Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima

ilustraciones, diagramas, fotografías, tablas

Autores:
Cruz Ramírez, Carlos Alberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86677
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86677
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas
630 - Agricultura y tecnologías relacionadas
570 - Biología
570 - Biología::572 - Bioquímica
FERTILIZANTES ORGANICOS
PRODUCCION VEGETAL
Organic fertilizers
Plant production
Tamo de arroz
Actividad hidrolítica
Antagonismo
Relación C:N
BAFE
Trichoderma
Promoción de crecimiento vegetal
Rice Straw
Hydrolitic activity
Carbon to nitrogen ratio
Aerobic endospore forming batería - AEFB
Trichoderma fungi
Plant growth promotion
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6ab85b3c39694763c410e94cafa37573
oai_identifier_str oai:repositorio.unal.edu.co:unal/86677
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
dc.title.translated.eng.fl_str_mv Development of biological strategies for rice straw management as biofertilizer at Tolima ́s department
title Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
spellingShingle Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
500 - Ciencias naturales y matemáticas
630 - Agricultura y tecnologías relacionadas
570 - Biología
570 - Biología::572 - Bioquímica
FERTILIZANTES ORGANICOS
PRODUCCION VEGETAL
Organic fertilizers
Plant production
Tamo de arroz
Actividad hidrolítica
Antagonismo
Relación C:N
BAFE
Trichoderma
Promoción de crecimiento vegetal
Rice Straw
Hydrolitic activity
Carbon to nitrogen ratio
Aerobic endospore forming batería - AEFB
Trichoderma fungi
Plant growth promotion
title_short Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
title_full Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
title_fullStr Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
title_full_unstemmed Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
title_sort Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima
dc.creator.fl_str_mv Cruz Ramírez, Carlos Alberto
dc.contributor.advisor.none.fl_str_mv Uribe Vélez, Daniel
dc.contributor.author.none.fl_str_mv Cruz Ramírez, Carlos Alberto
dc.contributor.researchgroup.spa.fl_str_mv Microbiología Agrícola
dc.contributor.orcid.spa.fl_str_mv Cruz Ramírez, Carlos Alberto [0000000314949914]
dc.contributor.cvlac.spa.fl_str_mv Carlos Alberto Cruz Ramírez [0001084968]
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas
630 - Agricultura y tecnologías relacionadas
570 - Biología
570 - Biología::572 - Bioquímica
topic 500 - Ciencias naturales y matemáticas
630 - Agricultura y tecnologías relacionadas
570 - Biología
570 - Biología::572 - Bioquímica
FERTILIZANTES ORGANICOS
PRODUCCION VEGETAL
Organic fertilizers
Plant production
Tamo de arroz
Actividad hidrolítica
Antagonismo
Relación C:N
BAFE
Trichoderma
Promoción de crecimiento vegetal
Rice Straw
Hydrolitic activity
Carbon to nitrogen ratio
Aerobic endospore forming batería - AEFB
Trichoderma fungi
Plant growth promotion
dc.subject.lemb.spa.fl_str_mv FERTILIZANTES ORGANICOS
PRODUCCION VEGETAL
dc.subject.lemb.eng.fl_str_mv Organic fertilizers
Plant production
dc.subject.proposal.spa.fl_str_mv Tamo de arroz
Actividad hidrolítica
Antagonismo
Relación C:N
BAFE
Trichoderma
Promoción de crecimiento vegetal
dc.subject.proposal.eng.fl_str_mv Rice Straw
Hydrolitic activity
Carbon to nitrogen ratio
Aerobic endospore forming batería - AEFB
Trichoderma fungi
Plant growth promotion
description ilustraciones, diagramas, fotografías, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-01T20:08:40Z
dc.date.available.none.fl_str_mv 2024-08-01T20:08:40Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86677
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86677
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abaide, E. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A., 2019. Reasons for processing of rice coproducts: reality and expectations. Biomass and Bioenergy, 120, pp.240–256.
Abril, D., Navarro, E. & Abril, A., 2009. La paja de arroz: consecuencias de su manejo y alternativas de aprovechamiento. Revista Agronomía U. Caldas, 17(2), pp.69–79.
Amin, M. et al., 2005. Comparative response of diverse rice varieties to green manuring (Sesbania aculeata). Journal of Research Science, 16(1), pp.39–43.
Andersson, P. & Berggren, D., 2005. Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water, Air, and Soil Pollution, 162, pp.369–384.
Andreae, M. O. & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), pp.955–966.
Anwar, A., Saleemuddin, M., 1998. Alkaline proteases: a review. Bioresource Technology, 64, pp.175-183.
Bae, H. D. et al., 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Animal Feed Science and Technology, 65, pp.165–181.
Bak, J. S. et al., 2009. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), pp.471–482.
Balasubramanian, V. et al., 1998. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 53(1), pp.59–69.
Baraznenok, V. A. et al., 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme and Microbial Technology, 25, pp.651–659.
Belal, E. B. & El-Mahrouk, M. E., 2010. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries. Acta Astronautica, 67(9), pp.1081– 1089.
Beltran, M. et al., 2012. Actividad fosfatasa y microorganismos solubilizadores y mineralizadores de fosfato en suelos arroceros de Tolima y Meta. In D. U. Velez & L. M. Melgarejo, eds. Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia., pp. 69–88.
Bernal, G., Illanes, A., Ciampi, L., 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic Journal of Biotechnology, 5, pp.12–20.
Berthrong, S., Buckley, D. & Drinkwater, L., 2013. Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling. Microbial Ecology, 66(1), pp.158–170.
Bhattacharyya, P. et al., 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, pp.119–130.
Binod, P. et al., 2010. Bioethanol production from rice straw: an overview. Bioresource Technology, 101(13), pp.4767–4774.
Bourgaize, D., Jewell, T.R., Buiser, R.G., 2000. Biotechnology: demystifying the concepts. San Francisco, CA. Benjamin/Cummings, Inc.
Bronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma. 124(1-2), pp.3-22.
Cai–Yun, S., Qing–Tao, S., Shu–Tao, X., Xiau–Yan, S., Xiu–Lan, C., Yu–Zhong, Z., 2006. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260, pp.119-125.
Candela, M. E., Egea-Gilabert, C., Ezziyyani, M., Requena, M. E., 2007. Biological control of Phytophtora root of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155, pp.342-349.
Cardona, C. A., 2009. Biocombustibles en Colombia: contextos latinoamericano y mundial. Revista de ingeniería UNIANDES, 29, pp.109–120.
Castilla, L. A., 2012. Manejo productivo de los residuos de la cosecha de arroz. Revista Arroz, 60(500), pp.10–17.
Castilla-Lozano, L. A., Vanegas, J., Rodriguez, J., Uribe-Vélez, D. 2012. Evaluación de la fertilidad en suelos de zonas arroceras de Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 2.
Castilla, L. A. et al., 2010. Cambio climático y producción de arroz. Revista Arroz, 58(489), pp.4–11.
Chandra, M. et al., 2009. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresource Technology, 100, pp.1659–1662.
Chang, J., van Veen, J. A., Tian, C., Kuramae, E. E., 2022. A review on the impact of domestication of the rhizosphere of grain crops and a perspective on the potential role of the rhizosphere microbial community for sustainable rice crop production. Science of the Total Environment. 842. Elsevier B.V.
Chen, H. et al., 2009. Biodegradability of dissolved organic matter derived from rice straw. Soil Science, 174(3), pp.143–150.
Choudhury, A., Kennedy, I. R., 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils, 39(4), pp.219- 227.
Chu, H. et al., 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39(11), pp.2971–2976.
Connor, N. et al., 2010. Ecology of speciation in the genus Bacillus. Applied and Environmental Microbiology, 76(5), pp.1349–1358.
Cooper, R. M., Wood, R. K. S., 1980. Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol. Plant Pathol, 16, pp.285-300.
Cotes, A., 2001. Utilización combinada de técnicas de pregerminación controlada de semillas y del agente de control biológico Trichoderma sp. para el control de patógenos radicales. En: I curso taller internacional control biológico. Programa nacional de manejo integrado de plagas. Corpoica. Bogotá. pp.137-141.
Devkota, K. P. et al., 2013. Growth and yield of rice (Oryza sativa L.) under resource conservation technologies in the irrigated drylands of Central Asia. Field Crops Research, 149, pp.115–126.
Delgado, J., Rincon, A. & Benitez, T., 2002. Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology, 148, pp.1305–1315.
Departamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de- arroz-mecanizado/encuesta-nacional-de-arroz-mecanizado-enam-historicos (2022) Acceso 20 agosto 2022.
Deshpande, V., Lachke, C., Mishra, S., Keskar, S., Rao, M., 1986. Mode of action and properties of xylanase and -xylosidase from Neurospora crassa. Biotechnology Bioengineering, 28, pp.1832-1837.
Devevre, O. C. & Horwath, W. R., 2000. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology & Biochemistry, 32, pp.1773–1785.
Dobermann, B. A. & Fairhurst, T. H., 2000. Rice: nutrient disorders & nutrient management First edit. T. S. Chee, ed., Philippines: International Plant Nutrition Institute.
Dobermann, B. A. & Fairhurst, T. H., 2002. Rice straw management. Better Crops International, 16, pp.7–11.
Espinal, C. F., Martinez, H. J. & Acevedo, J., 2005. La cadena de arroz en Colombia: Una mirada de su estructura global y dinámica 1991-2005., Bogotá, Colombia.
Eun, J. S. et al., 2006. Exogenous enzymes added to untreated or ammoniated rice straw: effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology, 131, pp.86–101.
Fang, X. et al., 2008. Cellulase and hemicellulase production by Acremonium cellulolyticus for hydrolysis of biomass. Journal of Biotechnology, 136S, pp.S290–S344.
Fedearroz, 2012. Arroz: 60 años, Edición Especial. Revista Arroz, 60(496), pp.12–23.
Fillingham, I. J., Kroon, P. A., Williamson, G., Gilbert, H. J., Hazlewood, G. P., 1999. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase- hemicellulase complex. Biochemistry Journal, 343, pp.215-224.
Fontaine, S. & Barot, S., 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecology Letters, 8(10), pp.1075–1087.
Food and Agriculture Organization (FAO): FAOSTAT. http://www.fao.org/statistics/co (2022). Acceso 20 agosto 2022.
Franco, C. J., Flórez, A. M. & Ochoa, M. C., 2008. Biocombustibles en Colombia. Revista de Dinámica de Sistemas, 4(2), pp.109–133.
Fujitani, Y. et al., 2020. Mid carbon (C6+-C29+) in refractory black carbon aerosols is a potential tracer of open burning of rice straw: insights from atmospheric observation and emission source studies. Atmospheric Environment, 238.
Fukuda, H., Kondo, A. & Tamalampudi, S., 2008. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 44(1), pp.2–12.
Gadde, B., Menke, C. & Wassmann, R., 2009. Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy, 33(11), pp.1532– 1546.
Garces, G., Ospina, J., 2009. Estrategias para el aprovechamiento de los residuos de cosecha del arroz. Bogotá. Fedearroz. 217, 4-5.
Gärdenäs, A. I. et al., 2011. Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale. Soil Biology and Biochemistry, 43(4), pp.702–717.
Gaspar, A., Cosson, T., Roques, C., Thonart, P., 1997. Study on the production of a xylanolytic complex from Penicillium canescens. Applied Biochemistry and Biotechnology, 67, pp.45-58.
Genckal, H., Tari, C., 2006. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme and Microbial Technology, 39, pp.703–710.
Geisseler, D., Scow, K. 2014. Long term effects of mineral fertilizers on soil microorganism: a review. Soil Biology and Biochemestry. 75, pp. 54-63.
Gerhardt, K. E., Huang, X. D., Glick, B. R., Greenberg, B. M., 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science. 176(1), pp.20–30.
Gunina, A., Kuzyakov, Y., 2015. Sugars in soil and sweets for microorganisms: review of origin, content, composition, and fate. Soil Biology and Biochemistry, 90, pp.87–100.
Gutiérrez-Rojas, I. et al., 2012. Estimación de poblaciones de microorganismos lignolíticos y celulolíticos, y actividad β-glucosidasa en agroecosistemas de arroz. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 5.
Hajji, M. et al., 2010. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochemistry, 45(10), pp.1746–1752.
Han, W. & He, M., 2010a. Short-term effects of exogenous protease application on soil fertility with rice straw incorporation. European Journal of Soil Biology, 46(2), pp.144–150.
Han, W. & He, M., 2010b. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology, 101(10), pp.3724–3731.
Hatamoto, M. et al., 2008. Eukaryotic communities associated with the decomposition of rice straw compost in a Japanese rice paddy field estimated by DGGE analysis. Biology and Fertility of Soils, 44(3), pp.527–532.
Hernandez-Salas, J. M. et al., 2009. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresource Technology, 100, pp.1238–1245.
Hideno, A. et al., 2011. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), pp.162–168.
Hou, X. D. et al., 2012. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnology and Bioengineering, 109(10), pp.2484–2493.
Howell, C. R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, pp.4-10.
Ito, K., Ogasawara, H., Sugimoto, T., Ishikawa, T., 1992. Purification and properties of acid stable xylanase from Aspergillus kawachii. Bioscience Biotechnology and Biochemistry, 56, pp.547-550.
Jackson, L.E., Burger, M., Cavagnaro, T.R., 2008. Roots, nitrogen transformation, and ecosystem services. Annual Review of Plant Biology, 59(1), pp.341-363.
Jisha, N.V. et al., 2013. Versatility of microbial proteases. Advances in Enzyme Research, 01(03), pp.39–51.
Jorquera, M. A. et al., 2011. Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 75(1), pp.163–172.
Kadam, K. L., Forrest, L. H. & Jacobson, W. A., 2000. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), pp.369–389.
Kaewpradit, W. et al., 2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Research, 110(2), pp.130–138.
Kausar, H. et al., 2010. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7), pp.594–600.
Kennedy, I., Choudhury, A.T. & Kecskes, M., 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, 36(8), pp.1229–1244.
Kennedy, A. C., Smith, K. L., 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170(1), pp.75-86.
Kimura, M., Murase, J. & Lu, Y., 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry, 36(9), pp.1399–1416.
Kirkby, C. A. et al., 2014. Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68, pp.402–409.
Kloepper, J. W., Schroth, M. N., 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71(6), pp.642–644.
Kogo, T., et al., 2017. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresource Technology, pp.67–73.
Kotasthane, A. et al., 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141(3), pp.523–543.
Kumar, N. N., Deobagkar, D. N., 1996. Multifunctional glucanases. Biotechnology Advances, 14, pp.1-15.
Kumar, R., Singh, S. & Singh, O., 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 35, pp.377–391.
Kuzyakov, Y., 2002. Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165(4), pp.382–396.
Kuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9), pp.1363–1371.
Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87(05), pp.85–156.
Lewis, J. A.; Lumsden, R. D., 2001. Biocontrol of damping-off greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protection, 20, pp.49-56.
Li, X. X. et al., 2021. Performance and microbial community dynamics during rice straw composting using urea or protein hydrolysate as a nitrogen source: a comparative study. Waste Management, 135, 130–139.
Lian, L.H., Tian, B.Y., Xiong, R., Zhu, M.Z., and Xu, J.L., 2007. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Microbiology, 45, pp.262–269.
Liesack, W., Schnell, S., Revsbech, N.P., 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), pp.625-645.
Lohnis, F., 1926. Nitrogen avalilability of green manures. Soil Science, 22(4), pp.253– 290.
Lu, J. & Zhou, P., 2011. Optimization of microwave assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresource Technology, 102(13), pp.6966–6971.
Lu, Y., Watanabe, A. & Kimura, M., 2003. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology & Biochemistry, 35, pp.1223–1230.
Lutzen, N. W. et al., 1983. Cellulases and their application in the conversion of lignocellulose to fermentable sugars. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 300(1100), pp.283–291.
Lynd, L. R. et al., 2002. Microbial cellulose utilization: fundamentals and biotechnology microbial cellulose utilization. Microbiol. Mol. Biol. Rev., 66(3), pp.506–577.
Man, L. H. & Ha, N.N., 2006. Effect of decomposed rice straw at different times on rice yield. Omonrice, 14, pp.58–63.
Mandal, K. G. et al., 2004. Rice residue- management options and effects on soil properties and crop productivity. Food, Agriculture & Environment, 2(1), pp.224–231.
Mandic-Mulec, I. & Prosser, J. I., 2011. Endospore-forming soil bacteria. In N. A. Logan & P. Vos, eds. Endospore-forming Soil Bacteria, Soil Biology. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg.
Marentes, F. et al., 2012. Evaluación en campo de microorganismos promotores del crecimiento y celulolíticos. In Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia.
Marschner, P., Crowley, D., Rengel, Z., 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biology and Biochemistry. 43(5), pp.883–894.
Martínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., Gutiérrez, A., 2009. Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357.
McSpadden Gardener, B. B., 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytophatology, 94, pp.1252-1258.
Mocali, S. et al., 2008. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biology and Fertility of Soils, 44(4), pp.557–569.
Namboodiri, M. M. T. et al., 2022. Solid state fermentation of rice straw using Penicillium citrinum for chitosan production and application as nanobiosorbent. Bioresource Technology Reports, 18.
Naseby, D. C., Pascual, J. A., Lynch, J. M., 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88(1), pp.161–169.
Norby, R. J. & Cotrufo, M. F., 1998. A question of litter quality. Nature, 396, pp.12–13.
Paulitz, T., Belanger, R., 2001. Biological control in greenhouse systems. Annual Review of Phytopathology, 39, pp.103-133.
Phadtare, S., Rao, M. & Deshpande, V., 1997. A serine alkaline protease from the fungus Conidiobolus coronatus with a distinctly different structure than the serine protease subtilisin Carlsberg. Arch Microbiol, 166, pp.414–417.
Phongpan, S., Mosier, A. R., 2003. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence. Biology and Fertility of Soils, 37(2), pp.102–107.
Ponnamperuma, F. N., 1984. Straw as source of nutrients for wetland rice. In Organic matter and rice. International rice. Research Institute Ed. pp. 117-130. Los Baños Philipinas.
Pooniya, V. et al., 2012. Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. European Journal of Agronomy, 41: pp.28–37.
Powlson, D. S. et al., 2008. Carbon sequestration in European soils through straw incorporation: limitations and alternatives. Waste Management, 28, pp.741–746.
Raina, D., Kumar, V., Saran, S., 2022. A critical review on exploitation of agroindustrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere, 294.
Ramírez, C. A., Kloepper, J. W., 2010. Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils, 46, pp.835–844.
Robertson, G. P. & Vitousek, P. M., 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34(1), pp.97–125.
Rodriguez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advance, 17(4-5), pp.319-339.
Sanchez, C., 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), pp.185–194.
Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K., 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), pp. 19–27.
Schallmey, M., Singh, A., Ward, O. P., 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50(1), pp. 1–17.
Schulein, M., 1988. Cellulases of Trichoderma reesei. In Methods in enzymology. WoodWA, Abelson JN, editors. New York: Academic Press; 160, pp.234–42.
Schuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799.
Scow, K. M., 1997. Soil microbial communities and carbon flow in agroecosystems. In Ecology in Agriculture. L.E. Jackson Ed. (pp. 367-413). San Diego, California. USA, Academic Press.
Shi-ping, L. et al., 2007. Effect of interplanting with zero tillage and straw manure on rice growth and rice quality. Rice Science, 14(3), pp.204–210.
Su, P., Brookes, P. C., He, Y., Wu, J., Xu, J., 2016. An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation. Journal of Soils and Sediments, 16(6), 1776–1786.
Thuille, A., Laufer, J., Höhl, C., Gleixner, G., 2015. Carbon quality affects the nitrogen partitioning between plants and soil microorganisms. Soil Biology and Biochemistry, 266– 274.
Toan, N. S. et al., 2022. Effects of burning rice straw residue on-field on soil organic carbon pools: environment-friendly approach from a conventional rice paddy in central Vietnam. Chemosphere, 294.
Van Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 130, pp.137–171.
Vanegas, J., Camelo, C., Rodriguez, J., Melgarejo, L.M., Uribe, D., 2012. Abundancia de diazótrofos, actividad nitrogenasa y proteasa en cultivos arroceros de los departamentos del Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 3.
Vallejo, M., Bonilla, C., Castilla, L., 2008. Evaluación de bacterias fijadoras de nitrógeno-líneas interespecíficas de arroz en Typic haplustalfHapl. Acta Agronómica, 57(1), pp. 43-49.
van Dyk, J. S., Sakka, M., Sakka, K., Pletschke, B. I., 2009. The cellulolytic and hemi- cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45(5), pp.372–378.
Vial, L. K., Molesworth, A., & Lefroy, R. D. B., 2020. Balancing rice and non-rice crops: managing the risks from soil constraints in Mainland Southeast Asian rice systems. In Field Crops Research, 246.
Wagner, G. H., Wolf, D. C., 1999. Carbon transformation and soil organic matter formation. In Principles and Applications of Soil Microbiology. D.M. Sylvia, Fuhrmann J.J., Hartel P.G., & D.A. Zuberer Eds. New Jersey: Prentice Hall, Inc.
Walker, T. W. & Street, J. E., 2003. Rice fertilization, Rice Fertilization Mississippi Agricultural & Forestry Experiment Station.
Wilson, C. A., Wood, T. M., 1992. The anaerobic fungus Neocallimastrix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology, 37, pp.125- 129.
Xu, G., Fan, X., Miller, A. J., 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, pp.153–182.
Zang, H., Wang, J., Kuzyakov, Y., 2016. N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 108, pp.47–53.
Zhang, Q. et al., 2009. Two-stage co-hydrolysis of rice straw by Trichoderma reesei ZM4-F3 and Pseudomonas aeruginosa BSZ-07. Biomass and Bioenergy, 33(10), pp.1464– 1468.
Zhang, Q. Z., Cai, W. M. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32(12), pp.1130–1135.
Zhou, J. et al., 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresource Technology, 99, pp.6826– 6833.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 226 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Tolima
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86677/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86677/4/80259449.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86677/5/80259449.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0c6ff343c2120c5361dad5f62f022bbe
f644f8e6945095ac5cc5f0171fcb6b3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089952520044544
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Uribe Vélez, Danielc0920b12ebab2c68a158bdb7410eaee1Cruz Ramírez, Carlos Alberto0f2774e05c570c453a1e6704ecd12d64Microbiología AgrícolaCruz Ramírez, Carlos Alberto [0000000314949914]Carlos Alberto Cruz Ramírez [0001084968]2024-08-01T20:08:40Z2024-08-01T20:08:40Z2024https://repositorio.unal.edu.co/handle/unal/86677Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasLa práctica más empleada para el manejo de los residuos del cultivo de arroz es la quema a campo abierto, lo que no solo altera el ecosistema suelo en todos sus componentes, sino que produce cantidades considerables de gases de efecto invernadero y pérdidas significativas de nutrientes valiosos para el establecimiento de nuevos ciclos de cultivo. No obstante, la pérdida progresiva de materia orgánica en los suelos del trópico y la baja tasa de asimilación de fertilizantes principalmente nitrogenados, vulneran la sostenibilidad del cultivo. Bajo este contexto, la biodegradación del tamo de arroz in situ resulta ser la estrategia más acertada desde el punto de vista ecológico, económico y de sostenibilidad del cultivo a largo plazo. Sin embargo, su alto contenido de ligninas y sílice, alta relación carbono:nitrógeno, así como las constantes fluctuaciones en las condiciones climáticas hacen de este proceso poco eficiente y rentable en campo. Por tanto, se desarrollaron estrategias para optimizar la biodegradación del tamo de arroz in situ mediante el desarrollo de coinóculos microbianos con potencial hidrolítico, y de biocontrol, como mecanismo de fertilización agrícola. Se determinó la actividad hidrolítica y oxidativa de cepas de Trichoderma spp. comerciales y nativas, y de bacterias aerobias formadoras de endospora (BAFE) pertenecientes al género Bacillus aisladas de suelos arroceros sobre medios sólidos diferenciales. Posteriormente, se estableció la compatibilidad entre los microorganismos seleccionados para el establecimiento de mezclas microbianas. Se ejecutaron fermentaciones en estado sumergido y sólido empleando tamo de arroz como única fuente de energía para cepas individuales y/o en mezclas, estableciendo las cinéticas de actividades enzimáticas, crecimiento bacteriano, respiración, así como la producción de amonio y reducción de peso seco del tamo residual al final del periodo de incubación. Los mejores aislamientos de Bacillus y hongos fueron identificados por biología molecular. El consorcio microbiano con la mayor respuesta de biodegradación del tamo de arroz fue evaluado bajo condiciones de fermentación sólida del tamo de arroz, ajustando la relación C:N del residuo vegetal mediante la adición de urea. Se estimaron parámetros de respiración microbiana (C-CO2), producción de biomasa microbiana de carbono, así como porcentaje de reducción de fibras y proteína del tamo de arroz, y actividades enzimáticas extracelulares de interés. Posteriormente, se estableció el efecto de suelo enmendado con tamo de arroz pre-tratado biológicamente, sobre la actividad de promotores de crecimiento vegetal (PCV) en arroz, bajo condiciones de invernadero y campo. Este trabajo aporta evidencia del potencial de mezclas microbianas Bacillus - Trichoderma para la degradación de tamo de arroz enriquecido con urea hasta una relación C:N<30, y el efecto positivo de esta enmienda sobre la actividad de rizobacterias PCV y plantas de arroz. Los efectos conjuntos se tradujeron en plantas de arroz de mayor longitud y peso seco, mayor rendimiento de cultivo, y menor incidencia de fitopatógenos convencionales del cultivo. Nuestros resultados además aportan a la sostenibilidad del cultivo y minimizan el impacto ecológico y ambiental que suponen las prácticas agronómicas tradicionales de fertilización y quema del tamo a campo abierto, otorgando mayor competitividad al cultivo de arroz en Colombia (Texto tomado de la fuente).The most widely used practice for managing rice crop residues is open-field burning, which alters the entire soil ecosystem and produces considerable amounts of greenhouse gases and significant losses of valuable nutrients for the establishment of new crop cycles. However, the progressive loss of organic matter in tropical soils and the low rate of fertilizer assimilation, mainly nitrogenous, threaten the sustainability of rice crops. Consequently, the biodegradation of rice straw in situ turns out to be the most appropriate and long-term strategy from an ecological, economic, and sustainability perspective. However, its high lignin and silica content, high carbon-to-nitrogen ratio, and constant weather fluctuations make this process inefficient and unprofitable in the field. Therefore, bio-based strategies were developed to optimize the biodegradation of N-enriched rice straw in situ through the development of microbial consortia. The hydrolytic and oxidative activities of Trichoderma spp. strains were determined by commercial and native aerobic endospore-forming bacteria (AEFB) belonging to the genus Bacillus isolated from rice soils on differential agar media plates. Subsequently, the compatibility between the selected microorganisms was established. Submerged and solid-state fermentations were carried out using rice straw as the only carbon and nitrogen source for individual or mixture strains. The kinetics of enzymatic activities, bacterial growth, respiration, ammonia production, and rice straw dry weight reduction were assessed at the end of the incubation period. The best microorganisms were identified by molecular biology. The microbial consortium with the highest rice straw biodegradation profile was evaluated under solid-state fermentation, adjusting the C-to-N ratio of the plant residue by adding urea. Parameters of microbial respiration (C-CO2), microbial carbon biomass, percentage reduction of fiber and protein content from rice straw, and extracellular enzymatic activities were estimated. Subsequently, the effect of soil amended with biologically pre-treated rice straw on rice plant growth under greenhouse and field conditions was established. This work provides evidence of the potential of Bacillus-Trichoderma mixtures for optimization of urea-enriched rice straw biodegradation to a middle C:N ratio (≤35): Moreover, positive effects of this amendment on rice PGPR activity were identified. Noteworthy, the joint effects translated into rice plants of greater length and dry weight, a higher crop yield, and a lower incidence of conventional phytopathogens in the crop. Our results also contribute to the sustainability of the crop and minimize the ecological and environmental impact of traditional agronomic practices like fertilization and rice straw burning, making rice cultivation more profitable in Colombia.DoctoradoDoctor en Ciencias - BiologíaBiodiversidad y conservación; Biotecnología Agrícolaxviii, 226 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede BogotáBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá500 - Ciencias naturales y matemáticas630 - Agricultura y tecnologías relacionadas570 - Biología570 - Biología::572 - BioquímicaFERTILIZANTES ORGANICOSPRODUCCION VEGETALOrganic fertilizersPlant productionTamo de arrozActividad hidrolíticaAntagonismoRelación C:NBAFETrichodermaPromoción de crecimiento vegetalRice StrawHydrolitic activityCarbon to nitrogen ratioAerobic endospore forming batería - AEFBTrichoderma fungiPlant growth promotionDesarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del TolimaDevelopment of biological strategies for rice straw management as biofertilizer at Tolima ́s departmentTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaTolimaAbaide, E. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A., 2019. Reasons for processing of rice coproducts: reality and expectations. Biomass and Bioenergy, 120, pp.240–256.Abril, D., Navarro, E. & Abril, A., 2009. La paja de arroz: consecuencias de su manejo y alternativas de aprovechamiento. Revista Agronomía U. Caldas, 17(2), pp.69–79.Amin, M. et al., 2005. Comparative response of diverse rice varieties to green manuring (Sesbania aculeata). Journal of Research Science, 16(1), pp.39–43.Andersson, P. & Berggren, D., 2005. Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water, Air, and Soil Pollution, 162, pp.369–384.Andreae, M. O. & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), pp.955–966.Anwar, A., Saleemuddin, M., 1998. Alkaline proteases: a review. Bioresource Technology, 64, pp.175-183.Bae, H. D. et al., 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Animal Feed Science and Technology, 65, pp.165–181.Bak, J. S. et al., 2009. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), pp.471–482.Balasubramanian, V. et al., 1998. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 53(1), pp.59–69.Baraznenok, V. A. et al., 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme and Microbial Technology, 25, pp.651–659.Belal, E. B. & El-Mahrouk, M. E., 2010. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries. Acta Astronautica, 67(9), pp.1081– 1089.Beltran, M. et al., 2012. Actividad fosfatasa y microorganismos solubilizadores y mineralizadores de fosfato en suelos arroceros de Tolima y Meta. In D. U. Velez & L. M. Melgarejo, eds. Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia., pp. 69–88.Bernal, G., Illanes, A., Ciampi, L., 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic Journal of Biotechnology, 5, pp.12–20.Berthrong, S., Buckley, D. & Drinkwater, L., 2013. Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling. Microbial Ecology, 66(1), pp.158–170.Bhattacharyya, P. et al., 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, pp.119–130.Binod, P. et al., 2010. Bioethanol production from rice straw: an overview. Bioresource Technology, 101(13), pp.4767–4774.Bourgaize, D., Jewell, T.R., Buiser, R.G., 2000. Biotechnology: demystifying the concepts. San Francisco, CA. Benjamin/Cummings, Inc.Bronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma. 124(1-2), pp.3-22.Cai–Yun, S., Qing–Tao, S., Shu–Tao, X., Xiau–Yan, S., Xiu–Lan, C., Yu–Zhong, Z., 2006. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260, pp.119-125.Candela, M. E., Egea-Gilabert, C., Ezziyyani, M., Requena, M. E., 2007. Biological control of Phytophtora root of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155, pp.342-349.Cardona, C. A., 2009. Biocombustibles en Colombia: contextos latinoamericano y mundial. Revista de ingeniería UNIANDES, 29, pp.109–120.Castilla, L. A., 2012. Manejo productivo de los residuos de la cosecha de arroz. Revista Arroz, 60(500), pp.10–17.Castilla-Lozano, L. A., Vanegas, J., Rodriguez, J., Uribe-Vélez, D. 2012. Evaluación de la fertilidad en suelos de zonas arroceras de Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 2.Castilla, L. A. et al., 2010. Cambio climático y producción de arroz. Revista Arroz, 58(489), pp.4–11.Chandra, M. et al., 2009. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresource Technology, 100, pp.1659–1662.Chang, J., van Veen, J. A., Tian, C., Kuramae, E. E., 2022. A review on the impact of domestication of the rhizosphere of grain crops and a perspective on the potential role of the rhizosphere microbial community for sustainable rice crop production. Science of the Total Environment. 842. Elsevier B.V.Chen, H. et al., 2009. Biodegradability of dissolved organic matter derived from rice straw. Soil Science, 174(3), pp.143–150.Choudhury, A., Kennedy, I. R., 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils, 39(4), pp.219- 227.Chu, H. et al., 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39(11), pp.2971–2976.Connor, N. et al., 2010. Ecology of speciation in the genus Bacillus. Applied and Environmental Microbiology, 76(5), pp.1349–1358.Cooper, R. M., Wood, R. K. S., 1980. Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol. Plant Pathol, 16, pp.285-300.Cotes, A., 2001. Utilización combinada de técnicas de pregerminación controlada de semillas y del agente de control biológico Trichoderma sp. para el control de patógenos radicales. En: I curso taller internacional control biológico. Programa nacional de manejo integrado de plagas. Corpoica. Bogotá. pp.137-141.Devkota, K. P. et al., 2013. Growth and yield of rice (Oryza sativa L.) under resource conservation technologies in the irrigated drylands of Central Asia. Field Crops Research, 149, pp.115–126.Delgado, J., Rincon, A. & Benitez, T., 2002. Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology, 148, pp.1305–1315.Departamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de- arroz-mecanizado/encuesta-nacional-de-arroz-mecanizado-enam-historicos (2022) Acceso 20 agosto 2022.Deshpande, V., Lachke, C., Mishra, S., Keskar, S., Rao, M., 1986. Mode of action and properties of xylanase and -xylosidase from Neurospora crassa. Biotechnology Bioengineering, 28, pp.1832-1837.Devevre, O. C. & Horwath, W. R., 2000. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology & Biochemistry, 32, pp.1773–1785.Dobermann, B. A. & Fairhurst, T. H., 2000. Rice: nutrient disorders & nutrient management First edit. T. S. Chee, ed., Philippines: International Plant Nutrition Institute.Dobermann, B. A. & Fairhurst, T. H., 2002. Rice straw management. Better Crops International, 16, pp.7–11.Espinal, C. F., Martinez, H. J. & Acevedo, J., 2005. La cadena de arroz en Colombia: Una mirada de su estructura global y dinámica 1991-2005., Bogotá, Colombia.Eun, J. S. et al., 2006. Exogenous enzymes added to untreated or ammoniated rice straw: effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology, 131, pp.86–101.Fang, X. et al., 2008. Cellulase and hemicellulase production by Acremonium cellulolyticus for hydrolysis of biomass. Journal of Biotechnology, 136S, pp.S290–S344.Fedearroz, 2012. Arroz: 60 años, Edición Especial. Revista Arroz, 60(496), pp.12–23.Fillingham, I. J., Kroon, P. A., Williamson, G., Gilbert, H. J., Hazlewood, G. P., 1999. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase- hemicellulase complex. Biochemistry Journal, 343, pp.215-224.Fontaine, S. & Barot, S., 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecology Letters, 8(10), pp.1075–1087.Food and Agriculture Organization (FAO): FAOSTAT. http://www.fao.org/statistics/co (2022). Acceso 20 agosto 2022.Franco, C. J., Flórez, A. M. & Ochoa, M. C., 2008. Biocombustibles en Colombia. Revista de Dinámica de Sistemas, 4(2), pp.109–133.Fujitani, Y. et al., 2020. Mid carbon (C6+-C29+) in refractory black carbon aerosols is a potential tracer of open burning of rice straw: insights from atmospheric observation and emission source studies. Atmospheric Environment, 238.Fukuda, H., Kondo, A. & Tamalampudi, S., 2008. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 44(1), pp.2–12.Gadde, B., Menke, C. & Wassmann, R., 2009. Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy, 33(11), pp.1532– 1546.Garces, G., Ospina, J., 2009. Estrategias para el aprovechamiento de los residuos de cosecha del arroz. Bogotá. Fedearroz. 217, 4-5.Gärdenäs, A. I. et al., 2011. Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale. Soil Biology and Biochemistry, 43(4), pp.702–717.Gaspar, A., Cosson, T., Roques, C., Thonart, P., 1997. Study on the production of a xylanolytic complex from Penicillium canescens. Applied Biochemistry and Biotechnology, 67, pp.45-58.Genckal, H., Tari, C., 2006. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme and Microbial Technology, 39, pp.703–710.Geisseler, D., Scow, K. 2014. Long term effects of mineral fertilizers on soil microorganism: a review. Soil Biology and Biochemestry. 75, pp. 54-63.Gerhardt, K. E., Huang, X. D., Glick, B. R., Greenberg, B. M., 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science. 176(1), pp.20–30.Gunina, A., Kuzyakov, Y., 2015. Sugars in soil and sweets for microorganisms: review of origin, content, composition, and fate. Soil Biology and Biochemistry, 90, pp.87–100.Gutiérrez-Rojas, I. et al., 2012. Estimación de poblaciones de microorganismos lignolíticos y celulolíticos, y actividad β-glucosidasa en agroecosistemas de arroz. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 5.Hajji, M. et al., 2010. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochemistry, 45(10), pp.1746–1752.Han, W. & He, M., 2010a. Short-term effects of exogenous protease application on soil fertility with rice straw incorporation. European Journal of Soil Biology, 46(2), pp.144–150.Han, W. & He, M., 2010b. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology, 101(10), pp.3724–3731.Hatamoto, M. et al., 2008. Eukaryotic communities associated with the decomposition of rice straw compost in a Japanese rice paddy field estimated by DGGE analysis. Biology and Fertility of Soils, 44(3), pp.527–532.Hernandez-Salas, J. M. et al., 2009. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresource Technology, 100, pp.1238–1245.Hideno, A. et al., 2011. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), pp.162–168.Hou, X. D. et al., 2012. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnology and Bioengineering, 109(10), pp.2484–2493.Howell, C. R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, pp.4-10.Ito, K., Ogasawara, H., Sugimoto, T., Ishikawa, T., 1992. Purification and properties of acid stable xylanase from Aspergillus kawachii. Bioscience Biotechnology and Biochemistry, 56, pp.547-550.Jackson, L.E., Burger, M., Cavagnaro, T.R., 2008. Roots, nitrogen transformation, and ecosystem services. Annual Review of Plant Biology, 59(1), pp.341-363.Jisha, N.V. et al., 2013. Versatility of microbial proteases. Advances in Enzyme Research, 01(03), pp.39–51.Jorquera, M. A. et al., 2011. Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 75(1), pp.163–172.Kadam, K. L., Forrest, L. H. & Jacobson, W. A., 2000. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), pp.369–389.Kaewpradit, W. et al., 2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Research, 110(2), pp.130–138.Kausar, H. et al., 2010. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7), pp.594–600.Kennedy, I., Choudhury, A.T. & Kecskes, M., 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, 36(8), pp.1229–1244.Kennedy, A. C., Smith, K. L., 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170(1), pp.75-86.Kimura, M., Murase, J. & Lu, Y., 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry, 36(9), pp.1399–1416.Kirkby, C. A. et al., 2014. Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68, pp.402–409.Kloepper, J. W., Schroth, M. N., 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71(6), pp.642–644.Kogo, T., et al., 2017. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresource Technology, pp.67–73.Kotasthane, A. et al., 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141(3), pp.523–543.Kumar, N. N., Deobagkar, D. N., 1996. Multifunctional glucanases. Biotechnology Advances, 14, pp.1-15.Kumar, R., Singh, S. & Singh, O., 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 35, pp.377–391.Kuzyakov, Y., 2002. Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165(4), pp.382–396.Kuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9), pp.1363–1371.Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87(05), pp.85–156.Lewis, J. A.; Lumsden, R. D., 2001. Biocontrol of damping-off greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protection, 20, pp.49-56.Li, X. X. et al., 2021. Performance and microbial community dynamics during rice straw composting using urea or protein hydrolysate as a nitrogen source: a comparative study. Waste Management, 135, 130–139.Lian, L.H., Tian, B.Y., Xiong, R., Zhu, M.Z., and Xu, J.L., 2007. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Microbiology, 45, pp.262–269.Liesack, W., Schnell, S., Revsbech, N.P., 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), pp.625-645.Lohnis, F., 1926. Nitrogen avalilability of green manures. Soil Science, 22(4), pp.253– 290.Lu, J. & Zhou, P., 2011. Optimization of microwave assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresource Technology, 102(13), pp.6966–6971.Lu, Y., Watanabe, A. & Kimura, M., 2003. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology & Biochemistry, 35, pp.1223–1230.Lutzen, N. W. et al., 1983. Cellulases and their application in the conversion of lignocellulose to fermentable sugars. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 300(1100), pp.283–291.Lynd, L. R. et al., 2002. Microbial cellulose utilization: fundamentals and biotechnology microbial cellulose utilization. Microbiol. Mol. Biol. Rev., 66(3), pp.506–577.Man, L. H. & Ha, N.N., 2006. Effect of decomposed rice straw at different times on rice yield. Omonrice, 14, pp.58–63.Mandal, K. G. et al., 2004. Rice residue- management options and effects on soil properties and crop productivity. Food, Agriculture & Environment, 2(1), pp.224–231.Mandic-Mulec, I. & Prosser, J. I., 2011. Endospore-forming soil bacteria. In N. A. Logan & P. Vos, eds. Endospore-forming Soil Bacteria, Soil Biology. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg.Marentes, F. et al., 2012. Evaluación en campo de microorganismos promotores del crecimiento y celulolíticos. In Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia.Marschner, P., Crowley, D., Rengel, Z., 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biology and Biochemistry. 43(5), pp.883–894.Martínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., Gutiérrez, A., 2009. Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357.McSpadden Gardener, B. B., 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytophatology, 94, pp.1252-1258.Mocali, S. et al., 2008. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biology and Fertility of Soils, 44(4), pp.557–569.Namboodiri, M. M. T. et al., 2022. Solid state fermentation of rice straw using Penicillium citrinum for chitosan production and application as nanobiosorbent. Bioresource Technology Reports, 18.Naseby, D. C., Pascual, J. A., Lynch, J. M., 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88(1), pp.161–169.Norby, R. J. & Cotrufo, M. F., 1998. A question of litter quality. Nature, 396, pp.12–13.Paulitz, T., Belanger, R., 2001. Biological control in greenhouse systems. Annual Review of Phytopathology, 39, pp.103-133.Phadtare, S., Rao, M. & Deshpande, V., 1997. A serine alkaline protease from the fungus Conidiobolus coronatus with a distinctly different structure than the serine protease subtilisin Carlsberg. Arch Microbiol, 166, pp.414–417.Phongpan, S., Mosier, A. R., 2003. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence. Biology and Fertility of Soils, 37(2), pp.102–107.Ponnamperuma, F. N., 1984. Straw as source of nutrients for wetland rice. In Organic matter and rice. International rice. Research Institute Ed. pp. 117-130. Los Baños Philipinas.Pooniya, V. et al., 2012. Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. European Journal of Agronomy, 41: pp.28–37.Powlson, D. S. et al., 2008. Carbon sequestration in European soils through straw incorporation: limitations and alternatives. Waste Management, 28, pp.741–746.Raina, D., Kumar, V., Saran, S., 2022. A critical review on exploitation of agroindustrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere, 294.Ramírez, C. A., Kloepper, J. W., 2010. Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils, 46, pp.835–844.Robertson, G. P. & Vitousek, P. M., 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34(1), pp.97–125.Rodriguez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advance, 17(4-5), pp.319-339.Sanchez, C., 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), pp.185–194.Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K., 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), pp. 19–27.Schallmey, M., Singh, A., Ward, O. P., 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50(1), pp. 1–17.Schulein, M., 1988. Cellulases of Trichoderma reesei. In Methods in enzymology. WoodWA, Abelson JN, editors. New York: Academic Press; 160, pp.234–42.Schuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799.Scow, K. M., 1997. Soil microbial communities and carbon flow in agroecosystems. In Ecology in Agriculture. L.E. Jackson Ed. (pp. 367-413). San Diego, California. USA, Academic Press.Shi-ping, L. et al., 2007. Effect of interplanting with zero tillage and straw manure on rice growth and rice quality. Rice Science, 14(3), pp.204–210.Su, P., Brookes, P. C., He, Y., Wu, J., Xu, J., 2016. An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation. Journal of Soils and Sediments, 16(6), 1776–1786.Thuille, A., Laufer, J., Höhl, C., Gleixner, G., 2015. Carbon quality affects the nitrogen partitioning between plants and soil microorganisms. Soil Biology and Biochemistry, 266– 274.Toan, N. S. et al., 2022. Effects of burning rice straw residue on-field on soil organic carbon pools: environment-friendly approach from a conventional rice paddy in central Vietnam. Chemosphere, 294.Van Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 130, pp.137–171.Vanegas, J., Camelo, C., Rodriguez, J., Melgarejo, L.M., Uribe, D., 2012. Abundancia de diazótrofos, actividad nitrogenasa y proteasa en cultivos arroceros de los departamentos del Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 3.Vallejo, M., Bonilla, C., Castilla, L., 2008. Evaluación de bacterias fijadoras de nitrógeno-líneas interespecíficas de arroz en Typic haplustalfHapl. Acta Agronómica, 57(1), pp. 43-49.van Dyk, J. S., Sakka, M., Sakka, K., Pletschke, B. I., 2009. The cellulolytic and hemi- cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45(5), pp.372–378.Vial, L. K., Molesworth, A., & Lefroy, R. D. B., 2020. Balancing rice and non-rice crops: managing the risks from soil constraints in Mainland Southeast Asian rice systems. In Field Crops Research, 246.Wagner, G. H., Wolf, D. C., 1999. Carbon transformation and soil organic matter formation. In Principles and Applications of Soil Microbiology. D.M. Sylvia, Fuhrmann J.J., Hartel P.G., & D.A. Zuberer Eds. New Jersey: Prentice Hall, Inc.Walker, T. W. & Street, J. E., 2003. Rice fertilization, Rice Fertilization Mississippi Agricultural & Forestry Experiment Station.Wilson, C. A., Wood, T. M., 1992. The anaerobic fungus Neocallimastrix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology, 37, pp.125- 129.Xu, G., Fan, X., Miller, A. J., 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, pp.153–182.Zang, H., Wang, J., Kuzyakov, Y., 2016. N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 108, pp.47–53.Zhang, Q. et al., 2009. Two-stage co-hydrolysis of rice straw by Trichoderma reesei ZM4-F3 and Pseudomonas aeruginosa BSZ-07. Biomass and Bioenergy, 33(10), pp.1464– 1468.Zhang, Q. Z., Cai, W. M. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32(12), pp.1130–1135.Zhou, J. et al., 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresource Technology, 99, pp.6826– 6833.InvestigadoresMaestrosResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86677/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL80259449.2024.pdf80259449.2024.pdfTesis de doctorado en Ciencias-Biologíaapplication/pdf6114221https://repositorio.unal.edu.co/bitstream/unal/86677/4/80259449.2024.pdf0c6ff343c2120c5361dad5f62f022bbeMD54THUMBNAIL80259449.2024.pdf.jpg80259449.2024.pdf.jpgGenerated Thumbnailimage/jpeg5100https://repositorio.unal.edu.co/bitstream/unal/86677/5/80259449.2024.pdf.jpgf644f8e6945095ac5cc5f0171fcb6b3bMD55unal/86677oai:repositorio.unal.edu.co:unal/866772024-08-01 23:04:28.977Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=