El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

ilustraciones, fotografías, gráficas, tablas

Autores:
Vasquez Mendieta, Diego Fernando
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77884
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77884
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Crinivirus
Trialeurodes vaporariorum
Enfermedades de las plantas
Crinivirus
Trialeurodes vaporariorum
comportamiento
alimentación de vectores
epidemia
virus vegetal
transmisión horizontal
hemíptera
vector behavior
Hemiptera
outbreak
plant virus
horizontal transmission
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6aca1905b7b706a683da79aca21837ad
oai_identifier_str oai:repositorio.unal.edu.co:unal/77884
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
dc.title.translated.spa.fl_str_mv Symptom expression caused by Potato yelllow vein virus (PYVV) rol over the manipulation of the Greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
title El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
spellingShingle El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Crinivirus
Trialeurodes vaporariorum
Enfermedades de las plantas
Crinivirus
Trialeurodes vaporariorum
comportamiento
alimentación de vectores
epidemia
virus vegetal
transmisión horizontal
hemíptera
vector behavior
Hemiptera
outbreak
plant virus
horizontal transmission
title_short El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
title_full El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
title_fullStr El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
title_full_unstemmed El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
title_sort El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
dc.creator.fl_str_mv Vasquez Mendieta, Diego Fernando
dc.contributor.advisor.spa.fl_str_mv Oliveros Garay, Oscar Arturo
Rincón Rueda, Diego Fernando
dc.contributor.author.spa.fl_str_mv Vasquez Mendieta, Diego Fernando
dc.contributor.corporatename.spa.fl_str_mv Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
dc.contributor.researchgroup.spa.fl_str_mv Control biológico de plagas agrícolas
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Crinivirus
Trialeurodes vaporariorum
Enfermedades de las plantas
Crinivirus
Trialeurodes vaporariorum
comportamiento
alimentación de vectores
epidemia
virus vegetal
transmisión horizontal
hemíptera
vector behavior
Hemiptera
outbreak
plant virus
horizontal transmission
dc.subject.agrovoc.spa.fl_str_mv Crinivirus
Trialeurodes vaporariorum
Enfermedades de las plantas
dc.subject.agrovoc.eng.fl_str_mv Crinivirus
Trialeurodes vaporariorum
dc.subject.proposal.spa.fl_str_mv comportamiento
alimentación de vectores
epidemia
virus vegetal
transmisión horizontal
hemíptera
dc.subject.proposal.eng.fl_str_mv vector behavior
Hemiptera
outbreak
plant virus
horizontal transmission
description ilustraciones, fotografías, gráficas, tablas
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-07-29T23:46:29Z
dc.date.available.spa.fl_str_mv 2020-07-29T23:46:29Z
dc.date.issued.spa.fl_str_mv 2020-01-20
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77884
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.none.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/77884
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agranovsky AA, Folimonov AS, Folimonova SY, et al (1998) Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol 79:889–895. doi: 10.1099/0022-1317-79-4-889
Alzhanova D V., Napuli AJ, Creamer R, Dolja V V. (2001) Cell-to-cell movement and assembly of a plant closterovirus: Roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007. doi: 10.1093/emboj/20.24.6997
Arciniegas N, Guzman M (2003) TÉCNICAS DE DIAGNÒSTICO Y EVALUACIÓN DE RESISTENCIA AL VIRUS DEL AMARILLAMIENTO DE LAS NERVADURAS DE LA PAPA (PYVV) EN ACCESIONES DE LA COLECCIÓN CENTRAL COLOMBIANA DE Solanum phureja. Sinab, Univ Nac Colombia
Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. doi: 10.1104/pp.113.222372
Bak A, Cheung AL, Yang C, et al (2017) A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8:. doi: 10.1038/ncomms14493
Bernays E and CR (1994) HOST-PLANT SELECTION BY PHYTOPHAGOUS INSECT
Bidzinski P, Ballini E, Ducasse A, et al (2016) Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae. Front Plant Sci 7:. doi: 10.3389/fpls.2016.01558
Bosque-Pérez NA, Eigenbrode SD (2011) The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res 159:201–205. doi: 10.1016/j.virusres.2011.04.020
Boyer JS (2010) Drought decision-making. J Exp Bot 61:3493–3497. doi: 10.1093/jxb/erq231
Bueno J, Cardona C, Chacon P (2005) Fenología, distribución espacial y desarrollo de mètodos de muestreo para Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) en habichuela y frijol (Phaseolus vulgaris L.). Colomb. Entomol. 31:161–170
Carr JP, Murphy AM, Tungadi T, Yoon JY (2019) Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci 279:87–95. doi: 10.1016/j.plantsci.2018.04.011
Casteel CL, Jander G (2013) New Synthesis: Investigating Mutualisms in Virus-Vector Interactions. J Chem Ecol 39:809. doi: 10.1007/s10886-013-0305-0
Casteel CL, Yang C, Nanduri AC, et al (2014) The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77:653–663. doi: 10.1111/tpj.12417
CFIBAS (Centro Federal de Investigaciones biologicas para Agricultura y silvicultura) (2001) Estadios de las plantas mono-y dicotyledóneas. BBCH Monogr 149
Chávez P, Zorogastúa P, Chuquillanqui C, et al (2009) Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. Int J Pest Manag 55:251–256. doi: 10.1080/09670870902862685
Chen G, Su Q, Shi X, et al (2018) Persistently Transmitted Viruses Restrict the Transmission of Other Viruses by Affecting Their Vectors. Front Physiol. doi: 10.3389/fphys.2018.01261
Chen Y, Singh A, Kaithakottil GG, et al (2020) An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc Natl Acad Sci U S A 117:12763–12771. doi: 10.1073/pnas.1918410117
Chesnais Q, Mauck KE, Bogaert F, et al (2019) Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J Pest Sci (2004) 92:791–804. doi: 10.1007/s10340-019-01082-z
Colvin J, Omongo CA, Govindappa MR, et al (2006) Host-Plant Viral Infection Effects on Arthropod-Vector Population Growth, Development and Behaviour: Management and Epidemiological Implications. Adv Virus Res 67:419–452. doi: 10.1016/S0065-3527(06)67011-5
Cuadros DF, Hernandez A, Torres MF, et al (2017) Vector Transmission Alone Fails to Explain the Potato Yellow Vein Virus Epidemic among Potato Crops in Colombia. Front Plant Sci 8:1–8. doi: 10.3389/fpls.2017.01654
D N Byrne, and T S Bellows J (1991) Whitefly Biology. Annu Rev Entomol 36:431–457. doi: 10.1146/annurev.en.36.010191.002243
Davis TS, Bosque-Pérez NA, Foote NE, et al (2015) Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401. doi: 10.1111/1365-2664.12484
Eigenbrode SD, Bosque-Pérez N, Davis TS (2018) Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annu Rev Entomol 63:annurev-ento-020117-043119. doi: 10.1146/annurev-ento-020117-043119
Fereres A (2015) Insect vectors as drivers of plant virus emergence. Curr Opin Virol 10:42–46. doi: 10.1016/j.coviro.2014.12.008
Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168. doi: 10.1016/j.virusres.2008.10.020
Fereres A, Peñaflor MFGV, Favaro CF, et al (2016) Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses 8:. doi: 10.3390/v8080225
Firth D (1995) “Bias reduction of maximum likelihood estimates.” Biometrika 82:667. doi: 10.1093/biomet/82.3.667-b
Fraile A, García-Arenal F (2016) Environment and evolution modulate plant virus pathogenesis. Curr Opin Virol. doi: 10.1016/j.coviro.2016.01.008
Franco-Lara JPAGL (2015) Potato virus Y ( PVY ) Y Potato yellow vein virus ( PYVV ) EN INFECCIONES MIXTAS NO CAUSAN. 26–37
Franco-lara L, Rodríguez D (2013) Prevalence of potato yellow vein virus ( PYVV ) in Solanum tuberosum Group Phureja Fields in Three States of Colombia. 324–330. doi: 10.1007/s12230-013-9308-1
Gallet R, Michalakis Y, Blanc S (2018) Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 33:144–150. doi: 10.1016/j.coviro.2018.08.005
Gotz M, Popovski S, Kollenberg M, et al (2012) Implication of Bemisia tabaci Heat Shock Protein 70 in Begomovirus-Whitefly Interactions. J Virol 86:13241–13252. doi: 10.1128/JVI.00880-12
Groen SC, Wamonje FO, Murphy AM, Carr JP (2017) Engineering resistance to virus transmission. Curr Opin Virol 26:20–27. doi: 10.1016/j.coviro.2017.07.005
Guzmán-barney M, Franco-lara L, Rodríguez D, et al (2012) Yield Losses in Solanum tuberosum Group Phureja Cultivar Criolla Colombia in Plants with Symptoms of PYVV in Field Trials. 438–447. doi: 10.1007/s12230-012-9265-0
H. Jane Brockmann, Timothy J. Roper, Marc Naguib, Katherine E. Wynne-Edwards JCM and LWS (Eds. . (2010) Advances inthe study of behavior, 41st edn. Academic pres Elsevier Inc, cambridge cb23eb, united kingdom
He WB, Li J, Liu SS (2015) Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci Rep 5:. doi: 10.1038/srep07682
Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419. doi: 10.1002/sim.1047
Hernandez A, Guzmán-barney M (2012) Detección y cuantificación del Potato yellow vein virus (PYVV) en aislamientos de diferentes órganos de Solanum tuberosum Grupo Phureja
IDEAM. Instituto de Hidrología M y EA (2014) ANUARIO CLIMATOLÓGICO 2014. Bol Clim 53:1–352. doi: 10.1017/CBO9781107415324.004
Jia D, Chen Q, Mao Q, et al (2018) ScienceDirect Vector mediated transmission of persistently transmitted plant viruses. Curr Opin Virol 28:127–132. doi: 10.1016/j.coviro.2017.12.004
Jones DR (2003) Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109:195–219
Kiss ZA, Medina V, Falk BW (2013) Crinivirus replication and host interactions. Front. Microbiol. 4
Kong L, Wu J, Lu L, et al (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7:691–708. doi: 10.1093/mp/sst158
Li H, Liu X, Liu X, et al (2018) Host plant infection by soybean mosaic virus reduces the fitness of its vector, aphis glycines (Hemiptera: Aphididae). J Econ Entomol 111:2017–2023. doi: 10.1093/jee/toy165
Liu B, Pan H, Xie W, et al (2013) Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J Virol 87:4929–4937. doi: 10.1128/JVI.03571-12
Lu S, Li J, Wang X, et al (2017) A semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector. Viruses 9:1–15. doi: 10.3390/v9010004
Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 98:771–776. doi: 10.1073/pnas.98.2.771
Martelli GP, Agranovsky a. a., Bar-Joseph M, et al (2002) The family Closteroviridae revised. Arch Virol 147:2039–2044. doi: 10.1007/s007050200048
Mascia T, Gallitelli D (2016) Synergies and antagonisms in virus interactions. Plant Sci 252:176–192. doi: 10.1016/j.plantsci.2016.07.015
Mauck K, Bosque-Pérez NA, Eigenbrode SD, et al (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct Ecol 26:1162–1175. doi: 10.1111/j.1365-2435.2012.02026.x
Mauck KE (2016) Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution? Curr Opin Virol 21:114–123. doi: 10.1016/j.coviro.2016.09.002
Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses, 1st edn. Elsevier Inc.
Navas-Castillo J, Lõpez-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann. Appl. Biol.
Ng JC, Zhou JS (2015) Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Virol 15:48–55. doi: 10.1016/j.coviro.2015.07.006
Ng JCK, Falk BW (2006) Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu Rev Phytopathol 44:183–212. doi: 10.1146/annurev.phyto.44.070505.143325
O’Malley MA (2008) “Everything is everywhere: but the environment selects”: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 39:314–325. doi: 10.1016/j.shpsc.2008.06.005
Osorio M, Marques A, Romay G, et al (2016) Adaptación de la técnica RT-PCR para el diagnóstico del virus del amarillamiento de las venas de papa en Venezuela TT - Adaptation of RT-PCR technique for the diagnosis of potato yellow vein virus in Venezuela. Bioagro 28:47–52
Palacios I, Drucker M, Blanc S, et al (2002) Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83:3163–3171. doi: 10.1099/0022-1317-83-12-3163
Peñaflor MFGV, Mauck KE, Alves KJ, et al (2016) Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host–vector interactions. Funct Ecol 30:1648–1659. doi: 10.1111/1365-2435.12649
Perring TM, Stansly PA, Liu TX, et al (2018) Whiteflies: Biology, Ecology, and Management. Elsevier Inc.
Piñeros C (2009) Recopilación de la investigación del sistema productivo papa criolla. Fedepapa 152
Qiao W, Medina V, Falk BW (2017) Inspirations on virus replication and cell-to-cell movement from studies examining the cytopathology induced by lettuce infectious yellows virus in plant cells. Front Plant Sci 8:1–13. doi: 10.3389/fpls.2017.01672
Qiao W, Medina V, Kuo YW, Falk BW (2018) A distinct, non-virion plant virus movement protein encoded by a crinivirus essential for systemic infection. MBio 9:1–12. doi: 10.1128/mBio.02230-18
Rajabaskar D, Bosque-Pérez NA, Eigenbrode SD (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res 186:32–37. doi: 10.1016/j.virusres.2013.11.005
Rendon F, Cardona C, Bueno J (2001) Pérdidas causadas por trialeurodes vaporariorum (Homoptera Aleyrodidae) y Thrips palmi (Thysanoptera Thripidae) en habichuela en el Valle del Cauca. CIAT Artic
Rincon DF, Vasquez DF, Rivera-trujillo HF, et al (2019) Economic injury levels for the potato yellow vein disease and its vector , Trialeurodes vaporariorum ( Hemiptera : Aleyrodidae ), affecting potato crops in the Andes. Crop Prot 119:52–58. doi: 10.1016/j.cropro.2019.01.002
Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:1–13. doi: 10.1371/journal.pone.0146021
Salazar LF, Müller G, Querci M, et al (2000) Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Ann Appl Biol 137:1–19. doi: http://dx.doi.org/10.1111/j.1744-7348.2000.tb00052
Shanker AK, Maheswari M, Yadav SK, et al (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. doi: 10.1007/s10142-013-0356-x
Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus - Biol 331:215–225. doi: 10.1016/j.crvi.2008.01.002
Skansi M de los M, Brunet M, Sigró J, et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi: 10.1016/j.gloplacha.2012.11.004
Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53:53–63. doi: 10.1007/s10722-004-0573-1
Szczepaniec A, Finke D (2019) Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 7:1–7. doi: 10.3389/fevo.2019.00262
Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: An emerging problem in world agriculture. Front Microbiol 4:1–15. doi: 10.3389/fmicb.2013.00119
van Roermund HJW, van Lenteren JC (1992) The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant and
Vargas AM, Rodriguez LE, Oliveros OA (2010) Respuesta de Genotipos de Solanum tuberosum Grupo phureja a la infección con Potato yellow vein virus (PYVV).
Wei J, Jia D, Mao Q, et al (2018) Complex interactions between insect-borne rice viruses and their vectors. Curr Opin Virol 33:18–23. doi: 10.1016/j.coviro.2018.07.005
Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479–480:278–289. doi: 10.1016/J.VIROL.2015.03.026
Wu Y, Davis TS, Eigenbrode SD (2014) Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomol Exp Appl. doi: 10.1111/eea.12246
Zhou JS, Drucker M, Ng JC (2018) Direct and indirect influences of virus–insect vector–plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 33:129–136. doi: 10.1016/j.coviro.2018.08.004
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 79 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77884/4/1014228776.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77884/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77884/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77884/7/1014228776.2020.pdf.jpg
bitstream.checksum.fl_str_mv dfa2693d47bf527b17e2af8b41c9913f
1487462a1490a8fc01f5999ce7b3b9cc
6f3f13b02594d02ad110b3ad534cd5df
2b5c4f17a9d11fd94d01dce8431eebc8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089768946892800
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Oliveros Garay, Oscar Arturobff00e02-2f00-4f94-8b90-119f4aa8dac2Rincón Rueda, Diego Fernandoecec7a8a-870b-47fd-8a16-cfb90970d66aVasquez Mendieta, Diego Fernando00f49f572de4cc51574fde1ad2c19f52600Corporación Colombiana de Investigación Agropecuaria (Agrosavia)Control biológico de plagas agrícolas2020-07-29T23:46:29Z2020-07-29T23:46:29Z2020-01-20https://repositorio.unal.edu.co/handle/unal/77884Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLos virus transmitidos por vectores pueden manipular la expresión de síntomas en las plantas hospederas para incrementar la probabilidad de ser llevados a un nuevo hospedero sano. Los mecanismos de trasmisión de estos virus se clasifican en tres categorías, de acuerdo con el tiempo de persistencia de los virus en los vectores: persistente (TP), semi persistente (TSP) y no persistente (NP). El mecanismo de transmisión implica diferencias en el tiempo que el virus es infectivo dentro del insecto vector, y su capacidad de invadir y replicarse dentro del vector (acá se hablaría de si es dentro del vector es propagativo o circulativo). Por este motivo, con frecuencia, los virus modulan la manipulación que ejercen sobre sus hospederos en función de la modalidad de trasmisión. Las predicciones relacionadas con la manipulación de los vectores de virus con mecanismo TSP asumen que su estrategia debe ser un punto intermedio entre los virus con TP y NP. Sin embargo, en diversos estudios se ha evidenciado que su complejidad va más allá de ser un punto intermedio y que en realidad pueden compartir características de los virus TP y NP, de acuerdo con ciertos rasgos particulares del sistema. El Potato Yellow Vein Virus (PYVV) es un virus transmitido de forma semipersistente (TSP) y es el agente causal de la enfermedad del amarillamiento de las nervaduras de la hoja de papa (PYVD del inglés Potato Yellow Vein Disease), una enfermedad reemergente de los cultivos de papa en el norte de América del Sur. La infección por el PYVV, que puede ser asintomática, se transmite verticalmente a través de los tubérculos de semillas infectados u horizontalmente por la mosca blanca de los invernaderos (MBI) Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Los síntomas de la enfermedad en plantas de papa presentan un desarrollo primario y uno secundario. Los síntomas de desarrollo primario se dan mediante una clorosis de las nervaduras secundarias y terciarias de las hojas del tercio superior de las plantas de papa. Usualmente, estos síntomas se dan en el borde de las hojas y que se va extendiendo hasta el interior, siendo más severo l envés de los foliolos. El tiempo en el que los adultos de la MBI son infectivos después de adquirir el virus puede ser desde días a semanas, haciendo que la reducción de poblaciones de los vectores mediante tratamientos químicos sea generalmente ineficaz para controlar las epidemias de PYVV. Así mismo, la comprensión del rol de los efectos de los virus en las plantas sobre la ecología de los insectos vectores puede ser útil para comparar y contrastar las adaptaciones clave asociadas a modalidades de trasmisión que no impliquen vectores (i.e., trasmisión vertical o trasmisión mecánica). Este estudio tiene como objetivo comprender el efecto que tiene la expresión de los síntomas como estrategia de los virus tipo TSP para transmitirse y permanecer en el ambiente para propagarse en nuevos hospederos; así como realizar un acercamiento a algunos de los factores abióticos que inducen la expresión de síntomas en el hospedero. Al final, este trabajo pretende generar conocimiento que permita avanzar en investigaciones de estrategias de manejo agronómico más sostenibles. (Texto tomado de la fuente).Vector-borne viruses can manipulate the expression of symptoms in host plants to increase the likelihood of being carried to a new healthy host. Virus transmission can occur through three mechanisms, depending on the time they persist within the vector: persistent (PT), semi-persistent (SPT) or non-persistent (NP). The transmission mechanism implies differences in the time it takes for the virus to enter, and its capability to invade and replicate inside the vector. Therefore, often, viruses modulate vector manipulation as a function the transmission mechanism. Predictions associated with vector manipulation by SPT viruses assume that their strategy should be an intermediate point between PT and NP. However, several studies have shown that their complexity goes beyond being an intermediate point, and that these viruses may share characteristics of PT and NP viruses, according to certain traits associated with the particular system. Potato Yellow Vein Virus (PYVV) is classified as a SPT and the causal agent of potato yellow vein disease (PYVD), a re-emerging disease of potato crops in northern South America. Infection with PYVV, which may be asymptomatic, is transmitted vertically through infected seed tubers or horizontally by the Greenhouse Whitefly (GWF) Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The symptoms of PYVD in native potato plants show a primary and a secondary development. The symptoms of primary development occur through a chlorosis of the secondary and tertiary veins of the leaves of the upper third of potato plants. Usually, these symptoms occur at the edge of the leaves and it spreads to the inside, always more noticeable on the underside of the leaves. The time in which GWF adults are infectious can range from days to weeks, making the reduction of vector populations through chemical treatments generally ineffective in controlling epidemics. Likewise, understanding the role of the effects that viruses cause in plants on the ecology of insect vectors can be useful in comparing the key adaptations associated with modes of transmission that do not involve vectors (ie, vertical transmission or mechanical transmission). This study focuses on understanding the effect of symptom expression as a strategy for SPT viruses to transmit and remain in the environment to infect new hosts; as well as to examine some of the abiotic factors that may induce symptom expression in the host plants. Finally, this work aims to provide useful knowledge that allows the development of more sustainable agronomic management strategies. In order to evaluate the effect of the expression of symptoms of PYVD in potato plants on the survival, development and behavior of its GWF vector, experiments were carried out under controlled conditions in climatic chambers. Survival of immature stages, average time of emergence of adults, and preference and settlement of insects fed on virus-free, and infected asymptomatic and symptomatic plants were evaluated and compared. The expression of symptoms and the relative quantification of the virus in potato plants growing under different temperature and water deficit conditions. We found that survival of GWF was affected when insects feed from infected plants instead free-virus plants but not between symptomatic or asymptomatic plants. Regarding the development of GWF, it was evident that the mean emergence time of adults was longer in symptomatic, infected plants than in healthy plants, but it was even longer in asymptomatic, infected plants. The behavior of the GWF adults changed depending on their previous diet. I found that, when GWF did not have any contact with PYVV prior to the experiment, they preferred to select symptomatic infected plants foe feeding rather than asymptomatic or virus-free plants. However, when GWF was pre-fed with potato plants infected with PYVV, they preferred healthy plants. On the other hand, I found that temperature does not have a significant effect on symptom expression, at least at the temperature range I evaluated. However, in those plants in which there was a drought stress, symptoms were evident three days after watering, regardless of the temperature. Well-watered plants had delayed symptom expression, which occurred 10 to 25 days after plants under drought stress. In conclusion, symptom expression of PYVV in potato plants has a direct effect on both the physiology and behavior of its GWF vector and can be triggered by water stress. This study shows that SPT viruses share characteristics with TP and NP viruses. Also show that vector feeding experience influences their choice and settlement on new hosts, as well as the fact that a prolonged period of drought allows that plants are more susceptible to expressing symptoms and attracting new vectors. These factors can be considered when establishing new practices for managing and prevent future PYVV epidemics.Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Universidad Nacional de ColombiaIncluye anexosMaestríaMagíster en Ciencias AgrariasFito protección integradaCiencias Agronómicasxvii, 79 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesCrinivirusTrialeurodes vaporariorumEnfermedades de las plantasCrinivirusTrialeurodes vaporariorumcomportamientoalimentación de vectoresepidemiavirus vegetaltransmisión horizontalhemípteravector behaviorHemipteraoutbreakplant virushorizontal transmissionEl papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)Symptom expression caused by Potato yelllow vein virus (PYVV) rol over the manipulation of the Greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgranovsky AA, Folimonov AS, Folimonova SY, et al (1998) Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol 79:889–895. doi: 10.1099/0022-1317-79-4-889Alzhanova D V., Napuli AJ, Creamer R, Dolja V V. (2001) Cell-to-cell movement and assembly of a plant closterovirus: Roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007. doi: 10.1093/emboj/20.24.6997Arciniegas N, Guzman M (2003) TÉCNICAS DE DIAGNÒSTICO Y EVALUACIÓN DE RESISTENCIA AL VIRUS DEL AMARILLAMIENTO DE LAS NERVADURAS DE LA PAPA (PYVV) EN ACCESIONES DE LA COLECCIÓN CENTRAL COLOMBIANA DE Solanum phureja. Sinab, Univ Nac ColombiaAtkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. doi: 10.1104/pp.113.222372Bak A, Cheung AL, Yang C, et al (2017) A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8:. doi: 10.1038/ncomms14493Bernays E and CR (1994) HOST-PLANT SELECTION BY PHYTOPHAGOUS INSECTBidzinski P, Ballini E, Ducasse A, et al (2016) Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae. Front Plant Sci 7:. doi: 10.3389/fpls.2016.01558Bosque-Pérez NA, Eigenbrode SD (2011) The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res 159:201–205. doi: 10.1016/j.virusres.2011.04.020Boyer JS (2010) Drought decision-making. J Exp Bot 61:3493–3497. doi: 10.1093/jxb/erq231Bueno J, Cardona C, Chacon P (2005) Fenología, distribución espacial y desarrollo de mètodos de muestreo para Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) en habichuela y frijol (Phaseolus vulgaris L.). Colomb. Entomol. 31:161–170Carr JP, Murphy AM, Tungadi T, Yoon JY (2019) Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci 279:87–95. doi: 10.1016/j.plantsci.2018.04.011Casteel CL, Jander G (2013) New Synthesis: Investigating Mutualisms in Virus-Vector Interactions. J Chem Ecol 39:809. doi: 10.1007/s10886-013-0305-0Casteel CL, Yang C, Nanduri AC, et al (2014) The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77:653–663. doi: 10.1111/tpj.12417CFIBAS (Centro Federal de Investigaciones biologicas para Agricultura y silvicultura) (2001) Estadios de las plantas mono-y dicotyledóneas. BBCH Monogr 149Chávez P, Zorogastúa P, Chuquillanqui C, et al (2009) Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. Int J Pest Manag 55:251–256. doi: 10.1080/09670870902862685Chen G, Su Q, Shi X, et al (2018) Persistently Transmitted Viruses Restrict the Transmission of Other Viruses by Affecting Their Vectors. Front Physiol. doi: 10.3389/fphys.2018.01261Chen Y, Singh A, Kaithakottil GG, et al (2020) An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc Natl Acad Sci U S A 117:12763–12771. doi: 10.1073/pnas.1918410117Chesnais Q, Mauck KE, Bogaert F, et al (2019) Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J Pest Sci (2004) 92:791–804. doi: 10.1007/s10340-019-01082-zColvin J, Omongo CA, Govindappa MR, et al (2006) Host-Plant Viral Infection Effects on Arthropod-Vector Population Growth, Development and Behaviour: Management and Epidemiological Implications. Adv Virus Res 67:419–452. doi: 10.1016/S0065-3527(06)67011-5Cuadros DF, Hernandez A, Torres MF, et al (2017) Vector Transmission Alone Fails to Explain the Potato Yellow Vein Virus Epidemic among Potato Crops in Colombia. Front Plant Sci 8:1–8. doi: 10.3389/fpls.2017.01654D N Byrne, and T S Bellows J (1991) Whitefly Biology. Annu Rev Entomol 36:431–457. doi: 10.1146/annurev.en.36.010191.002243Davis TS, Bosque-Pérez NA, Foote NE, et al (2015) Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401. doi: 10.1111/1365-2664.12484Eigenbrode SD, Bosque-Pérez N, Davis TS (2018) Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annu Rev Entomol 63:annurev-ento-020117-043119. doi: 10.1146/annurev-ento-020117-043119Fereres A (2015) Insect vectors as drivers of plant virus emergence. Curr Opin Virol 10:42–46. doi: 10.1016/j.coviro.2014.12.008Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168. doi: 10.1016/j.virusres.2008.10.020Fereres A, Peñaflor MFGV, Favaro CF, et al (2016) Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses 8:. doi: 10.3390/v8080225Firth D (1995) “Bias reduction of maximum likelihood estimates.” Biometrika 82:667. doi: 10.1093/biomet/82.3.667-bFraile A, García-Arenal F (2016) Environment and evolution modulate plant virus pathogenesis. Curr Opin Virol. doi: 10.1016/j.coviro.2016.01.008Franco-Lara JPAGL (2015) Potato virus Y ( PVY ) Y Potato yellow vein virus ( PYVV ) EN INFECCIONES MIXTAS NO CAUSAN. 26–37Franco-lara L, Rodríguez D (2013) Prevalence of potato yellow vein virus ( PYVV ) in Solanum tuberosum Group Phureja Fields in Three States of Colombia. 324–330. doi: 10.1007/s12230-013-9308-1Gallet R, Michalakis Y, Blanc S (2018) Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 33:144–150. doi: 10.1016/j.coviro.2018.08.005Gotz M, Popovski S, Kollenberg M, et al (2012) Implication of Bemisia tabaci Heat Shock Protein 70 in Begomovirus-Whitefly Interactions. J Virol 86:13241–13252. doi: 10.1128/JVI.00880-12Groen SC, Wamonje FO, Murphy AM, Carr JP (2017) Engineering resistance to virus transmission. Curr Opin Virol 26:20–27. doi: 10.1016/j.coviro.2017.07.005Guzmán-barney M, Franco-lara L, Rodríguez D, et al (2012) Yield Losses in Solanum tuberosum Group Phureja Cultivar Criolla Colombia in Plants with Symptoms of PYVV in Field Trials. 438–447. doi: 10.1007/s12230-012-9265-0H. Jane Brockmann, Timothy J. Roper, Marc Naguib, Katherine E. Wynne-Edwards JCM and LWS (Eds. . (2010) Advances inthe study of behavior, 41st edn. Academic pres Elsevier Inc, cambridge cb23eb, united kingdomHe WB, Li J, Liu SS (2015) Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci Rep 5:. doi: 10.1038/srep07682Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419. doi: 10.1002/sim.1047Hernandez A, Guzmán-barney M (2012) Detección y cuantificación del Potato yellow vein virus (PYVV) en aislamientos de diferentes órganos de Solanum tuberosum Grupo PhurejaIDEAM. Instituto de Hidrología M y EA (2014) ANUARIO CLIMATOLÓGICO 2014. Bol Clim 53:1–352. doi: 10.1017/CBO9781107415324.004Jia D, Chen Q, Mao Q, et al (2018) ScienceDirect Vector mediated transmission of persistently transmitted plant viruses. Curr Opin Virol 28:127–132. doi: 10.1016/j.coviro.2017.12.004Jones DR (2003) Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109:195–219Kiss ZA, Medina V, Falk BW (2013) Crinivirus replication and host interactions. Front. Microbiol. 4Kong L, Wu J, Lu L, et al (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7:691–708. doi: 10.1093/mp/sst158Li H, Liu X, Liu X, et al (2018) Host plant infection by soybean mosaic virus reduces the fitness of its vector, aphis glycines (Hemiptera: Aphididae). J Econ Entomol 111:2017–2023. doi: 10.1093/jee/toy165Liu B, Pan H, Xie W, et al (2013) Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J Virol 87:4929–4937. doi: 10.1128/JVI.03571-12Lu S, Li J, Wang X, et al (2017) A semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector. Viruses 9:1–15. doi: 10.3390/v9010004Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 98:771–776. doi: 10.1073/pnas.98.2.771Martelli GP, Agranovsky a. a., Bar-Joseph M, et al (2002) The family Closteroviridae revised. Arch Virol 147:2039–2044. doi: 10.1007/s007050200048Mascia T, Gallitelli D (2016) Synergies and antagonisms in virus interactions. Plant Sci 252:176–192. doi: 10.1016/j.plantsci.2016.07.015Mauck K, Bosque-Pérez NA, Eigenbrode SD, et al (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct Ecol 26:1162–1175. doi: 10.1111/j.1365-2435.2012.02026.xMauck KE (2016) Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution? Curr Opin Virol 21:114–123. doi: 10.1016/j.coviro.2016.09.002Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses, 1st edn. Elsevier Inc.Navas-Castillo J, Lõpez-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann. Appl. Biol.Ng JC, Zhou JS (2015) Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Virol 15:48–55. doi: 10.1016/j.coviro.2015.07.006Ng JCK, Falk BW (2006) Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu Rev Phytopathol 44:183–212. doi: 10.1146/annurev.phyto.44.070505.143325O’Malley MA (2008) “Everything is everywhere: but the environment selects”: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 39:314–325. doi: 10.1016/j.shpsc.2008.06.005Osorio M, Marques A, Romay G, et al (2016) Adaptación de la técnica RT-PCR para el diagnóstico del virus del amarillamiento de las venas de papa en Venezuela TT - Adaptation of RT-PCR technique for the diagnosis of potato yellow vein virus in Venezuela. Bioagro 28:47–52Palacios I, Drucker M, Blanc S, et al (2002) Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83:3163–3171. doi: 10.1099/0022-1317-83-12-3163Peñaflor MFGV, Mauck KE, Alves KJ, et al (2016) Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host–vector interactions. Funct Ecol 30:1648–1659. doi: 10.1111/1365-2435.12649Perring TM, Stansly PA, Liu TX, et al (2018) Whiteflies: Biology, Ecology, and Management. Elsevier Inc.Piñeros C (2009) Recopilación de la investigación del sistema productivo papa criolla. Fedepapa 152Qiao W, Medina V, Falk BW (2017) Inspirations on virus replication and cell-to-cell movement from studies examining the cytopathology induced by lettuce infectious yellows virus in plant cells. Front Plant Sci 8:1–13. doi: 10.3389/fpls.2017.01672Qiao W, Medina V, Kuo YW, Falk BW (2018) A distinct, non-virion plant virus movement protein encoded by a crinivirus essential for systemic infection. MBio 9:1–12. doi: 10.1128/mBio.02230-18Rajabaskar D, Bosque-Pérez NA, Eigenbrode SD (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res 186:32–37. doi: 10.1016/j.virusres.2013.11.005Rendon F, Cardona C, Bueno J (2001) Pérdidas causadas por trialeurodes vaporariorum (Homoptera Aleyrodidae) y Thrips palmi (Thysanoptera Thripidae) en habichuela en el Valle del Cauca. CIAT ArticRincon DF, Vasquez DF, Rivera-trujillo HF, et al (2019) Economic injury levels for the potato yellow vein disease and its vector , Trialeurodes vaporariorum ( Hemiptera : Aleyrodidae ), affecting potato crops in the Andes. Crop Prot 119:52–58. doi: 10.1016/j.cropro.2019.01.002Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:1–13. doi: 10.1371/journal.pone.0146021Salazar LF, Müller G, Querci M, et al (2000) Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Ann Appl Biol 137:1–19. doi: http://dx.doi.org/10.1111/j.1744-7348.2000.tb00052Shanker AK, Maheswari M, Yadav SK, et al (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. doi: 10.1007/s10142-013-0356-xShao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus - Biol 331:215–225. doi: 10.1016/j.crvi.2008.01.002Skansi M de los M, Brunet M, Sigró J, et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi: 10.1016/j.gloplacha.2012.11.004Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53:53–63. doi: 10.1007/s10722-004-0573-1Szczepaniec A, Finke D (2019) Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 7:1–7. doi: 10.3389/fevo.2019.00262Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: An emerging problem in world agriculture. Front Microbiol 4:1–15. doi: 10.3389/fmicb.2013.00119van Roermund HJW, van Lenteren JC (1992) The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant andVargas AM, Rodriguez LE, Oliveros OA (2010) Respuesta de Genotipos de Solanum tuberosum Grupo phureja a la infección con Potato yellow vein virus (PYVV).Wei J, Jia D, Mao Q, et al (2018) Complex interactions between insect-borne rice viruses and their vectors. Curr Opin Virol 33:18–23. doi: 10.1016/j.coviro.2018.07.005Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479–480:278–289. doi: 10.1016/J.VIROL.2015.03.026Wu Y, Davis TS, Eigenbrode SD (2014) Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomol Exp Appl. doi: 10.1111/eea.12246Zhou JS, Drucker M, Ng JC (2018) Direct and indirect influences of virus–insect vector–plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 33:129–136. doi: 10.1016/j.coviro.2018.08.004InvestigadoresEstudiantesPúblico generalORIGINAL1014228776.2020.pdf1014228776.2020.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2272976https://repositorio.unal.edu.co/bitstream/unal/77884/4/1014228776.2020.pdfdfa2693d47bf527b17e2af8b41c9913fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.unal.edu.co/bitstream/unal/77884/6/license_rdf1487462a1490a8fc01f5999ce7b3b9ccMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77884/5/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD55THUMBNAIL1014228776.2020.pdf.jpg1014228776.2020.pdf.jpgGenerated Thumbnailimage/jpeg6250https://repositorio.unal.edu.co/bitstream/unal/77884/7/1014228776.2020.pdf.jpg2b5c4f17a9d11fd94d01dce8431eebc8MD57unal/77884oai:repositorio.unal.edu.co:unal/778842024-07-20 23:10:42.402Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==