning, Michael Frunzi, Anthony J. Horsewill, Ole G. Johannessen, Ronald Lawler, Xuegong Lei, Malcolm H. Levitt, Yongjun Li, Salvatore Mamone, Yasujiro Murata, Urmas Nagel, Tomoko Nishida, Jacques Ollivier, Stéphane Rols, Toomas Rõõm, Riddhiman Sarkar, Nicholas J. Turro, and Yifeng Yang. Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proceedings of the National Academy of Sciences, 109(32):12894–12898, 2012.
Kelvin S. K. Goh, Monica Jimenez-Ruiz, Mark R. Johnson, Stephane Rols, Jacques Ollivier, Mark S. Denning, Salvatore Mamone, Malcolm H. Levitt, Xuegong Lei, Yongjun Li, Nicholas J. Turro, Yasujiro Murata, and Anthony J. Horsewill. Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation. Physical Chemistry Chemical Physics, 16:21330–21339, 2014.
Zlatko Bačić, Vojtěch Vlček, Daniel Neuhauser, and Peter M Felker. Effects of symmetry breaking on the translation–rotation eigenstates of H2 , HF, and H2O inside the fullerene C60. Faraday Discussions, 212:547–567, 2018.
Effat Rashed and Janette L Dunn. Interactions between a water molecule and C60 in the endohedral fullerene H2O@C60. Physical Chemistry Chemical Physics, 21(6):3347–3359, 2019.
A Shugai, U Nagel, Y Murata, Yongjun Li, S Mamone, A Krachmalnicoff, S Alom, RJ Whitby, MH Levitt, and T Rõõm. Infrared spectroscopy of an endohedral water in fullerene. The Journal of Chemical Physics, 154(12):124311, 2021.
Benno Meier, Salvatore Mamone, Maria Concistre, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J Whitby, and Malcolm H Levitt. Electrical detection of ortho–para conversion in fullerene-encapsulated water. Nature Communications, 6(1):1–4, 2015.
Álvaro Valdés, Orlando Carrillo-Bohórquez, and Rita Prosmiti. Fully coupled quantum treatment of nanoconfined systems: A water molecule inside a fullerene C60 . Journal of Chemical Theory and Computation, 14(12):6521–6531, 2018.
Peter M Felker and Zlatko Bačić. Flexible water molecule in C60 : Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets. The Journal of Chemical Physics, 152(1):014108, 2020.
Grygoriy A Dolgonos. Exploring the properties of H2O@C60 with the local second-Order Møller-Plesset perturbation theory: Blue or red shift in C60 and H2O fundamentals to expect? ChemistrySelect, 6(42):11583–11590, 2021.
Salvatore Mamone, Mark R Johnson, Jacques Ollivier, Stéphane Rols, Malcolm H Levitt, and Anthony J Horsewill. Symmetry-breaking in the H2@C60 endofullerene revealed by inelastic neutron scattering at low temperature. Physical Chemistry Chemical Physics, 18(3):1998–2005, 2016.
Peter M. Felker and Zlatko Bačić. Electric-dipole-coupled H2O@C60 dimer: Translation-rotation eigenstates from twelve-dimensional quantum calculations. The Journal of Chemical Physics, 146(8):084303, 2017.
Peter M. Felker, Vojtech Vlček, Isaac Hietanen, Stephen FitzGerald, Daniel Neuhauser, and Zlatko Bačić. Explaining the symmetry breaking observed in the endofullerenes H2@C60 , HF@C60 , and H2O@C60. Physical Chemistry Chemical Physics, 19:31274–31283, 2017.
Peter M. Felker and Zlatko Bačić. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60. The Journal of Chemical Physics, 144(20):201101–1–4, 2016.
Russel B. Ross, Claudia M Cardona, Dirk M. Guldi, Shankara Gayathri Sankaranarayanan, Matthew O. Reese, Nikos Kopidakis, Jeff Peet, Bright Walker, Guillermo C. Bazan, Edward Van Keuren, Brian C. Holloway, and Martin Drees. Endohedral fullerenes for organic photovoltaic devices. Nature Materials, 8:208–212, 2011.
Koichi Komatsu, Michihisa Murata, and Yasujiro Murata. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science, 307(5707):238–240, 2005.
Rui Zhang, Michihisa Murata, Atsushi Wakamiya, Takafumi Shimoaka, Takeshi Hasegawa, and Yasujiro Murata. Isolation of the simplest hydrated acid. Science Advances, 3(4), 2017.
Keith E. Whitener, Michael Frunzi, Sho-ichi Iwamatsu, Shizuaki Murata, R. James Cross, and Martin Saunders. Putting ammonia into a chemically opened fullerene. Journal of the American Chemical Society, 130(42):13996–13999, 2008.
Sally Bloodworth, Gabriela Sitinova, Shamim Alom, Sara Vidal, George R Bacanu, Stuart J Elliott, Mark E Light, Julie M Herniman, G John Langley, Malcolm H Levitt, et al. First synthesis and characterization of CH4 @C60 . Angewandte Chemie International Edition, 58(15):5038–5043, 2019.
Yves Rubin, Thibaut Jarrosson, Guan-Wu Wang, Michael D Bartberger, KN Houk, Georg Schick, Martin Saunders, and R James Cross. Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angewandte Chemie International Edition, 40(8):1543–1546, 2001.
Michihisa Murata, Shuhei Maeda, Yuta Morinaka, Yasujiro Murata, and Koichi Komatsu. Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. Journal of the American Chemical Society, 130(47):15800–15801, 2008.
Rui Zhang, Michihisa Murata, Tomoko Aharen, Atsushi Wakamiya, Takafumi Shimoaka, Takeshi Hasegawa, and Yasujiro Murata. Synthesis of a distinct water dimer inside fullerene C70 . Nature Chemistry, 8(5):435, 2016.
Judy Y.-C. Chen, Yongjun Li, Michael Frunzi, Xuegong Lei, Yasujiro Murata, Ronald G. Lawler, and Nicholas J. Turro. Nuclear spin isomers of guest molecules in H2@C60 , H2O@C60 and other endofullerenes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371(1998), 2013.
Yuta Morinaka, Rui Zhang, Satoru Sato, Hidefumi Nikawa, Tatsuhisa Kato, Ko Furukawa, Michio Yamada, Yutaka Maeda, Michihisa Murata, Atsushi Wakamiya, et al. Fullerene C70 as a nanoflask that reveals the chemical reactivity of atomic nitrogen. Angewandte Chemie, 129(23):6588–6591, 2017.
Salvatore Mamone, Maria Concistrè, Elisa Carignani, Benno Meier, Andrea Krachmalnicoff, Ole G. Johannessen, Xuegong Lei, Yongjun Li, Mark Denning, Marina Carravetta, Kelvin Goh, Anthony J. Horsewill, Richard J. Whitby, and Malcolm H. Levitt. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. The Journal of Chemical Physics, 140(19):194306, 2014.
Samuel P Jarvis, Hongqian Sang, Filipe Junqueira, Oliver Gordon, Jo EA Hodgkinson, Alex Saywell, Philipp Rahe, Salvatore Mamone, Simon Taylor, Adam Sweetman, et al. Chemical shielding of H2O and HF encapsulated inside a C60 cage. Communications Chemistry, 4(1):1–7, 2021.
Tatiana Korona and Helena Dodziuk. Small molecules in C60 and C70 : Which complexes could be stabilized? Journal of Chemical Theory and Computation, 7(5):1476–1483, 2011.
O. Shameema, C. N. Ramachandran, and N. Sathyamurthy. Blue shift in X-H stretching frequency of molecules due to confinement. The Journal of Physical Chemistry A, 110(1):2–4, 2006.
Kiyoshi Yagi and Daichi Watanabe. Infrared spectra of water molecule encapsulated inside fullerene studied by instantaneous vibrational analysis. International Journal of Quantum Chemistry, 109(10):2080–2090, 2009.
Arpita Varadwaj and Pradeep R. Varadwaj. Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chemistry – A European Journal, 18(48):15345–15360, 2012.
A. Barati Farimani, Yanbin Wu, and N. R. Aluru. Rotational motion of a single water molecule in a buckyball. Physical Chemistry Chemical Physics, 15:17993–18000, 2013.
Shinobu Aoyagi, Norihisa Hoshino, Tomoyuki Akutagawa, Yuki Sado, Ryo Kitaura, Hisanori Shinohara, Kunihisa Sugimoto, Rui Zhang, and Yasujiro Murata. A cubic dipole lattice of water molecules trapped inside carbon cages. Chemical Communications, 50:524–526, 2014.
Osmair Vital de Oliveira and Arlan da Silva Goncalves. Quantum chemical studies of endofullerenes (M@C60) where M = H2O, Li+, Na+, K+, Be2+ , Mg2+ , and Ca2+ . Computational Chemistry, 2(4):51–58, 2014.
Annia Galano, Adriana Pérez-González, Lourdes del Olmo, Misaela Francisco-Marquez, and Jorge Rafael León-Carmona. On the chemical behavior of C60 hosting H2O and other iso-electronic neutral molecules. Journal of Molecular Modeling, 20(8):2412, 2014.
Adam Jaroš, Zahra Badri, Pankaj Lochan Bora, Esmaeil Farajpour Bonab, Radek Marek, Michal Straka, and Cina Foroutan-Nejad. How does a container affect acidity of its content: Charge-depletion bonding inside fullerenes. Chemistry – A European Journal, 24(17):4245–4249.
Denis Sh Sabirov. From endohedral complexes to endohedral fullerene covalent derivatives: a density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. The Journal of Physical Chemistry C, 117(2):1178–1182, 2013.
Benno Meier, Karel Kouřil, Christian Bengs, Hana Kouřilová, Timothy C Barker, Stuart J Elliott, Shamim Alom, Richard J Whitby, and Malcolm H Levitt. Spin-isomer conversion of water at room temperature and quantum-rotor-induced nuclear polarization in the water-endofullerene H2O@C60 . Physical Review Letters, 120(26):266001, 2018.
Hal Suzuki, Motohiro Nakano, Yoshifumi Hashikawa, and Yasujiro Murata. Rotational motion and nuclear spin interconversion of H2O encapsulated in C60 appearing in the low-temperature heat capacity. The Journal of Physical Chemistry Letters, 10(6):1306–1311, 2019.
M Concistrè, S Mamone, M Denning, G Pileio, X Lei, Y Li, M Carravetta, NJ Turro, and MH Levitt. Anisotropic nuclear spin interactions in H2O@C60 determined by solid-state NMR. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1998):20120102, 2013.
Guo-Zhu Zhu, Yuan Liu, Yoshifumi Hashikawa, Qian-Fan Zhang, Yasujiro Murata, and Lai-Sheng Wang. Probing the interaction between the encapsulated water molecule and the fullerene cages in H2O@C60- and H2O@CN−59 . Chemical Science, 9(25):5666–5671, 2018.
Sergey S Zhukov, Vasileios Balos, Gabriela Hoffman, Shamim Alom, Mikhail Belyanchikov, Mehmet Nebioglu, Seulki Roh, Artem Pronin, George R Bacanu, Pavel Abramov, et al. Rotational coherence of encapsulated ortho and para water in fullerene C60 revealed by time-domain terahertz spectroscopy. Scientific Reports, 10(1):1–9, 2020.
Salvatore Mamone, Maria Concistrè, Elisa Carignani, Benno Meier, Andrea Krachmalnicoff, Ole G Johannessen, Xuegong Lei, Yongjun Li, Mark Denning, Marina Carravetta, et al. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. The Journal of Chemical Physics, 140(19):194306, 2014.
C. I. Williams, M. A. Whitehead, and L. Pang. Interaction and dynamics of endohedral gas molecules in fullerene C60 isomers and C70. The Journal of Physical Chemistry, 97(45):11652–11656, 1993.
Janette L Dunn and Effat Rashed. Evidence for Jahn-Teller effects in endohedral fullerenes. In Journal of Physics: Conference Series, volume 1148, page 012003. IOP Publishing, 2018.
Attila Szabo and Neil S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation, 1989.
C. J. Joachain and B. H. Brandsen. Physics of atoms and molecules. By Longman House. Burnt Mill, Arlow, Essex (UK): Longman Scientific Technical, 1983.
Octavio Roncero V. Simulaciones Cuánticas en Fı́sica Molecular: Fundamentos. IFF (CSIC).
Klaus Capelle. A bird’s-eye view of density-functional theory. Brazilian Journal of Physics, 36(4A):1318–1343, 2006.
Jiřı́ Čı́žek. On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. The Journal of Chemical Physics, 45(11):4256–4266, 1966.
Jiřı́ Čı́žek. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Advances in Chemical Physics, pages 35–89, 1969.
J Čı́žek and J Paldus. Correlation problems in atomic and molecular systems III. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. International Journal of Quantum Chemistry, 5(4):359–379, 1971.
Hans-Dieter Meyer, Frédéric Le Quéré, Céline Léonard, and Fabien Gatti. Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chemical Physics, 329(1):179–192, 2006.
Álvaro Valdés, Daniel J. Arismendi-Arrieta, and Rita Prosmiti. Quantum dynamics of carbon dioxide encapsulated in the cages of the sI clathrate hydrate: Structural guest distributions and cage occupation. The Journal of Physical Chemistry C, 119(8):3945–3956, 2015.
H.-D. Meyer, U. Manthe, and L. S. Cederbaum. The multi-configurational time-dependent Hartree approach. Chemical Physics Letters, 165:73–78, 1990.
Hans-Dieter Meyer, Fabien Gatti, and Graham A. Worth. Multidimensional quantum dynamics. John Wiley & Sons, 2009.
Hans-Dieter Meyer. Introduction to MCTDH, 2016.
Shangfeng Yang and Chun-Ru Wang. Endohedral fullerenes: From fundamentals to application. World Scientific, 2014.
Malcolm H Levitt. Spectroscopy of light-molecule endofullerenes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1998):20120429, 2013.
JA Alonso and JI Martınez. Handbook of nanophysics. vol 2: Clusters and fullerenes, 2010.
Michael Frunzi, Steffen Jockusch, Judy Y.-C. Chen, Rafael M. Krick Calderon, Xuegong Lei, Yasujiro Murata, Koichi Komatsu, Dirk M. Guldi, Ronald G. Lawler, and Nicholas J. Turro. A photochemical on–off switch for tuning the equilibrium mixture of H2 nuclear spin isomers as a function of temperature. Journal of the American Chemical Society, 133(36):14232–14235, 2011.
M Baskar, N Sathyan, TR Gopalakrishnan Nair, et al. Water molecules in the carbon C60 confined space. Journal of Biophysical Chemistry, 9(02):15, 2018.
J Twamley. Quantum-cellular-automata quantum computing with endohedral fullerenes. Physical Review A, 67(5):052318, 2003.
Wolfgang Harneit. Fullerene-based electron-spin quantum computer. Physical Review A, 65(3):032322, 2002.
Li Wang, Jin-Ting Ye, Hong-Qiang Wang, Hai-Ming Xie, and Yong-Qing Qiu. Third-order nonlinear optical properties of endohedral fullerene (H2)2@C70 and (H2O)2@C70 accompanied by the prospective of novel (HF)2@C70. The Journal of Physical Chemistry C, 122(12):6835–6845, 2018.
Zlatko Bačić, Minzhong Xu, and Peter M Felker. Coupled translation–rotation dynamics of H2 and H2O inside C60 : Rigorous quantum treatment. Advances in Chemical Physics, 163:195–216, 2018.
Shaoqing Du, Yoshifumi Hashikawa, Haruka Ito, Katsushi Hashimoto, Yasujiro Murata, Yoshiro Hirayama, and Kazuhiko Hirakawa. Inelastic electron transport and Ortho–Para fluctuation of water molecule in H2O@C60 single molecule transistors. Nano Letters, 21(24):10346–10353, 2021.
Yongjun Li, Judy Y-C Chen, Xuegong Lei, Ronald G Lawler, Yasujiro Murata, Koichi Komatsu, and Nicholas J Turro. Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. The Journal of Physical Chemistry Letters, 3(9):1165–1168, 2012.
Iván León-Merino, Raúl Rodrı́guez-Segundo, Daniel J Arismendi-Arrieta, and Rita Prosmiti. Assessing intermolecular interactions in guest-free clathrate hydrate systems. The Journal of Physical Chemistry A, 122:1479–1487, 2018.
Daniel J. Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. A systematic protocol for benchmarking guest-host interactions by first-principles computations: Capturing CO2 in clathrate hydrates. Chemistry – A European Journal, 24:–, 2018.
Raquel Yanes-Rodriguez, Daniel J Arismendi-Arrieta, and Rita Prosmiti. He inclusion in ice-like and clathrate-like frameworks: A benchmark quantum chemistry study of guest–host interactions. Journal of Chemical Information and Modeling, 60(6):3043–3056, 2020.
Adriana Cabrera-Ramı́rez, Daniel J Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. Structural stability of the CO2@sI hydrate: a bottom-up quantum chemistry approach on the guest-cage and inter-cage interactions. ChemPhysChem, 21(23):2618–2628, 2020.
Adriana Cabrera-Ramı́rez, Daniel J Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. Exploring CO2@sI clathrate hydrates as CO2 storage agents by computational density functional approaches. ChemPhysChem, 22(4):359–369, 2021.
Adriana Cabrera-Ramı́rez, Raquel Yanes-Rodrı́guez, and Rita Prosmiti. Computational density-functional approaches on finite-size and guest-lattice effects in CO2@sII clathrate hydrate. The Journal of Chemical Physics, 154(4):044301, 2021.
H.-D. Meyer. Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method. WIREs Comput Mol Sci, 2:351–374, 2012.
G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer. The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). See http://mctdh.uni-hd.de.
Jose Zuniga, Adolfo Bastida, and Alberto Requena. Vibrational levels of water by the self-consistent-field method using Radau coordinates. The Journal of Physical Chemistry, 96(11):4341–4346, 1992.
Hua Wei and Tucker Carrington Jr. Explicit expressions for triatomic Eckart frames in Jacobi, Radau, and bond coordinates. The Journal of Chemical Physics, 107(8):2813–2818, 1997.
Matthew J Bramley and Tucker Carrington Jr. A general discrete variable method to calculate vibrational energy levels of three-and four-atom molecules. The Journal of Chemical Physics, 99(11):8519–8541, 1993.
Fabien Gatti and Christophe Iung. Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach. Physics Reports, 484(1):1 – 69, 2009.
O. L. Polyansky, P. Jensen, and J. Tennyson. The potential energy surface of H2O16. Journal of Chemical Physics, 105:6490–6497, October 1996.
A. Jäckle and H.-D. Meyer. Product representation of potential energy surfaces. II. The Journal of Chemical Physics, 109(10):3772–3779, 1998.
Stuart Carter, Susan J. Culik, and Joel M. Bowman. Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics, 107(24):10458–10469, 1997.
Daniel Peláez and Hans-Dieter Meyer. The multigrid potfit (MGPF) method: Grid representations of potentials for quantum dynamics of large systems. The Journal of Chemical Physics, 138(1):014108, 2013.
Markus Schröder and Hans-Dieter Meyer. Transforming high-dimensional potential energy surfaces into sum-of-products form using Monte Carlo methods. The Journal of Chemical Physics, 147(6):064105, 2017.
Markus Schröder. Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. The Journal of Chemical Physics, 152(2):024108, 2020.
Robert Wodraszka and Tucker Carrington Jr. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. The Journal of Chemical Physics, 154(11):114107, 2021.
Loı̈c Joubert Doriol, Fabien Gatti, Christophe Iung, and Hans-Dieter Meyer. Computation of vibrational energy levels and eigenstates of fluoroform using the Multiconfiguration Time-Dependent Hartree Method. Journal of Chemical Physics, 129(22):224109–1–9, 2008.
Manel Mondelo-Martell, Fermı́n Huarte-Larrañaga, and Uwe Manthe. Quantum dynamics of H2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. The Journal of Chemical Physics, 147(8):084103, 2017.
Peter M Felker, David Lauvergnat, Yohann Scribano, David M Benoit, and Zlatko Bačić. Intramolecular stretching vibrational states and frequency shifts of (H2)2 confined inside the large cage of clathrate hydrate from an eight-dimensional quantum treatment using small basis sets. The Journal of Chemical Physics, 151(12):124311, 2019.
Hans-Dieter Meyer, Frédéric Le Quéré, Céline Léonard, and Fabien Gatti. Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chemical Physics, 329(1-3):179–192, 2006.
Oleg L Polyansky, Roman I Ovsyannikov, Aleksandra A Kyuberis, Lorenzo Lodi, Jonathan Tennyson, and Nikolai F Zobov. Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab Initio potential energy surface. The Journal of Physical Chemistry A, 117(39):9633–9643, 2013.
EF Sheka, BS Razbirin, and DK Nelson. Continuous symmetry of C 60 fullerene and its derivatives. The Journal of Physical Chemistry A, 115(15):3480–3490, 2011.
GB Alers, Brage Golding, AR Kortan, RC Haddon, and FA Theil. Existence of an orientational electric dipolar response in C60 single crystals. Science, 257(5069):511–514, 1992.
Harold W Kroto, James R Heath, Sean C O’Brien, Robert F Curl, and Richard E Smalley. C60: Buckminsterfullerene. Nature, 318(6042):162–163, 1985.
Martin F Jarrold. The smallest fullerene. Nature, 407(6800):26–27, 2000.
B. Pietzak, M. Waiblinger, T.Almeida Murphy, A. Weidinger, M. Höhne, E. Dietel, and A. Hirsch. Buckminsterfullerene C60: a chemical Faraday cage for atomic nitrogen. Chemical Physics Letters, 279(5):259–263, 1997.
M Waiblinger, K Lips, W Harneit, A Weidinger, E Dietel, and A Hirsch. Corrected article: Thermal stability of the endohedral fullerenes N@C60 , N@C70 , and P@C60. Physical Review B, 64(15):159901, 2001.
Oleg Nikolaevich Ulenikov and GA Ushakova. Analysis of the H2O molecule second-hexade interacting vibrational states. Journal of Molecular Spectroscopy, 117(2):195–205, 1986.
Jan Gerit Brandenburg, Andrea Zen, Dario Alfè, and Angelos Michaelides. Interaction between water and carbon nanostructures: How good are current density functional approximations? The Journal of Chemical Physics, 151(16):164702, 2019.
Clément Wespiser, Thomas Putaud, Yulia N Kalugina, Armand Soldera, Pierre-Nicholas Roy, Xavier Michaut, and Patrick Ayotte. Ro-translational dynamics of confined water: I-the confined asymmetric rotor model. The Journal of Chemical Physics, 2022.
Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, 1996.
Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169, 1996.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian 16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.
Frank Neese. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1):73–78, 2012.
John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865, 1996.
Carlo Adamo and Vincenzo Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13):6158–6170, 1999.
Axel D Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098, 1988.
Yan Zhao and Donald G Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1):215–241, 2008.
Eike Caldeweyher, Christoph Bannwarth, and Stefan Grimme. Extension of the D3 dispersion coefficient model. The Journal of Chemical Physics, 147(3):034112, 2017.
Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme. A generally applicable atomic-charge dependent london dispersion correction. The Journal of Chemical Physics, 150(15):154122, 2019.
Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15):154104, 2010.
Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7):1456–1465, 2011.
Jianmin Tao, John P Perdew, Viktor N Staroverov, and Gustavo E Scuseria. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91(14):146401, 2003.
Tod A Pascal, Naoki Karasawa, and William A Goddard III. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. The Journal of Chemical Physics, 133(13):134114, 2010.
PL Chapovsky and AA Mamrashev. Anomalous Ortho-to-Para ratio of nuclear spin isomers of H2O at low temperatures. JETP Letters, 111(2):85–89, 2020.
PL Chapovsky. CH3F spin-modification conversion induced by nuclear magnetic dipole-dipole interactions. Physical Review A, 43(7):3624, 1991.
PL Chapovsky and LJF Hermans. Nuclear spin conversion in polyatomic molecules. Annual Review of Physical Chemistry, 50(1):315–345, 1999.
Pavel L’vovich Chapovsky. Conversion of nuclear spin isomers of water molecules under ultracold conditions of space. Quantum Electronics, 49(5):473, 2019.
R Kent Nagle and Arthur David Saff, Edward B y Snider. Ecuaciones diferenciales y problemas con valores en la frontera. Pearson Educación, 2000.
RF Curl Jr, Jerome VV Kasper, and Kenneth S Pitzer. Nuclear spin state equilibration through nonmagnetic collisions. The Journal of Chemical Physics, 46(8):3220–3228, 1967.
Herbert Goldstein. Classical mechanics. Pearson Education India, 1965.
Alonso Sepulveda Soto. Fı́sica matemática. Universidad de Antioquia, 2009.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 115 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
Consejo Superior de Investigaciones Científicas (CSIC)
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82241/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82241/2/1014206890.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82241/3/1014206890.2022.pdf.jpg
bitstream.checksum.fl_str_mv b577153cc0e11f0aeb5fc5005dc82d8a
fb5c41e740e0ef93311c5c24f189dc26
c122dff6587ed3de3380819b345c9cc4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089791430459392
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valdés de Luxán, Álvaroa85344978359727d8576d381695d4c49Prosmiti, Ritabed4cda5ddaca7acde150104e97b0dc9Carrillo Bohórquez, Orlando6fb557c617c4290d6e02e1193f668112Química Cuántica y Computacional2022-09-02T14:08:40Z2022-09-02T14:08:40Z2022-07-01https://repositorio.unal.edu.co/handle/unal/82241Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficas, ilustraciones, tablasEl desarrollo de modelos y metodologías destinadas a entender las peculiaridades de ciertas estructuras moleculares confinantes, como clatratos, endofullerenos y nanogotas, tiene consecuencias directas en el campo de las ciencias moleculares. Estos sistemas constituyen 'nanolaboratorios' extraordinarios en los que las moléculas encapsuladas se comportan como rotores cuánticos, y en donde los niveles traslacionales y rotacionales se encuentran mezclados por el confinamiento, generando una rica estructura de niveles energéticos. Además, estos complejos han sido teorizados como materiales promisorios, con aplicaciones en el almacenamiento de energía, secuestro de gases de efecto invernadero, computación cuántica, etc. Sin embargo, el costo computacional prohibitivo que implican los cálculos teóricos ha derivado en simplificaciones de la dimensionalidad de los sistemas, o en el empleo de tratamientos clásicos que son incapaces de explotar la riqueza de los efectos cuánticos inherentes. En este trabajo se presenta la metodologı́a desarrollada en nuestro grupo para tratar moléculas triatómicas nanoconfinadas a través del método computacional Multi Configuration Time Dependent Hartree (MCTDH), con el fin de incluir cálculos de alta precisión de los niveles vibracionales y traslacionales de las moléculas enclaustradas. Se estudió la estructura de niveles energéticos de los fullerenos endohedrales H2O@C60 y H2O@C70 como casos particulares, y se exploraron dos modelos teóricos plausibles para explicar la ruptura de simetría observada en el primer sistema. Como una consecuencia directa de lo anterior, se realizó un estudio de estructura electrónica para el complejo H2O@C60, considerando la interacción de la molécula encapsulada con las estructuras de carbono básicas que constituyen al fullereno, con el objeto de obtener una descripción razonablemente precisa de la superficie de energía potencial (PES) intermolecular que incluya las interacciones entre muchos cuerpos a partir de técnicas DFT/DFT-D. Finalmente, se presenta un modelo termodinámico para el sistema H2O@C60, que reproduce algunas de las características inusuales que se observan en la concentración de isómeros de espín ortho y para del H2O a bajas temperaturas. (Texto tomado de la fuente)The development of models and methodologies aiming to understand the features of certain confining molecular structures, as clathrates, fullerenes and nanodroplets, has direct consequences on the fields of the fundamental and applied physics, as such systems constitutes astonishing 'nanolaboratories', where encapsulated molecules behave as quantum rotors. The translational and rotational levels are mixed due to the confinement, giving rise to a rich energetic level structure. Also, these compounds has been proposed as promising materials with applications in energy storage, greenhouse gases capture, quantum computation, etc. Nonetheless, until recently the rather high computational cost of the quantum simulations has limited the theoretical efforts to reduced dimensional simplifications, or classical treatments, that were not able to explore properly the richness of the inherent quantum effects. In this work we present the methodology developed in our group to treat triatomic nanoconfined molecules through the Multi Configuration Time Dependent Hartree (MCTDH) framework. In this way, we performed "exact" full-dimensional quantum calculations, coupling all degrees of freedom, and accurate values on vibrational, rotational and translational states of the trapped molecule were reported. In particular, the energetics and levels structure of the H2O@C60 and H2O@C70 endohedral fullerenes were investigated, and two plausible theoretical physical models to explain the observed symmetry breaking in the former system were proposed and explored. As a direct consequence, a quantum chemistry electronic structure study of the H2O@C60 was performed. Given the size of the system, we first considered the encapsulated molecule’s interaction with the fundamental unit structures, such as C5 and C6 from the C60 cavity, with the purpose to assess the performance of different DFT/DFT-D approaches in describing the underlying many-body intermolecular potential energy surface (PES). Finally, a thermodynamic model for the H2O@C60 system was developed, which can reproduce some of the unusual features observed in the ortho and para H2O spin isomers' concentration at low temperatures.DoctoradoDoctor en Ciencias - FísicaFísica molecularQuímica computacionalxx, 115 páginasapplication/pdfspaUniversidad Nacional de ColombiaConsejo Superior de Investigaciones Científicas (CSIC)Bogotá - Ciencias - Doctorado en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaMoléculasEstructura molecularMolecular structureMoleculesCálculos mecano-cuánticosFullerenos endohedralesModelos de interacciónMoléculas nanoconfinadasRuptura de simetrı́aEndohedral fullerenesInteraction modelsNanoconfined moleculesQuantum-mechanical calculationsSymmetry breakingSimulación de las propiedades energéticas, termodinámicas y espectroscópicas de moléculas nanoconfinadasSimulation of the spectroscopic, thermodynamic and energetic properties of nanoconfined moleculesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Otherhttp://purl.org/redcol/resource_type/TDKei Kurotobi and Yasujiro Murata. A single molecule of water encapsulated in fullerene C60. Science, 333(6042):613–616, 2011.Orlando Carrillo-Bohórquez, Álvaro Valdés, and Rita Prosmiti. Encapsulation of a water molecule inside C60 fullerene: The impact of confinement on quantum features. Journal of Chemical Theory and Computation, 17(9):5839–5848, 2021.Orlando Carrillo-Bohórquez, Álvaro Valdés, and Rita Prosmiti. Unraveling the origin of symmetry breaking in H2O@C60 endofullerene through quantum computations. ChemPhysChem, 23(9):e202200034, 2022.Carlo Beduz, Marina Carravetta, Judy Y.-C. Chen, Maria Concistrè, Mark Denning, Michael Frunzi, Anthony J. Horsewill, Ole G. Johannessen, Ronald Lawler, Xuegong Lei, Malcolm H. Levitt, Yongjun Li, Salvatore Mamone, Yasujiro Murata, Urmas Nagel, Tomoko Nishida, Jacques Ollivier, Stéphane Rols, Toomas Rõõm, Riddhiman Sarkar, Nicholas J. Turro, and Yifeng Yang. Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proceedings of the National Academy of Sciences, 109(32):12894–12898, 2012.Kelvin S. K. Goh, Monica Jimenez-Ruiz, Mark R. Johnson, Stephane Rols, Jacques Ollivier, Mark S. Denning, Salvatore Mamone, Malcolm H. Levitt, Xuegong Lei, Yongjun Li, Nicholas J. Turro, Yasujiro Murata, and Anthony J. Horsewill. Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation. Physical Chemistry Chemical Physics, 16:21330–21339, 2014.Zlatko Bačić, Vojtěch Vlček, Daniel Neuhauser, and Peter M Felker. Effects of symmetry breaking on the translation–rotation eigenstates of H2 , HF, and H2O inside the fullerene C60. Faraday Discussions, 212:547–567, 2018.Effat Rashed and Janette L Dunn. Interactions between a water molecule and C60 in the endohedral fullerene H2O@C60. Physical Chemistry Chemical Physics, 21(6):3347–3359, 2019.A Shugai, U Nagel, Y Murata, Yongjun Li, S Mamone, A Krachmalnicoff, S Alom, RJ Whitby, MH Levitt, and T Rõõm. Infrared spectroscopy of an endohedral water in fullerene. The Journal of Chemical Physics, 154(12):124311, 2021.Benno Meier, Salvatore Mamone, Maria Concistre, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J Whitby, and Malcolm H Levitt. Electrical detection of ortho–para conversion in fullerene-encapsulated water. Nature Communications, 6(1):1–4, 2015.Álvaro Valdés, Orlando Carrillo-Bohórquez, and Rita Prosmiti. Fully coupled quantum treatment of nanoconfined systems: A water molecule inside a fullerene C60 . Journal of Chemical Theory and Computation, 14(12):6521–6531, 2018.Peter M Felker and Zlatko Bačić. Flexible water molecule in C60 : Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets. The Journal of Chemical Physics, 152(1):014108, 2020.Grygoriy A Dolgonos. Exploring the properties of H2O@C60 with the local second-Order Møller-Plesset perturbation theory: Blue or red shift in C60 and H2O fundamentals to expect? ChemistrySelect, 6(42):11583–11590, 2021.Salvatore Mamone, Mark R Johnson, Jacques Ollivier, Stéphane Rols, Malcolm H Levitt, and Anthony J Horsewill. Symmetry-breaking in the H2@C60 endofullerene revealed by inelastic neutron scattering at low temperature. Physical Chemistry Chemical Physics, 18(3):1998–2005, 2016.Peter M. Felker and Zlatko Bačić. Electric-dipole-coupled H2O@C60 dimer: Translation-rotation eigenstates from twelve-dimensional quantum calculations. The Journal of Chemical Physics, 146(8):084303, 2017.Peter M. Felker, Vojtech Vlček, Isaac Hietanen, Stephen FitzGerald, Daniel Neuhauser, and Zlatko Bačić. Explaining the symmetry breaking observed in the endofullerenes H2@C60 , HF@C60 , and H2O@C60. Physical Chemistry Chemical Physics, 19:31274–31283, 2017.Peter M. Felker and Zlatko Bačić. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60. The Journal of Chemical Physics, 144(20):201101–1–4, 2016.Russel B. Ross, Claudia M Cardona, Dirk M. Guldi, Shankara Gayathri Sankaranarayanan, Matthew O. Reese, Nikos Kopidakis, Jeff Peet, Bright Walker, Guillermo C. Bazan, Edward Van Keuren, Brian C. Holloway, and Martin Drees. Endohedral fullerenes for organic photovoltaic devices. Nature Materials, 8:208–212, 2011.Koichi Komatsu, Michihisa Murata, and Yasujiro Murata. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science, 307(5707):238–240, 2005.Rui Zhang, Michihisa Murata, Atsushi Wakamiya, Takafumi Shimoaka, Takeshi Hasegawa, and Yasujiro Murata. Isolation of the simplest hydrated acid. Science Advances, 3(4), 2017.Keith E. Whitener, Michael Frunzi, Sho-ichi Iwamatsu, Shizuaki Murata, R. James Cross, and Martin Saunders. Putting ammonia into a chemically opened fullerene. Journal of the American Chemical Society, 130(42):13996–13999, 2008.Sally Bloodworth, Gabriela Sitinova, Shamim Alom, Sara Vidal, George R Bacanu, Stuart J Elliott, Mark E Light, Julie M Herniman, G John Langley, Malcolm H Levitt, et al. First synthesis and characterization of CH4 @C60 . Angewandte Chemie International Edition, 58(15):5038–5043, 2019.Yves Rubin, Thibaut Jarrosson, Guan-Wu Wang, Michael D Bartberger, KN Houk, Georg Schick, Martin Saunders, and R James Cross. Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angewandte Chemie International Edition, 40(8):1543–1546, 2001.Michihisa Murata, Shuhei Maeda, Yuta Morinaka, Yasujiro Murata, and Koichi Komatsu. Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. Journal of the American Chemical Society, 130(47):15800–15801, 2008.Rui Zhang, Michihisa Murata, Tomoko Aharen, Atsushi Wakamiya, Takafumi Shimoaka, Takeshi Hasegawa, and Yasujiro Murata. Synthesis of a distinct water dimer inside fullerene C70 . Nature Chemistry, 8(5):435, 2016.Judy Y.-C. Chen, Yongjun Li, Michael Frunzi, Xuegong Lei, Yasujiro Murata, Ronald G. Lawler, and Nicholas J. Turro. Nuclear spin isomers of guest molecules in H2@C60 , H2O@C60 and other endofullerenes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371(1998), 2013.Yuta Morinaka, Rui Zhang, Satoru Sato, Hidefumi Nikawa, Tatsuhisa Kato, Ko Furukawa, Michio Yamada, Yutaka Maeda, Michihisa Murata, Atsushi Wakamiya, et al. Fullerene C70 as a nanoflask that reveals the chemical reactivity of atomic nitrogen. Angewandte Chemie, 129(23):6588–6591, 2017.Salvatore Mamone, Maria Concistrè, Elisa Carignani, Benno Meier, Andrea Krachmalnicoff, Ole G. Johannessen, Xuegong Lei, Yongjun Li, Mark Denning, Marina Carravetta, Kelvin Goh, Anthony J. Horsewill, Richard J. Whitby, and Malcolm H. Levitt. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. The Journal of Chemical Physics, 140(19):194306, 2014.Samuel P Jarvis, Hongqian Sang, Filipe Junqueira, Oliver Gordon, Jo EA Hodgkinson, Alex Saywell, Philipp Rahe, Salvatore Mamone, Simon Taylor, Adam Sweetman, et al. Chemical shielding of H2O and HF encapsulated inside a C60 cage. Communications Chemistry, 4(1):1–7, 2021.Tatiana Korona and Helena Dodziuk. Small molecules in C60 and C70 : Which complexes could be stabilized? Journal of Chemical Theory and Computation, 7(5):1476–1483, 2011.O. Shameema, C. N. Ramachandran, and N. Sathyamurthy. Blue shift in X-H stretching frequency of molecules due to confinement. The Journal of Physical Chemistry A, 110(1):2–4, 2006.Kiyoshi Yagi and Daichi Watanabe. Infrared spectra of water molecule encapsulated inside fullerene studied by instantaneous vibrational analysis. International Journal of Quantum Chemistry, 109(10):2080–2090, 2009.Arpita Varadwaj and Pradeep R. Varadwaj. Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chemistry – A European Journal, 18(48):15345–15360, 2012.A. Barati Farimani, Yanbin Wu, and N. R. Aluru. Rotational motion of a single water molecule in a buckyball. Physical Chemistry Chemical Physics, 15:17993–18000, 2013.Shinobu Aoyagi, Norihisa Hoshino, Tomoyuki Akutagawa, Yuki Sado, Ryo Kitaura, Hisanori Shinohara, Kunihisa Sugimoto, Rui Zhang, and Yasujiro Murata. A cubic dipole lattice of water molecules trapped inside carbon cages. Chemical Communications, 50:524–526, 2014.Osmair Vital de Oliveira and Arlan da Silva Goncalves. Quantum chemical studies of endofullerenes (M@C60) where M = H2O, Li+, Na+, K+, Be2+ , Mg2+ , and Ca2+ . Computational Chemistry, 2(4):51–58, 2014.Annia Galano, Adriana Pérez-González, Lourdes del Olmo, Misaela Francisco-Marquez, and Jorge Rafael León-Carmona. On the chemical behavior of C60 hosting H2O and other iso-electronic neutral molecules. Journal of Molecular Modeling, 20(8):2412, 2014.Adam Jaroš, Zahra Badri, Pankaj Lochan Bora, Esmaeil Farajpour Bonab, Radek Marek, Michal Straka, and Cina Foroutan-Nejad. How does a container affect acidity of its content: Charge-depletion bonding inside fullerenes. Chemistry – A European Journal, 24(17):4245–4249.Denis Sh Sabirov. From endohedral complexes to endohedral fullerene covalent derivatives: a density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. The Journal of Physical Chemistry C, 117(2):1178–1182, 2013.Benno Meier, Karel Kouřil, Christian Bengs, Hana Kouřilová, Timothy C Barker, Stuart J Elliott, Shamim Alom, Richard J Whitby, and Malcolm H Levitt. Spin-isomer conversion of water at room temperature and quantum-rotor-induced nuclear polarization in the water-endofullerene H2O@C60 . Physical Review Letters, 120(26):266001, 2018.Hal Suzuki, Motohiro Nakano, Yoshifumi Hashikawa, and Yasujiro Murata. Rotational motion and nuclear spin interconversion of H2O encapsulated in C60 appearing in the low-temperature heat capacity. The Journal of Physical Chemistry Letters, 10(6):1306–1311, 2019.M Concistrè, S Mamone, M Denning, G Pileio, X Lei, Y Li, M Carravetta, NJ Turro, and MH Levitt. Anisotropic nuclear spin interactions in H2O@C60 determined by solid-state NMR. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1998):20120102, 2013.Guo-Zhu Zhu, Yuan Liu, Yoshifumi Hashikawa, Qian-Fan Zhang, Yasujiro Murata, and Lai-Sheng Wang. Probing the interaction between the encapsulated water molecule and the fullerene cages in H2O@C60- and H2O@CN−59 . Chemical Science, 9(25):5666–5671, 2018.Sergey S Zhukov, Vasileios Balos, Gabriela Hoffman, Shamim Alom, Mikhail Belyanchikov, Mehmet Nebioglu, Seulki Roh, Artem Pronin, George R Bacanu, Pavel Abramov, et al. Rotational coherence of encapsulated ortho and para water in fullerene C60 revealed by time-domain terahertz spectroscopy. Scientific Reports, 10(1):1–9, 2020.Salvatore Mamone, Maria Concistrè, Elisa Carignani, Benno Meier, Andrea Krachmalnicoff, Ole G Johannessen, Xuegong Lei, Yongjun Li, Mark Denning, Marina Carravetta, et al. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. The Journal of Chemical Physics, 140(19):194306, 2014.C. I. Williams, M. A. Whitehead, and L. Pang. Interaction and dynamics of endohedral gas molecules in fullerene C60 isomers and C70. The Journal of Physical Chemistry, 97(45):11652–11656, 1993.Janette L Dunn and Effat Rashed. Evidence for Jahn-Teller effects in endohedral fullerenes. In Journal of Physics: Conference Series, volume 1148, page 012003. IOP Publishing, 2018.Attila Szabo and Neil S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation, 1989.C. J. Joachain and B. H. Brandsen. Physics of atoms and molecules. By Longman House. Burnt Mill, Arlow, Essex (UK): Longman Scientific Technical, 1983.Octavio Roncero V. Simulaciones Cuánticas en Fı́sica Molecular: Fundamentos. IFF (CSIC).Klaus Capelle. A bird’s-eye view of density-functional theory. Brazilian Journal of Physics, 36(4A):1318–1343, 2006.Jiřı́ Čı́žek. On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. The Journal of Chemical Physics, 45(11):4256–4266, 1966.Jiřı́ Čı́žek. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Advances in Chemical Physics, pages 35–89, 1969.J Čı́žek and J Paldus. Correlation problems in atomic and molecular systems III. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. International Journal of Quantum Chemistry, 5(4):359–379, 1971.Hans-Dieter Meyer, Frédéric Le Quéré, Céline Léonard, and Fabien Gatti. Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chemical Physics, 329(1):179–192, 2006.Álvaro Valdés, Daniel J. Arismendi-Arrieta, and Rita Prosmiti. Quantum dynamics of carbon dioxide encapsulated in the cages of the sI clathrate hydrate: Structural guest distributions and cage occupation. The Journal of Physical Chemistry C, 119(8):3945–3956, 2015.H.-D. Meyer, U. Manthe, and L. S. Cederbaum. The multi-configurational time-dependent Hartree approach. Chemical Physics Letters, 165:73–78, 1990.Hans-Dieter Meyer, Fabien Gatti, and Graham A. Worth. Multidimensional quantum dynamics. John Wiley & Sons, 2009.Hans-Dieter Meyer. Introduction to MCTDH, 2016.Shangfeng Yang and Chun-Ru Wang. Endohedral fullerenes: From fundamentals to application. World Scientific, 2014.Malcolm H Levitt. Spectroscopy of light-molecule endofullerenes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1998):20120429, 2013.JA Alonso and JI Martınez. Handbook of nanophysics. vol 2: Clusters and fullerenes, 2010.Michael Frunzi, Steffen Jockusch, Judy Y.-C. Chen, Rafael M. Krick Calderon, Xuegong Lei, Yasujiro Murata, Koichi Komatsu, Dirk M. Guldi, Ronald G. Lawler, and Nicholas J. Turro. A photochemical on–off switch for tuning the equilibrium mixture of H2 nuclear spin isomers as a function of temperature. Journal of the American Chemical Society, 133(36):14232–14235, 2011.M Baskar, N Sathyan, TR Gopalakrishnan Nair, et al. Water molecules in the carbon C60 confined space. Journal of Biophysical Chemistry, 9(02):15, 2018.J Twamley. Quantum-cellular-automata quantum computing with endohedral fullerenes. Physical Review A, 67(5):052318, 2003.Wolfgang Harneit. Fullerene-based electron-spin quantum computer. Physical Review A, 65(3):032322, 2002.Li Wang, Jin-Ting Ye, Hong-Qiang Wang, Hai-Ming Xie, and Yong-Qing Qiu. Third-order nonlinear optical properties of endohedral fullerene (H2)2@C70 and (H2O)2@C70 accompanied by the prospective of novel (HF)2@C70. The Journal of Physical Chemistry C, 122(12):6835–6845, 2018.Zlatko Bačić, Minzhong Xu, and Peter M Felker. Coupled translation–rotation dynamics of H2 and H2O inside C60 : Rigorous quantum treatment. Advances in Chemical Physics, 163:195–216, 2018.Shaoqing Du, Yoshifumi Hashikawa, Haruka Ito, Katsushi Hashimoto, Yasujiro Murata, Yoshiro Hirayama, and Kazuhiko Hirakawa. Inelastic electron transport and Ortho–Para fluctuation of water molecule in H2O@C60 single molecule transistors. Nano Letters, 21(24):10346–10353, 2021.Yongjun Li, Judy Y-C Chen, Xuegong Lei, Ronald G Lawler, Yasujiro Murata, Koichi Komatsu, and Nicholas J Turro. Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. The Journal of Physical Chemistry Letters, 3(9):1165–1168, 2012.Iván León-Merino, Raúl Rodrı́guez-Segundo, Daniel J Arismendi-Arrieta, and Rita Prosmiti. Assessing intermolecular interactions in guest-free clathrate hydrate systems. The Journal of Physical Chemistry A, 122:1479–1487, 2018.Daniel J. Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. A systematic protocol for benchmarking guest-host interactions by first-principles computations: Capturing CO2 in clathrate hydrates. Chemistry – A European Journal, 24:–, 2018.Raquel Yanes-Rodriguez, Daniel J Arismendi-Arrieta, and Rita Prosmiti. He inclusion in ice-like and clathrate-like frameworks: A benchmark quantum chemistry study of guest–host interactions. Journal of Chemical Information and Modeling, 60(6):3043–3056, 2020.Adriana Cabrera-Ramı́rez, Daniel J Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. Structural stability of the CO2@sI hydrate: a bottom-up quantum chemistry approach on the guest-cage and inter-cage interactions. ChemPhysChem, 21(23):2618–2628, 2020.Adriana Cabrera-Ramı́rez, Daniel J Arismendi-Arrieta, Álvaro Valdés, and Rita Prosmiti. Exploring CO2@sI clathrate hydrates as CO2 storage agents by computational density functional approaches. ChemPhysChem, 22(4):359–369, 2021.Adriana Cabrera-Ramı́rez, Raquel Yanes-Rodrı́guez, and Rita Prosmiti. Computational density-functional approaches on finite-size and guest-lattice effects in CO2@sII clathrate hydrate. The Journal of Chemical Physics, 154(4):044301, 2021.H.-D. Meyer. Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method. WIREs Comput Mol Sci, 2:351–374, 2012.G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer. The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). See http://mctdh.uni-hd.de.Jose Zuniga, Adolfo Bastida, and Alberto Requena. Vibrational levels of water by the self-consistent-field method using Radau coordinates. The Journal of Physical Chemistry, 96(11):4341–4346, 1992.Hua Wei and Tucker Carrington Jr. Explicit expressions for triatomic Eckart frames in Jacobi, Radau, and bond coordinates. The Journal of Chemical Physics, 107(8):2813–2818, 1997.Matthew J Bramley and Tucker Carrington Jr. A general discrete variable method to calculate vibrational energy levels of three-and four-atom molecules. The Journal of Chemical Physics, 99(11):8519–8541, 1993.Fabien Gatti and Christophe Iung. Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach. Physics Reports, 484(1):1 – 69, 2009.O. L. Polyansky, P. Jensen, and J. Tennyson. The potential energy surface of H2O16. Journal of Chemical Physics, 105:6490–6497, October 1996.A. Jäckle and H.-D. Meyer. Product representation of potential energy surfaces. II. The Journal of Chemical Physics, 109(10):3772–3779, 1998.Stuart Carter, Susan J. Culik, and Joel M. Bowman. Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu(100). The Journal of Chemical Physics, 107(24):10458–10469, 1997.Daniel Peláez and Hans-Dieter Meyer. The multigrid potfit (MGPF) method: Grid representations of potentials for quantum dynamics of large systems. The Journal of Chemical Physics, 138(1):014108, 2013.Markus Schröder and Hans-Dieter Meyer. Transforming high-dimensional potential energy surfaces into sum-of-products form using Monte Carlo methods. The Journal of Chemical Physics, 147(6):064105, 2017.Markus Schröder. Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. The Journal of Chemical Physics, 152(2):024108, 2020.Robert Wodraszka and Tucker Carrington Jr. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. The Journal of Chemical Physics, 154(11):114107, 2021.Loı̈c Joubert Doriol, Fabien Gatti, Christophe Iung, and Hans-Dieter Meyer. Computation of vibrational energy levels and eigenstates of fluoroform using the Multiconfiguration Time-Dependent Hartree Method. Journal of Chemical Physics, 129(22):224109–1–9, 2008.Manel Mondelo-Martell, Fermı́n Huarte-Larrañaga, and Uwe Manthe. Quantum dynamics of H2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. The Journal of Chemical Physics, 147(8):084103, 2017.Peter M Felker, David Lauvergnat, Yohann Scribano, David M Benoit, and Zlatko Bačić. Intramolecular stretching vibrational states and frequency shifts of (H2)2 confined inside the large cage of clathrate hydrate from an eight-dimensional quantum treatment using small basis sets. The Journal of Chemical Physics, 151(12):124311, 2019.Hans-Dieter Meyer, Frédéric Le Quéré, Céline Léonard, and Fabien Gatti. Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chemical Physics, 329(1-3):179–192, 2006.Oleg L Polyansky, Roman I Ovsyannikov, Aleksandra A Kyuberis, Lorenzo Lodi, Jonathan Tennyson, and Nikolai F Zobov. Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab Initio potential energy surface. The Journal of Physical Chemistry A, 117(39):9633–9643, 2013.EF Sheka, BS Razbirin, and DK Nelson. Continuous symmetry of C 60 fullerene and its derivatives. The Journal of Physical Chemistry A, 115(15):3480–3490, 2011.GB Alers, Brage Golding, AR Kortan, RC Haddon, and FA Theil. Existence of an orientational electric dipolar response in C60 single crystals. Science, 257(5069):511–514, 1992.Harold W Kroto, James R Heath, Sean C O’Brien, Robert F Curl, and Richard E Smalley. C60: Buckminsterfullerene. Nature, 318(6042):162–163, 1985.Martin F Jarrold. The smallest fullerene. Nature, 407(6800):26–27, 2000.B. Pietzak, M. Waiblinger, T.Almeida Murphy, A. Weidinger, M. Höhne, E. Dietel, and A. Hirsch. Buckminsterfullerene C60: a chemical Faraday cage for atomic nitrogen. Chemical Physics Letters, 279(5):259–263, 1997.M Waiblinger, K Lips, W Harneit, A Weidinger, E Dietel, and A Hirsch. Corrected article: Thermal stability of the endohedral fullerenes N@C60 , N@C70 , and P@C60. Physical Review B, 64(15):159901, 2001.Oleg Nikolaevich Ulenikov and GA Ushakova. Analysis of the H2O molecule second-hexade interacting vibrational states. Journal of Molecular Spectroscopy, 117(2):195–205, 1986.Jan Gerit Brandenburg, Andrea Zen, Dario Alfè, and Angelos Michaelides. Interaction between water and carbon nanostructures: How good are current density functional approximations? The Journal of Chemical Physics, 151(16):164702, 2019.Clément Wespiser, Thomas Putaud, Yulia N Kalugina, Armand Soldera, Pierre-Nicholas Roy, Xavier Michaut, and Patrick Ayotte. Ro-translational dynamics of confined water: I-the confined asymmetric rotor model. The Journal of Chemical Physics, 2022.Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, 1996.Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169, 1996.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian 16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.Frank Neese. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1):73–78, 2012.John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865, 1996.Carlo Adamo and Vincenzo Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13):6158–6170, 1999.Axel D Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098, 1988.Yan Zhao and Donald G Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1):215–241, 2008.Eike Caldeweyher, Christoph Bannwarth, and Stefan Grimme. Extension of the D3 dispersion coefficient model. The Journal of Chemical Physics, 147(3):034112, 2017.Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme. A generally applicable atomic-charge dependent london dispersion correction. The Journal of Chemical Physics, 150(15):154122, 2019.Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15):154104, 2010.Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7):1456–1465, 2011.Jianmin Tao, John P Perdew, Viktor N Staroverov, and Gustavo E Scuseria. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91(14):146401, 2003.Tod A Pascal, Naoki Karasawa, and William A Goddard III. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. The Journal of Chemical Physics, 133(13):134114, 2010.PL Chapovsky and AA Mamrashev. Anomalous Ortho-to-Para ratio of nuclear spin isomers of H2O at low temperatures. JETP Letters, 111(2):85–89, 2020.PL Chapovsky. CH3F spin-modification conversion induced by nuclear magnetic dipole-dipole interactions. Physical Review A, 43(7):3624, 1991.PL Chapovsky and LJF Hermans. Nuclear spin conversion in polyatomic molecules. Annual Review of Physical Chemistry, 50(1):315–345, 1999.Pavel L’vovich Chapovsky. Conversion of nuclear spin isomers of water molecules under ultracold conditions of space. Quantum Electronics, 49(5):473, 2019.R Kent Nagle and Arthur David Saff, Edward B y Snider. Ecuaciones diferenciales y problemas con valores en la frontera. Pearson Educación, 2000.RF Curl Jr, Jerome VV Kasper, and Kenneth S Pitzer. Nuclear spin state equilibration through nonmagnetic collisions. The Journal of Chemical Physics, 46(8):3220–3228, 1967.Herbert Goldstein. Classical mechanics. Pearson Education India, 1965.Alonso Sepulveda Soto. Fı́sica matemática. Universidad de Antioquia, 2009.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82241/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1014206890.2022.pdf1014206890.2022.pdfTesis de doctorado en Ciencias - Físicaapplication/pdf18531188https://repositorio.unal.edu.co/bitstream/unal/82241/2/1014206890.2022.pdffb5c41e740e0ef93311c5c24f189dc26MD52THUMBNAIL1014206890.2022.pdf.jpg1014206890.2022.pdf.jpgGenerated Thumbnailimage/jpeg5295https://repositorio.unal.edu.co/bitstream/unal/82241/3/1014206890.2022.pdf.jpgc122dff6587ed3de3380819b345c9cc4MD53unal/82241oai:repositorio.unal.edu.co:unal/822412023-08-08 23:04:19.957Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==