Front Tracking para sistemas hiperbólicos de leyes de conservación

ilustraciones, diagramas, figuras

Autores:
Castillo Barajas, Jonhatan
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85436
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85436
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
510 - Matemáticas::515 - Análisis
Leyes de la conservación (Física)
Cauchy-Riemann, Ecuaciones de
Entropía
Conservation laws (Physics)
Cauchy-Riemann equations
Entropy
Leyes de conservación
Problema de Riemann
Condición de entropía
Variación acotada
Front tracking
Conservation laws
Riemann problem
Entropy condition
Bounded variation
Función de variación acotada
Function of bounded variation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6a4124b4df4c5cc32641bca677bb0c00
oai_identifier_str oai:repositorio.unal.edu.co:unal/85436
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Front Tracking para sistemas hiperbólicos de leyes de conservación
dc.title.translated.eng.fl_str_mv Front Tracking for hyperbolic conservation laws systems
title Front Tracking para sistemas hiperbólicos de leyes de conservación
spellingShingle Front Tracking para sistemas hiperbólicos de leyes de conservación
510 - Matemáticas
510 - Matemáticas::515 - Análisis
Leyes de la conservación (Física)
Cauchy-Riemann, Ecuaciones de
Entropía
Conservation laws (Physics)
Cauchy-Riemann equations
Entropy
Leyes de conservación
Problema de Riemann
Condición de entropía
Variación acotada
Front tracking
Conservation laws
Riemann problem
Entropy condition
Bounded variation
Función de variación acotada
Function of bounded variation
title_short Front Tracking para sistemas hiperbólicos de leyes de conservación
title_full Front Tracking para sistemas hiperbólicos de leyes de conservación
title_fullStr Front Tracking para sistemas hiperbólicos de leyes de conservación
title_full_unstemmed Front Tracking para sistemas hiperbólicos de leyes de conservación
title_sort Front Tracking para sistemas hiperbólicos de leyes de conservación
dc.creator.fl_str_mv Castillo Barajas, Jonhatan
dc.contributor.advisor.none.fl_str_mv Rendón Arbeláez, Leonardo
dc.contributor.author.none.fl_str_mv Castillo Barajas, Jonhatan
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
510 - Matemáticas::515 - Análisis
topic 510 - Matemáticas
510 - Matemáticas::515 - Análisis
Leyes de la conservación (Física)
Cauchy-Riemann, Ecuaciones de
Entropía
Conservation laws (Physics)
Cauchy-Riemann equations
Entropy
Leyes de conservación
Problema de Riemann
Condición de entropía
Variación acotada
Front tracking
Conservation laws
Riemann problem
Entropy condition
Bounded variation
Función de variación acotada
Function of bounded variation
dc.subject.lcc.spa.fl_str_mv Leyes de la conservación (Física)
Cauchy-Riemann, Ecuaciones de
Entropía
dc.subject.lcc.eng.fl_str_mv Conservation laws (Physics)
Cauchy-Riemann equations
Entropy
dc.subject.proposal.spa.fl_str_mv Leyes de conservación
Problema de Riemann
Condición de entropía
Variación acotada
dc.subject.proposal.eng.fl_str_mv Front tracking
Conservation laws
Riemann problem
Entropy condition
Bounded variation
dc.subject.wikidata.spa.fl_str_mv Función de variación acotada
dc.subject.wikidata.eng.fl_str_mv Function of bounded variation
description ilustraciones, diagramas, figuras
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-24T22:21:17Z
dc.date.available.none.fl_str_mv 2024-01-24T22:21:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85436
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85436
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv BAITI,P; JENSSEN, H. K. On the front-tracking algorithm. Journal of mathematical analysis and applications 217 (1998), Nr 2, p. 295-404.
Bateman, H.: Some recent researches on the motion of fluids. En: Monthly Weather Review 43 (1915), Nr. 4, p. 163–170
Bressan, A.: Global solutions of systems of conservation laws by wave-front tracking. En: Journal of mathematical analysis and applications 170 (1992), Nr. 2, p. 414–432
Bressan, A.: The unique limit of the Glimm scheme. En: Archive for rational mechanics and analysis 130 (1995), p. 205–230
Bressan, A. ; Goatin, P.: Oleinik type estimates and uniqueness for n× n conservation laws. En: Journal of differential equations 156 (1999), Nr. 1, p. 26–49
Bressan, A. ; LeFloch, P.: Uniqueness of weak solutions to systems of conservation laws. En: Archive for Rational Mechanics and Analysis 140 (1997), Nr. 4, p. 301–317
Bressan, A. ; Lewicka, M.: A uniqueness condition for hyperbolic systems of conservation laws. En: Discrete and Continuous Dynamical Systems 6 (2000), Nr. 3, p. 673–682
Bressan, A. ; Liu, T. ; Yang, T.: L1 stability estimates for n× n conservation laws. En: Archive for rational mechanics and analysis 149 (1999), Nr. 1, p. 1–22
Buckley, S. E. ; Leverett, M. C.: Mechanism of fluid displacement in sands. En: Transactions of the AIME 146 (1942), Nr. 01, p. 107–116
Bunt, L. N. H.: Bijdrage tot de theorie der convexe puntverzamelingen. Rijksuniversiteitte Groningen, 1934
Burgers, J. M.: A mathematical model illustrating the theory of turbulence. En: Advances in applied mechanics 1 (1948), p. 171–199
Chorin, A. J. ; Marsden, J. E.: A mathematical introduction to fluid mechanics. Vol. 3. Springer Science & Business Media, 1990
Crandall, M. G. ; Tartar, L.: Some relations between nonexpansive and order preserving mappings. En: Proceedings of the American Mathematical Society 78 (1980), Nr. 3, p. 385–390
Dafermos, C. M.: Polygonal approximations of solutions of the initial value problem for a conservation law. En: Journal of mathematical analysis and applications 38 (1972), Nr. 1, p. 33–41
DiPerna, R. J.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws. (1976)
Evans, L. C. ; Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Vol. 5. CRC Press, 1991
Fenchel, W.: Über krümmung und windung geschlossener raumkurven. En: Mathematische Annalen 101 (1929), Nr. 1, p. 238–252
Gel’fand, I.: Some questions in the theory of quasilinear equations. En: Uspehi Mat. Nuuk 14 (1959), p. 87–158
Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. En: Communications on pure and applied mathematics 18 (1965), Nr. 4, p. 697–715
Hanche-Olsen, H. ; Holden, H.: The Kolmogorov–Riesz compactness theorem. En: Expositiones Mathematicae (2010), Nr. 4, p. 385–394
Hanner, O. ; Rådström, H.: A generalization of a theorem of Fenchel. En: Proceedings of the American Mathematical Society 2 (1951), Nr. 4, p. 589–593
Holden, H. ; Holden, L. ; Høegh-Krohn, R.: A numerical method for first order nonlinear scalar conservation laws in one-dimension. En: Computers & Mathematics with Applications 15 (1988), Nr. 6-8, p. 595–602
Holden, H. ; Risebro, N. H.: Front Tracking for Hyperbolic Conservation Laws. Vol. 152. Springer Science & Business Media, 2007
Hopf, E.: The partial differential equation ut + uux = μuxx. En: Communications on Pure and Applied Mathematics (1950), Nr. 3, p. 201–230
Hugoniot, H.: Sur un théorème général relatif à la propagation du mouvement dans les corps. En: Comptes Rendus des Séances de lÁcadémie des Sciences (1886), p. 858–860
Kesavan, S.: Topics in Functional Analysis and Applications. New Age International, 2008
Kružkov, S. N.: First order quasilinear equations in several independent variables. En: Mathematics of the USSR-Sbornik (1970), Nr. 2, p. 217
Langseth, J. O.: On an implementation of a front tracking method for hyperbolic conservation laws. En: Advances in engineering software 26 (1996), Nr. 1, p. 45–63
Langseth, J. O. ; Risebro, N. H. ; Tveito, A.: A conservative front tracking scheme for 1D hyperbolic conservation laws. En: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects: Proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3 to 8, 1992 Springer, 1993, p. 385–392
Lax, P. D.: Hyperbolic systems of conservation laws II. En: Communications on Pure and Applied Mathematics (1957), Nr. 4, p. 537–566
Lax, P. D.: Hyperbolic systems of conservation laws in several space variables / New York Univ., NY (USA). Courant Mathematics and Computing Lab. 1985. – Informe de Investigación
LeVeque, R.: Numerical methods for conservation laws. Vol. 214. Springer, 1992
Limaye, B.: Functional Analysis. New Age International (P) Limited, Publishers, 1997
Lucier, B. J.: A moving mesh numerical method for hyperbolic conservation laws. En: Mathematics of computation 46 (1986), Nr. 173, p. 59–69
Meise, R. ; Vogt, D.: Introduction to functional analysis. Clarendon Press, 1997
Munkres, J. R.: Topology. Pearson Education, 2019
Oleînik, O. A.: Discontinuous solutions of non-linear differential equations. En: Uspekhi Matematicheskikh Nauk (1957), Nr. 3, p. 3–73
Rankine, W. J. M.: On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbances. En: Philosophical Transactions of the Royal Society (1870), p. 277–288
Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. En: Göttinger Nachrichten (1860), p. 192–197
Risebro, N. H.: A front-tracking alternative to the random choice method. En: Proceedings of the American Mathematical Society 117 (1993), Nr. 4, p. 1125–1139
Rudin, W.: Functional Analysis. MacGraw-Hill Science, 1991
Schatzman, M.: Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. En: Indiana University Mathematics Journal 34 (1985), Nr. 3, p. 533–589
Sherwood, T. K. ; Pigford, R. L. ; Wilke, C. R.: Mass Transfer. Mac Graw-Hill, Chemical Engineering Series, 1975
Smoller, J.: Shock waves and reaction-diffusion equations. Vol. 258. Springer Science & Business Media, 2012
Webster, R.: Convexity. Oxford University Press, 1994
Whittaker, E. T. ; Watson, G. N.: A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge University Press, 1928
Yartsev, A.: Diffusion of gases through the alveolar membrane. Deranged Physiology, https://derangedphysiology.com/main/cicm-primary-exam/required-reading/respiratory-system, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 128 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85436/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85436/4/1052916991.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85436/5/1052916991.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
4535015e22f9042552b25d0aafdc40e1
750706524aa53005cd7d56a85cd96f71
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089820280979456
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rendón Arbeláez, Leonardoe1b98bb70cc48eb2f570f8cffd6f7b9fCastillo Barajas, Jonhatana1b4ec230204a5673c0f97fb0eb5276b2024-01-24T22:21:17Z2024-01-24T22:21:17Z2023https://repositorio.unal.edu.co/handle/unal/85436Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figurasEn este documento se estudia el método de aproximación de soluciones de leyes de conservación conocido como \textit{front tracking}, considerando el caso escalar y el caso de sistemas hiperbólicos. En ambos casos, se estudian las soluciones del problema de Riemann \begin{equation*} u_t+f(u)_x=0,\quad u(x,0)=\begin{cases} u_l, &x<0,\\ u_r, &x\geq 0, \end{cases} \end{equation*} con $(x,t)\in \R\times [0,\infty)$, considerando algunas condiciones de entropía. Este problema es crucial para introducir el método de front tracking, el cual consiste en analizar las discontinuidades del problema de Cauchy con una condición inicial aproximada por funciones constantes a trozos, resolver las interacciones entre las discontinuidades y funciona como método numérico para aproximar las soluciones de este problema. Además, se estudian las propiedades de las soluciones del problema de Cauchy que se obtienen como límite de soluciones construidas mediante front tracking. (Texto tomado de la fuente)In this paper we study the approximation method of solutions of conservation laws known as \textit{front tracking}, considering the scalar case and the case of hyperbolic systems. In both cases, we study the solutions of the Riemann problem \begin{equation*} u_t+f(u)_x=0,\quad u(x,0)=\begin{cases} u_l, &x<0,\\ u_r, &x \geq 0, \end{cases} \end{equation*} with $(x,t)\in \mathbb{R} \times [0,\infty)$, considering some entropy conditions. This problem is crucial to introduce the front tracking method, which consists of analyzing the discontinuities of the Cauchy problem with an initial condition approximated by piecewise constant functions, solving the interactions between the discontinuities and works as a numerical method to approximate the solutions of this problem. In addition, the properties of the solutions of the Cauchy problem obtained as limits of solutions constructed by front tracking are studied.MaestríaMagíster en Ciencias - Matemáticasxi, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas510 - Matemáticas::515 - AnálisisLeyes de la conservación (Física)Cauchy-Riemann, Ecuaciones deEntropíaConservation laws (Physics)Cauchy-Riemann equationsEntropyLeyes de conservaciónProblema de RiemannCondición de entropíaVariación acotadaFront trackingConservation lawsRiemann problemEntropy conditionBounded variationFunción de variación acotadaFunction of bounded variationFront Tracking para sistemas hiperbólicos de leyes de conservaciónFront Tracking for hyperbolic conservation laws systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBAITI,P; JENSSEN, H. K. On the front-tracking algorithm. Journal of mathematical analysis and applications 217 (1998), Nr 2, p. 295-404.Bateman, H.: Some recent researches on the motion of fluids. En: Monthly Weather Review 43 (1915), Nr. 4, p. 163–170Bressan, A.: Global solutions of systems of conservation laws by wave-front tracking. En: Journal of mathematical analysis and applications 170 (1992), Nr. 2, p. 414–432Bressan, A.: The unique limit of the Glimm scheme. En: Archive for rational mechanics and analysis 130 (1995), p. 205–230Bressan, A. ; Goatin, P.: Oleinik type estimates and uniqueness for n× n conservation laws. En: Journal of differential equations 156 (1999), Nr. 1, p. 26–49Bressan, A. ; LeFloch, P.: Uniqueness of weak solutions to systems of conservation laws. En: Archive for Rational Mechanics and Analysis 140 (1997), Nr. 4, p. 301–317Bressan, A. ; Lewicka, M.: A uniqueness condition for hyperbolic systems of conservation laws. En: Discrete and Continuous Dynamical Systems 6 (2000), Nr. 3, p. 673–682Bressan, A. ; Liu, T. ; Yang, T.: L1 stability estimates for n× n conservation laws. En: Archive for rational mechanics and analysis 149 (1999), Nr. 1, p. 1–22Buckley, S. E. ; Leverett, M. C.: Mechanism of fluid displacement in sands. En: Transactions of the AIME 146 (1942), Nr. 01, p. 107–116Bunt, L. N. H.: Bijdrage tot de theorie der convexe puntverzamelingen. Rijksuniversiteitte Groningen, 1934Burgers, J. M.: A mathematical model illustrating the theory of turbulence. En: Advances in applied mechanics 1 (1948), p. 171–199Chorin, A. J. ; Marsden, J. E.: A mathematical introduction to fluid mechanics. Vol. 3. Springer Science & Business Media, 1990Crandall, M. G. ; Tartar, L.: Some relations between nonexpansive and order preserving mappings. En: Proceedings of the American Mathematical Society 78 (1980), Nr. 3, p. 385–390Dafermos, C. M.: Polygonal approximations of solutions of the initial value problem for a conservation law. En: Journal of mathematical analysis and applications 38 (1972), Nr. 1, p. 33–41DiPerna, R. J.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws. (1976)Evans, L. C. ; Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Vol. 5. CRC Press, 1991Fenchel, W.: Über krümmung und windung geschlossener raumkurven. En: Mathematische Annalen 101 (1929), Nr. 1, p. 238–252Gel’fand, I.: Some questions in the theory of quasilinear equations. En: Uspehi Mat. Nuuk 14 (1959), p. 87–158Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. En: Communications on pure and applied mathematics 18 (1965), Nr. 4, p. 697–715Hanche-Olsen, H. ; Holden, H.: The Kolmogorov–Riesz compactness theorem. En: Expositiones Mathematicae (2010), Nr. 4, p. 385–394Hanner, O. ; Rådström, H.: A generalization of a theorem of Fenchel. En: Proceedings of the American Mathematical Society 2 (1951), Nr. 4, p. 589–593Holden, H. ; Holden, L. ; Høegh-Krohn, R.: A numerical method for first order nonlinear scalar conservation laws in one-dimension. En: Computers & Mathematics with Applications 15 (1988), Nr. 6-8, p. 595–602Holden, H. ; Risebro, N. H.: Front Tracking for Hyperbolic Conservation Laws. Vol. 152. Springer Science & Business Media, 2007Hopf, E.: The partial differential equation ut + uux = μuxx. En: Communications on Pure and Applied Mathematics (1950), Nr. 3, p. 201–230Hugoniot, H.: Sur un théorème général relatif à la propagation du mouvement dans les corps. En: Comptes Rendus des Séances de lÁcadémie des Sciences (1886), p. 858–860Kesavan, S.: Topics in Functional Analysis and Applications. New Age International, 2008Kružkov, S. N.: First order quasilinear equations in several independent variables. En: Mathematics of the USSR-Sbornik (1970), Nr. 2, p. 217Langseth, J. O.: On an implementation of a front tracking method for hyperbolic conservation laws. En: Advances in engineering software 26 (1996), Nr. 1, p. 45–63Langseth, J. O. ; Risebro, N. H. ; Tveito, A.: A conservative front tracking scheme for 1D hyperbolic conservation laws. En: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects: Proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3 to 8, 1992 Springer, 1993, p. 385–392Lax, P. D.: Hyperbolic systems of conservation laws II. En: Communications on Pure and Applied Mathematics (1957), Nr. 4, p. 537–566Lax, P. D.: Hyperbolic systems of conservation laws in several space variables / New York Univ., NY (USA). Courant Mathematics and Computing Lab. 1985. – Informe de InvestigaciónLeVeque, R.: Numerical methods for conservation laws. Vol. 214. Springer, 1992Limaye, B.: Functional Analysis. New Age International (P) Limited, Publishers, 1997Lucier, B. J.: A moving mesh numerical method for hyperbolic conservation laws. En: Mathematics of computation 46 (1986), Nr. 173, p. 59–69Meise, R. ; Vogt, D.: Introduction to functional analysis. Clarendon Press, 1997Munkres, J. R.: Topology. Pearson Education, 2019Oleînik, O. A.: Discontinuous solutions of non-linear differential equations. En: Uspekhi Matematicheskikh Nauk (1957), Nr. 3, p. 3–73Rankine, W. J. M.: On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbances. En: Philosophical Transactions of the Royal Society (1870), p. 277–288Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. En: Göttinger Nachrichten (1860), p. 192–197Risebro, N. H.: A front-tracking alternative to the random choice method. En: Proceedings of the American Mathematical Society 117 (1993), Nr. 4, p. 1125–1139Rudin, W.: Functional Analysis. MacGraw-Hill Science, 1991Schatzman, M.: Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. En: Indiana University Mathematics Journal 34 (1985), Nr. 3, p. 533–589Sherwood, T. K. ; Pigford, R. L. ; Wilke, C. R.: Mass Transfer. Mac Graw-Hill, Chemical Engineering Series, 1975Smoller, J.: Shock waves and reaction-diffusion equations. Vol. 258. Springer Science & Business Media, 2012Webster, R.: Convexity. Oxford University Press, 1994Whittaker, E. T. ; Watson, G. N.: A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge University Press, 1928Yartsev, A.: Diffusion of gases through the alveolar membrane. Deranged Physiology, https://derangedphysiology.com/main/cicm-primary-exam/required-reading/respiratory-system, 2020EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85436/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1052916991.2023.pdf1052916991.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf8043470https://repositorio.unal.edu.co/bitstream/unal/85436/4/1052916991.2023.pdf4535015e22f9042552b25d0aafdc40e1MD54THUMBNAIL1052916991.2023.pdf.jpg1052916991.2023.pdf.jpgGenerated Thumbnailimage/jpeg4083https://repositorio.unal.edu.co/bitstream/unal/85436/5/1052916991.2023.pdf.jpg750706524aa53005cd7d56a85cd96f71MD55unal/85436oai:repositorio.unal.edu.co:unal/854362024-01-24 23:04:14.956Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=