Deep learning framework with enhanced interpretability for classification of motor imagery tasks

graficas, tablas

Autores:
Collazos Huertas, Diego Fabian
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84594
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84594
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Deep learning
EEG
Motor imagery
Deep&Wide network
Transfer learning
Physiological interpretability
Aprendizaje profundo
Imaginación motora
Aprendizaje por transferencia
Interpretabilidad fisiológica
Tecnología médica
Ingeniería
Medical technology
Engineering
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6a349f5fc4916e8c0422aab6cf5f4315
oai_identifier_str oai:repositorio.unal.edu.co:unal/84594
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Deep learning framework with enhanced interpretability for classification of motor imagery tasks
dc.title.translated.spa.fl_str_mv Marco de aprendizaje profundo con interpretabilidad mejorada para la clasificación de tareas de imaginación motora
title Deep learning framework with enhanced interpretability for classification of motor imagery tasks
spellingShingle Deep learning framework with enhanced interpretability for classification of motor imagery tasks
620 - Ingeniería y operaciones afines
Deep learning
EEG
Motor imagery
Deep&Wide network
Transfer learning
Physiological interpretability
Aprendizaje profundo
Imaginación motora
Aprendizaje por transferencia
Interpretabilidad fisiológica
Tecnología médica
Ingeniería
Medical technology
Engineering
title_short Deep learning framework with enhanced interpretability for classification of motor imagery tasks
title_full Deep learning framework with enhanced interpretability for classification of motor imagery tasks
title_fullStr Deep learning framework with enhanced interpretability for classification of motor imagery tasks
title_full_unstemmed Deep learning framework with enhanced interpretability for classification of motor imagery tasks
title_sort Deep learning framework with enhanced interpretability for classification of motor imagery tasks
dc.creator.fl_str_mv Collazos Huertas, Diego Fabian
dc.contributor.advisor.none.fl_str_mv Castellanos-Dominguez, German
dc.contributor.author.none.fl_str_mv Collazos Huertas, Diego Fabian
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Control y Procesamiento Digital de Señales
dc.contributor.orcid.spa.fl_str_mv Collazos Huertas, Diego Fabian [0002-0434-3444]
dc.contributor.cvlac.spa.fl_str_mv Collazos Huertas, Diego Fabian [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000017335]
dc.contributor.researchgate.spa.fl_str_mv Collazos Huertas, Diego Fabian [https://www.researchgate.net/profile/Diego-Collazos]
dc.contributor.googlescholar.spa.fl_str_mv Collazos Huertas, Diego Fabian [D.F Collazos-Huertas]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Deep learning
EEG
Motor imagery
Deep&Wide network
Transfer learning
Physiological interpretability
Aprendizaje profundo
Imaginación motora
Aprendizaje por transferencia
Interpretabilidad fisiológica
Tecnología médica
Ingeniería
Medical technology
Engineering
dc.subject.proposal.eng.fl_str_mv Deep learning
EEG
Motor imagery
Deep&Wide network
Transfer learning
Physiological interpretability
dc.subject.proposal.spa.fl_str_mv Aprendizaje profundo
Imaginación motora
Aprendizaje por transferencia
Interpretabilidad fisiológica
dc.subject.unesco.spa.fl_str_mv Tecnología médica
Ingeniería
dc.subject.unesco.eng.fl_str_mv Medical technology
Engineering
description graficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-08-23T20:54:23Z
dc.date.available.none.fl_str_mv 2023-08-23T20:54:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84594
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84594
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [Aellen et al., 2021] Aellen, F., G¨oktepe-Kavis, P., Apostolopoulos, S., and Tzovara, A. (2021). Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. Journal of Neuroscience Methods, 364:109367.
[Aggarwal and Chugh, 2019] Aggarwal, S. and Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1:100003.
[Al-Saegh et al., 2021] Al-Saegh, A., Dawwd, S., and Abdul-Jabbar, J. (2021). Deep learning for motor imagery eeg-based classification: A review. Biomedical Signal Processing and Control, 63:102172.
[Alonso-Valerdi, 2016] Alonso-Valerdi, L. (2016). Python executable script for estimating two effective parameters to individualize brain-computer interfaces: Individual alpha frequency and neurophysiological predictor. Frontiers in neuroinformatics, 10:22.
Altaheri et al., 2021] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S., Altuwaijri, G., Abdul, W., Bencherif, M., and Faisal, M. (2021). Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Computing and Applications, pages 1–42.
[Alvarez-Meza et al., 2017] Alvarez-Meza, A., Orozco-Gutierrez, A., and CastellanosDominguez, G. (2017). Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Frontiers in neuroscience, 11:550.
[Alvarez-Meza et al., 2014] ´ Alvarez-Meza, A. M., C´ardenas-Pe˜na, D., and Castellanos- ´ Dominguez, G. (2014). Unsupervised kernel function building using maximization of information potential variability. In Bayro-Corrochano, E. and Hancock, E., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 335–342, Cham. Springer International Publishing.
[Amin et al., 2020] Amin, S., Alsulaiman, M., Muhammad, G., Hossain, M., and Guizani, M. (2020). Deep learning for eeg motor imagery-based cognitive healthcare. In Connected Health in Smart Cities, pages 233–254. Springer.
[Amin et al., 2019] Amin, S., Alsulaiman, M., Muhammad, G., Mekhtiche, M., and Shamim, H. (2019). Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion. Future Generation Computer Systems, 101:542–554.
[Amin et al., 2021] Amin, S., Altaheri, H., Muhammad, G., Alsulaiman, M., and Abdul, W. (2021). Attention based inception model for robust eeg motor imagery classification. In 2021 IEEE international instrumentation and measurement technology conference (I2MTC), pages 1–6. IEEE.
[Anowar et al., 2021] Anowar, F., Sadaoui, S., and Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Computer Science Review, 40:100378.
Aral and Peker, 2020] Aral, L. and Peker, G. (2020). A novel hybrid: Neuro-immunoengineering. Natural and Applied Sciences Journal, 3:1 – 12
[Bai et al., 2021] Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., and Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120:108102
Bang et al., 2021] Bang, J., Lee, M., Fazli, S., Guan, C., and Lee, S. (2021). Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12
[Belaout et al., 2018] Belaout, A., Krim, F., Mellit, A., Talbi, B., and Arabi, A. (2018). Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renewable Energy, 127:548–558.
[Bengio, 2012] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.
[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.
[Bengio et al., 2017] Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, volume 1. MIT press Massachusetts, USA:.
[Bin et al., 2020] Bin, H., Lei, D., and Abbas, S. (2020). Electrophysiological Mapping and Source Imaging, pages 379–413. Springer International Publishing, Cham.
[Borra et al., 2020] Borra, D., Fantozzi, S., and Magosso, E. (2020). Interpretable and lightweight convolutional neural network for eeg decoding: Application to movement execution and imagination. Neural Networks, 129:55–74.
[Brunner et al., 2008] Brunner, C., Leeb, R., M¨uller-Putz, G., Schl¨ogl, A., and Pfurtscheller, G. (2008). Bci competition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 16:1–6.
[Cardona et al., 2020] Cardona, L., Vargas-Cardona, H., Navarro Gonz´alez, P., Cardenas Pe˜na, D., and Orozco Guti´errez, A. (2020). Classification of categorical data based on the chi-square dissimilarity and t-sne. Computation, 8(4):104
[Chakraborty et al., 2017] Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S., Rao, R., Kelley, T., Braines, D., Sensoy, M., Willis, C., and Gurram, P. (2017). Interpretability of deep learning models: A survey of results. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6.
[Chattopadhay et al., 2018] Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. (2018). Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839–847.
[Chaudhary et al., 2019] Chaudhary, S., Taran, S., Bajaj, V., and Sengur, A. (2019). Convolutional neural network based approach towards motor imagery tasks eeg signals classification. IEEE Sensors Journal, 19(12):4494–4500.
[Chavarriaga et al., 2017] Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., and Scherer, R. (2017). Heading for new shores! overcoming pitfalls in bci design. Brain-Computer Interfaces, 4(1-2):60–73.
[Cheng et al., 2020] Cheng, G., Ehrlich, S., Lebedev, M., and Nicolelis, M. (2020). Neuroengineering challenges of fusing robotics and neuroscience. Science Robotics, 5(49):7–10.
[Cheng et al., 2016] Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al. (2016). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pages 7–10.
[Chhabra et al., 2020] Chhabra, H., Shajil, N., Venkatasubramanian, G., et al. (2020). Investigation of deep convolutional neural network for classification of motor imagery fnirs signals for bci applications. Biomedical Signal Processing and Control, 62:102133.
[Cho et al., 2017] Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. (2017). Eeg datasets for motor imagery brain–computer interface. GigaScience, 6(7):gix034.
Collazos-Huertas et al., 2021] Collazos-Huertas, D., Alvarez-Meza, A., and Castellanos- Dominguez, G. (2021). Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using deep&wide networks. Biomedical Signal Processing and Control, 68:102626.
[Cortes et al., 2012] Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13(1):795–828.
[Craik et al., 2019a] Craik, A., He, Y., and Contreras-Vidal, J. (2019a). Deep learning for electroencephalogram (eeg) classification tasks: a review. Journal of neural engineering, 16(3):031001.
[Craik et al., 2019b] Craik, A., Kilicarslan, A., and Contreras-Vidal, J. (2019b). Classification and transfer learning of eeg during a kinesthetic motor imagery task using deep convolutional neural networks. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3046–3049. IEEE.
[Dabosmita et al., 2021] Dabosmita, P., Moumita, M., and Ashish, B. (2021). A review of brain-computer interface. In Mukherjee, M., Mandal, J., Bhattacharyya, S., Huck, C., and Biswas, S., editors, Advances in Medical Physics and Healthcare Engineering, pages 507–531, Singapore. Springer Singapore.
[Dai et al., 2018] Dai, C., Wang, Z., Wei, L., Chen, G., Chen, B., Zuo, F., and Li, Y. (2018). Combining early post-resuscitation eeg and hrv features improves the prognostic performance in cardiac arrest model of rats. The American journal of emergency medicine, 36(12):2242–2248.
[Dai et al., 2019] Dai, M., Zheng, D., Na, R., Wang, S., and Zhang, S. (2019). Eeg classification of motor imagery using a novel deep learning framework. Sensors, 19(3).
[D¨ahne et al., 2015] D¨ahne, S., Bießmann, F., Samek, W., Haufe, S., Goltz, D., Gundlach, C., Villringer, A., Fazli, S., and M¨uller, K. (2015). Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proceedings of the IEEE,103(9):1507–1530.
[Doborjeh et al., 2018] Doborjeh, M., Kasabov, N., and Doborjeh, Z. (2018). Evolving, dynamic clustering of spatio/spectro-temporal data in 3d spiking neural network models and a case study on eeg data. Evolving systems, 9(3):195–211.
[D’souza et al., 2020] D’souza, R., Huang, P., and Yeh, F. (2020). Structural analysis and optimization of convolutional neural networks with a small sample size. Scientific reports, 10(1):1–13.
[Edelman et al., 2015] Edelman, B., Johnson, N., Sohrabpour, A., Tong, S., Thakor, N., and He, B. (2015). Systems neuroengineering: Understanding and interacting with the brain. Engineering, 1(3):292–308.
[Ehrsson et al., 2000] Ehrsson, H., Naito, E., Geyer, S., Amunts, K., Zilles, K., Forssberg, H., and Roland, P. (2000). Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a pet study. European Journal of Neuroscience, 12(9):3385–3398.
[Fan et al., 2021] Fan, F., Xiong, J., Li, M., and Wang, G. (2021). On interpretability of artificial neural networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–760.
[Farahat et al., 2019] Farahat, A., Reichert, C., Sweeney-Reed, C., and Hinrichs, H. (2019). Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Journal of Neural Engineering, 16(6):066010.
[Farmer and Rix, 2022] Farmer, W. and Rix, A. (2022). Evaluating power system network inertia using spectral clustering to define local area stability. International Journal of Electrical Power & Energy Systems, 134:107404.
[Fatourechi et al., 2007] Fatourechi, M., Bashashati, A., Ward, R., and Birch, G. (2007). Emg and eog artifacts in brain computer interface systems: A survey. Clinical neurophysiology, 118(3):480–494.
[Feng et al., 2018] Feng, J., Yin, E., Jin, J., Saab, R., Daly, I., Wang, X., Hu, D., and Cichocki, A. (2018). Towards correlation-based time window selection method for motor imagery bcis. Neural Networks, 102:87–95.
[Fernandez-Fraga et al., 2019] Fernandez-Fraga, S., Aceves-Fernandez, M., and J, P.-O. (2019). Eeg data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (bci) development. Data in Brief, 25:103871.
[Ferrero et al., 2021] Ferrero, L., Ortiz, M., Quiles, V., I´a˜nez, E., Flores, J., and Azor´ın, J. (2021). Brain symmetry analysis during the use of a bci based on motor imagery for the control of a lower-limb exoskeleton. Symmetry, 13(9):1746.
[Frank et al., 2019] Frank, J., Antonini, M., and Anikeeva, P. (2019). Next-generation interfaces for studying neural function. Nature biotechnology, 37(9):1013–1023.
[Freer and Yang, 2020] Freer, D. and Yang, G. (2020). Data augmentation for self-paced motor imagery classification with c-lstm. Journal of neural engineering, 17(1):016041.
[Gannouni et al., 2020] Gannouni, S., Belwafi, K., Aboalsamh, H., AlSamhan, Z., Alebdi, B., Almassad, Y., and Alobaedallah, H. (2020). Eeg-based bci system to detect fingers movements. Brain Sciences, 10(12).
[Gao et al., 2020] Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., and Perc, M. (2020). Complex networks and deep learning for eeg signal analysis. Cognitive Neurodynamics, pages 1–20.
[Garc´ıa-Murillo et al., 2021] Garc´ıa-Murillo, D. G., Alvarez-Meza, A., and CastellanosDominguez, G. (2021). Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750.
[George et al., 2021] George, O., Smith, R., Madiraju, P., Yahyasoltani, N., and Ahamed, S. (2021). Motor imagery: A review of existing techniques, challenges and potentials. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pages 1893–1899. IEEE.
[G´eron, 2022] G´eron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. . O’Reilly Media, Inc.”.
[Ghorbani et al., 2019] Ghorbani, A., Abid, A., and Zou, J. (2019). Interpretation of neural networks is fragile. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688.
[Ghumman et al., 2021] Ghumman, M., Singh, S., Singh, N., and Jindal, B. (2021). Optimization of parameters for improving the performance of eeg-based bci system. Journal of Reliable Intelligent Environments, 7(2):145–156.
[Gilbert et al., 2020] Gilbert, N., Mewis, R., and Sutcliffe, O. (2020). Classification of fentanyl analogues through principal component analysis (pca) and hierarchical clustering of gc–ms data. Forensic Chemistry, 21:100287.
[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
[Grigorev et al., 2021] Grigorev, N., Savosenkov, A., Lukoyanov, M., Udoratina, A., Shusharina, N., Kaplan, A., Hramov, A., Kazantsev, V., and Gordleeva, S. (2021). A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:1583–1592.
[Gubert et al., 2020] Gubert, P., Costa, M., Silva, C., and Trofino-Neto, A. (2020). The performance impact of data augmentation in csp-based motor-imagery systems for bci applications. Biomedical Signal Processing and Control, 62:102152.
[Guidotti et al., 2018] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Comput. Surv., 51(5).
[Guillot and Debarnot, 2019] Guillot, A. and Debarnot, U. (2019). Benefits of motor imagery for human space flight: A brief review of current knowledge and future applications. Frontiers in Physiology, 10:396.
[Hassanpour et al., 2019] Hassanpour, A., Moradikia, M., Adeli, H., Khayami, S., and Shamsinejadbabaki, P. (2019). A novel end-to-end deep learning scheme for classifying multiclass motor imagery electroencephalography signals. Expert Systems, 36(6):e12494.
[Ho and Hung, 2020] Ho, R. and Hung, K. (2020). A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd. In 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 203–210. IEEE.
[Ibrahim and Shafiq, 2022] Ibrahim, R. and Shafiq, M. (2022). Augmented score-cam: High resolution visual interpretations for deep neural networks. Knowledge-Based Systems, 252:109287.
[Ide and Kurita, 2017] Ide, H. and Kurita, T. (2017). Improvement of learning for cnn with relu activation by sparse regularization. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2684–2691. IEEE.
[Ieracitano et al., 2021] Ieracitano, C., Mammone, N., Hussain, A., and Morabito, F. (2021). A novel explainable machine learning approach for eeg-based brain-computer interface systems. Neural Computing and Applications, pages 1–14.
[Jackson et al., 2001] Jackson, P., Lafleur, M., Malouin, F., Richards, C., and Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of physical medicine and rehabilitation, 82(8):1133–1141.
[Jeannerod, 2001] Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1):S103–S109.
[Jeon et al., 2021] Jeon, E., Ko, W., Yoon, J., and Suk, H. (2021). Mutual informationdriven subject-invariant and class-relevant deep representation learning in bci. IEEE Transactions on Neural Networks and Learning Systems.
[Jiang et al., 2020] Jiang, X., Chang, L., and Zhang, Y. (2020). Classification of alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques. Journal of Medical Imaging and Health Informatics, 10(5):1040–1048.
[Jin et al., 2020a] Jin, J., Liu, C., Daly, I., Miao, Y., Li, S., Wang, X., and Cichocki, A. (2020a). Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10):2153–2163.
[Jin et al., 2020b] Jin, J., Xiao, R., Daly, I., Miao, Y., Wang, X., and Cichocki, A. (2020b). Internal feature selection method of csp based on l1-norm and dempster–shafer theory. IEEE transactions on neural networks and learning systems, 32(11):4814–4825.
[Kant et al., 2020] Kant, P., Laskar, S., Hazarika, J., and Mahamune, R. (2020). Cwt based transfer learning for motor imagery classification for brain computer interfaces. Journal of Neuroscience Methods, 345:108886.
[Kappes and Morewedge, 2016] Kappes, H. and Morewedge, C. (2016). Mental simulation as substitute for experience. Social and Personality Psychology Compass, 10(7):405–420.
[Keelawat et al., 2021] Keelawat, P., Thammasan, N., Numao, M., and Kijsirikul, B. (2021). A comparative study of window size and channel arrangement on eeg-emotion recognition using deep cnn. Sensors, 21(5):1678.
[Khan et al., 2020] Khan, M., Das, R., Iversen, H., and Puthusserypady, S. (2020). Review on motor imagery based bci systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 123:103843.
[Ko et al., 2021a] Ko, W., Jeon, E., Jeong, S., Phyo, J., and Suk, H. (2021a). A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces. Frontiers in Human Neuroscience, 15.
[Ko et al., 2021b] Ko, W., Jeon, E., Jeong, S., and Suk, H. (2021b). Multi-scale neural network for eeg representation learning in bci. IEEE Computational Intelligence Magazine, 16(2):31–45.
[Kumar et al., 2019] Kumar, S., Sharma, A., and Tsunoda, T. (2019). Brain wave classification using long short-term memory network based optical predictor. Scientific reports, 9(1):1–13.
[Labach et al., 2019] Labach, A., Salehinejad, H., and Valaee, S. (2019). Survey of dropout methods for deep neural networks. arXiv preprint arXiv:1904.13310.
[Lacey and Lawson, 2013] Lacey, S. and Lawson, R. (2013). Multisensory imagery. Springer Science & Business Media.
[Ladda et al., 2021] Ladda, A., Lebon, F., and Lotze, M. (2021). Using motor imagery practice for improving motor performance – a review. Brain and Cognition, 150:105705.
[Lawhern et al., 2018] Lawhern, V., Solon, A., Waytowich, N., Gordon, S., Hung, C., and Lance, B. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5):056013.
[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.
[Lee and Choi, 2018] Lee, H. and Choi, Y. (2018). A convolution neural networks scheme for classification of motor imagery eeg based on wavelet time-frequecy image. In 2018 International Conference on Information Networking (ICOIN), pages 906–909.
[Lee et al., 2019a] Lee, M., Kwon, O., Kim, Y., Kim, H., Lee, Y., Williamson, J., Fazli, S., and Lee, S. (2019a). Eeg dataset and open bmi toolbox for three bci paradigms: an investigation into bci illiteracy. GigaScience, 8(5):giz002.
[Lee et al., 2020] Lee, M., Yoon, J., and Lee, S. (2020). Predicting motor imagery performance from resting-state eeg using dynamic causal modeling. Frontiers in human neuroscience, 14:321.
[Lee et al., 2019b] Lee, M.-H., Kwon, O.-Y., Kim, Y.-J., Kim, H.-K., Lee, Y.-E., Williamson, J., Fazli, S., and Lee, S.-W. (2019b). EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience, 8(5). giz002.
[Li et al., 2020a] Li, A., Alimanov, K., Fazli, S., and Lee, M. (2020a). Towards paradigmindependent brain computer interfaces. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–6.
[Li et al., 2019] Li, B., Yang, B., Guan, C., and Hu, C. (2019). Three-class motor imagery classification based on fbcsp combined with voting mechanism. In 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pages 1–4. IEEE.
[Li et al., 2020b] Li, D., Xu, J., Wang, J., Fang, X., and Ji, Y. (2020b). A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of eeg signals decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12):2615–2626.
[Li et al., 2021a] Li, R., Zhang, Y., Zhu, S., and Liu, S. (2021a). Person search via class activation map transferring. Multimedia Tools and Applications, pages 1–16.
[Li et al., 2021b] Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., and Dou, D. (2021b). Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond.
[Li et al., 2020c] Li, Y., Yang, H., Li, J., Chen, D., and Du, M. (2020c). Eeg-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by grad-cam. Neurocomputing, 415:225–233.
[Liang et al., 2016] Liang, S., Choi, K., Qin, J., Pang, W., Wang, Q., and Heng, P. (2016). Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Computer Methods and Programs in Biomedicine, 132:63–74.
[Liao et al., 2020] Liao, J., Luo, J., Yang, T., So, R., and Chua, M. (2020). Effects of local and global spatial patterns in eeg motor-imagery classification using convolutional neural network. Brain-Computer Interfaces, 7(3-4):47–56.
[Lim et al., 2010] Lim, C., Lee, T., Guan, C., Fung, D., Cheung, Y., Teng, S., Zhang, H., and Krishnan, K. (2010). Effectiveness of a brain-computer interface based programme for the treatment of adhd: a pilot study. Psychopharmacol Bull, 43(1):73–82.
[Liu et al., 2021] Liu, X., Lv, L., Shen, Y., Xiong, P., Yang, J., and Liu, J. (2021). Multiscale space-time-frequency feature-guided multitask learning cnn for motor imagery eeg classification. Journal of Neural Engineering, 18(2):026003.
[Liu et al., 2020] Liu, X., Makeyev, O., and Besio, W. (2020). Improved spatial resolution of electroencephalogram using tripolar concentric ring electrode sensors. Journal of Sensors, 2020.
[Lotte and Guan, 2011] Lotte, F. and Guan, C. (2011). Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 58(2):355–362.
[Lotze et al., 2003] Lotze, M., Scheler, G., Tan, H., Braun, C., and Birbaumer, N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage, 20(3):1817–1829.
[Luo et al., 2020] Luo, W., Zhang, J., Feng, P., Yu, D., and Wu, Z. (2020). A concise peephole model based transfer learning method for small sample temporal feature-based data-driven quality analysis. Knowledge-Based Systems, 195:105665.
[Ma et al., 2021] Ma, W., Gong, Y., Zhou, G., Liu, Y., Zhang, L., and He, B. (2021). A channel-mixing convolutional neural network for motor imagery eeg decoding and feature visualization. Biomedical Signal Processing and Control, 70:103021.
[Mahamune and Laskar, 2021] Mahamune, R. and Laskar, S. (2021). Classification of the four-class motor imagery signals using continuous wavelet transform filter bank-based two-dimensional images. International Journal of Imaging Systems and Technology.
[Marchesotti et al., 2016] Marchesotti, S., Bassolino, M., Serino, A., Bleuler, H., and Blanke, O. (2016). Quantifying the role of motor imagery in brain-machine interfaces. Scientific reports, 6(1):1–12.
[McFarland et al., 2000] McFarland, D., Miner, L., Vaughan, T., and Wolpaw, J. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain topography, 12(3):177–186.
[Meng and He, 2019] Meng, J. and He, B. (2019). Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci. Frontiers in human neuroscience, 13:128.
[Miotto et al., 2018] Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246.
[Mirzaei and Ghasemi, 2021] Mirzaei, S. and Ghasemi, P. (2021). Eeg motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomedical Signal Processing and Control, 68:102584.
[Mohdiwale et al., 2021] Mohdiwale, S., Sahu, M., Sinha, G., and Nisar, H. (2021). Investigating feature ranking methods for sub-band and relative power features in motor imagery task classification. Journal of healthcare engineering, 2021.
[Monga et al., 2021] Monga, V., Li, Y., and Eldar, Y. (2021). Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44.
[Morewedge et al., 2010] Morewedge, C., Huh, Y., and Vosgerau, J. (2010). Thought for food: Imagined consumption reduces actual consumption. Science, 330(6010):1530–1533.
[Munzert and Lorey, 2013] Munzert, J. and Lorey, B. (2013). Motor and visual imagery in sports. In Multisensory imagery, pages 319–341. Springer
[Naidu et al., 2020] Naidu, R., Ghosh, A., Maurya, Y., Kundu, S., et al. (2020). Is-cam: Integrated score-cam for axiomatic-based explanations. arXiv preprint arXiv:2010.03023.
[Neuper et al., 2005] Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial eeg. Cognitive brain research, 25(3):668–677.
[Olivas-Padilla et al., 2019] Olivas-Padilla, B. et al. (2019). Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Applied Soft Computing, 75:461–472
[Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C., Salazar-Colores, S., Rodr´ıguez-Res´endiz, J., and G´omez-Loenzo, R. (2019). A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors, 19(20).
[Ostarek et al., 2019] Ostarek, M., Joosen, D., Ishag, A., De Nijs, M., and Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentencepicture verification task? Cognition, 182:84–94.
[Padfield et al., 2019] Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6):1423.
[Page, 2000] Page, S. (2000). Imagery improves upper extremity motor function in chronic stroke patients: a pilot study. The Occupational Therapy Journal of Research, 20(3):200– 215.
[Park and Kwak, 2016] Park, S. and Kwak, N. (2016). Analysis on the dropout effect in convolutional neural networks. In Asian conference on computer vision, pages 189–204. Springer.
[Parvan et al., 2019] Parvan, M., Ghiasi, A., Rezaii, T., and Farzamnia, A. (2019). Transfer learning based motor imagery classification using convolutional neural networks. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages 1825–1828.
[Petrichella et al., 2016] Petrichella, S., Vollere, L., Ferreri, F., Guerra, A., M¨a¨atta, S., K¨on¨onen, M., Di Lazzaro, V., and Iannello, G. (2016). Channel interpolation in tmseeg: A quantitative study towards an accurate topographical representation. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 989–992.
[Pfurtscheller et al., 2006] Pfurtscheller, G., Brunner, C., Schl¨ogl, A., and Da Silva, F. (2006). Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage, 31(1):153–159.
[Pillette et al., 2019] Pillette, L., Jeunet, C., N’Kambou, R., N’Kaoua, B., and Lotte, F. (2019). Towards artificial learning companions for mental imagery-based brain-computer interfaces.
[Proakis, 2001] Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications. Pearson Education India.
[Qian et al., 2018] Qian, X., Loo, B., Castellanos, F., Liu, S., Koh, H., Poh, X., Krishnan, R., Fung, D., Chee, M., Guan, C., et al. (2018). Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder. Translational psychiatry, 8(1):1–11.
[Qin et al., 2018] Qin, Z., Yu, F., Liu, C., and Chen, X. (2018). How convolutional neural network see the world - a survey of convolutional neural network visualization methods.
[Ras et al., 2018] Ras, G., van Gerven, M., and Haselager, P. (2018). Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges, pages 19–36. Springer International Publishing, Cham
[Ren et al., 2020] Ren, S., Wang, W., Hou, Z., Liang, X., Wang, J., and Shi, W. (2020). Enhanced motor imagery based brain-computer interface via fes and vr for lower limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(8):1846–1855.
[Rezeika et al., 2018] Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., and Volosyak, I. (2018). Brain–computer interface spellers: A review. Brain sciences, 8(4):57.
[Rim et al., 2020] Rim, B., Sung, N., Min, S., and Hong, M. (2020). Deep learning in physiological signal data: A survey. Sensors, 20(4).
[Rimbert et al., 2019] Rimbert, S., Gayraud, N., Bougrain, L., Clerc, M., and Fleck, S. (2019). Can a subjective questionnaire be used as brain-computer interface performance predictor? Frontiers in Human Neuroscience, 12:529.
[Rong et al., 2020] Rong, Y., Wu, X., and Zhang, Y. (2020). Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. International Journal of Imaging Systems and Technology, 30(3):653–659.
[Roth et al., 1996] Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., Morand, S., Gemignani, A., D´ecorps, M., and Jeannerod, M. (1996). Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport, 7(7):1280–1284.
[Roy et al., 2020] Roy, S., Chowdhury, A., McCreadie, K., and Prasad, G. (2020). Deep learning based inter-subject continuous decoding of motor imagery for practical braincomputer interfaces. Frontiers in Neuroscience, 14.
[Saha et al., 2018] Saha, S., Ahmed, K., Mostafa, R., Hadjileontiadis, L., and Khandoker, A. (2018). Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2):371–382.
[Saha and Baumert, 2020] Saha, S. and Baumert, M. (2020). Intra-and inter-subject variability in eeg-based sensorimotor brain computer interface: a review. Frontiers in computational neuroscience, 13:87.
[Sakhavi et al., 2015] Sakhavi, S., Guan, C., and Yan, S. (2015). Parallel convolutional-linear neural network for motor imagery classification. In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 2736–2740.
[Sannelli et al., 2016] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2016). Ensembles of adaptive spatial filters increase bci performance: an online evaluation. Journal of neural engineering, 13(4):046003.
[Sannelli et al., 2019] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2019). A large scale screening study with a smr-based bci: Categorization of bci users and differencesn in their smr activity. PLoS One, 14(1):e0207351.
[Schalk et al., 2004] Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., and Wolpaw, J. (2004). Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on biomedical engineering, 51(6):1034–1043.
[Sch¨olkopf et al., 2002] Sch¨olkopf, B., Smola, A., Bach, F., et al. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
[Seghier and Price, 2018] Seghier, M. and Price, C. (2018). Interpreting and utilising intersubject variability in brain function. Trends in Cognitive Sciences, 22(6):517–530.
[Selvaraju et al., 2017] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626.
[Selvaraju et al., 2016] Selvaraju, R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450.
[Shahtalebi et al., 2020] Shahtalebi, S., Asif, A., and Mohammadi, A. (2020). Siamese neural networks for eeg-based brain-computer interfaces. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 442– 446. IEEE.
[Shajil et al., 2020] Shajil, N., Mohan, S., Srinivasan, P., Arivudaiyanambi, J., and Murrugesan, A. (2020). Multiclass classification of spatially filtered motor imagery eeg signals using convolutional neural network for bci based applications. Journal of Medical and Biological Engineering, 40(5):663–672.
[Shen et al., 2017] Shen, Y., Lu, H., and Jia, J. (2017). Classification of motor imagery eeg signals with deep learning models. In Sun, Y., Lu, H., Zhang, L., Yang, J., and Huang, H., editors, Intelligence Science and Big Data Engineering, pages 181–190, Cham. Springer International Publishing.
[Singh et al., 2021] Singh, A., Hussain, A., Lal, S., and Guesgen, H. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6).
[Skola et al., 2019] ˇ Skola, F., Tinkov´a, S., and Liarokapis, F. (2019). Progressive training for motor imagery brain-computer interfaces using gamification and virtual reality embodiment. Frontiers in human neuroscience, 13:329.
[Song et al., 2013] Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine, 30(4):98–111.
[Souto et al., 2020] Souto, D., Cruz, T., Fontes, P., Batista, R., and Haase, V. (2020). Motor imagery development in children: Changes in speed and accuracy with increasing age. Frontiers in Pediatrics, 8.
[Spezialetti et al., 2018] Spezialetti, M., Cinque, L., Tavares, J., and Placidi, G. (2018). Towards eeg-based bci driven by emotions for addressing bci illiteracy: a meta-analytic review. Behaviour & Information Technology, 37(8):855–871.
[Springenberg et al., 2014] Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
[Stasiak et al., 2018] Stasiak, B., Opa lka, S., Szajerman, D., and Wojciechowski, A. (2018). Eeg-based mental task classification with convolutional neural networks–parallel vs 2d data representation. In International Conference on Information Technologies in Biomedicine, pages 549–560. Springer.
[Tabar and Halici, 2016] Tabar, Y. R. and Halici, U. (2016). A novel deep learning approach for classification of eeg motor imagery signals. Journal of neural engineering, 14(1):016003.
[Taheri et al., 2020] Taheri, S., Ezoji, M., and Sakhaei, S. (2020). Convolutional neural network based features for motor imagery eeg signals classification in brain–computer interface system. SN Applied Sciences, 2(4):1–12.
[Tan et al., 2018] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep transfer learning. In K˚urkov´a, V., Manolopoulos, Y., Hammer, B., Iliadis, L., and Maglogiannis, I., editors, Artificial Neural Networks and Machine Learning– ICANN 2018, pages 270–279, Cham. Springer International Publishing.
[Tang et al., 2020] Tang, X., Li, W., Li, X., Ma, W., and Dang, X. (2020). Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multiscale convolutional neural network. Expert Systems with Applications, 149:113285.
[Taran and Bajaj, 2019] Taran, S. and Bajaj, V. (2019). Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform. Neural Computing and Applications, 31(11):6925–6932.
[Thodoroff et al., 2016] Thodoroff, P., Pineau, J., and Lim, A. (2016). Learning robust features using deep learning for automatic seizure detection. In Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., and Wiens, J., editors, Proceedings of the 1st Machine Learning for Healthcare Conference, volume 56 of Proceedings of Machine Learning Research, pages 178–190, Northeastern University, Boston, MA, USA. PMLR.
[Thompson, 2019] Thompson, M. (2019). Critiquing the concept of bci illiteracy. Science and engineering ethics, 25(4):1217–1233.
[Tilgner et al., 2021] Tilgner, S., Wagner, D., Kalischewski, K., Schmitz, J., and Kummert, A. (2021). Study on the influence of multiple image inputs of a multi-view fusion neural network based on grad-cam and masked image inputs. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 1427–1431. IEEE.
[Uktveris and Jusas, 2017] Uktveris, T. and Jusas, V. (2017). Application of convolutional neural networks to four-class motor imagery classification problem. Information Technology and Control, 46(2):260–273.
[Ulsamer et al., 2020] Ulsamer, P., Fertig, T., Pfeffel, K., and M¨uller, N. (2020). Motor imagery to control mobile applications-an fnirs study. In PACIS, page 56.
[Vasilyev et al., 2021] Vasilyev, A., Nuzhdin, Y., and Kaplan, A. (2021). Does real-time feedback affect sensorimotor eeg patterns in routine motor imagery practice? Brain Sciences, 11(9):1234.
[Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L., Caicedo-Acosta, J., AcostaMedina, C., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2020a). Regression networks for neurophysiological indicator evaluation in practicing motor imagery tasks. Brain Sciences, 10(10):707.
[Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L., Caicedo-Acosta, J., and Castellanos-Dominguez, G. (2020b). Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns. Entropy, 22(6):703.
[Versaci et al., 2020] Versaci, M., Angiulli, G., di Barba, P., and Morabito, F. (2020). Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates. Open Physics, 18(1):230–240.
[Vidaurre et al., 2019] Vidaurre, C., Murguialday, A., Haufe, S., G´omez, M., M¨uller, K.-R., and Nikulin, V. (2019). Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation. NeuroImage, 199:375–386.
[Wan et al., 2021] Wan, Z., Yang, R., Huang, M., Zeng, N., and Liu, X. (2021). A review on transfer learning in eeg signal analysis. Neurocomputing, 421:1–14.
[Wang et al., 2020a] Wang, H., Naidu, R., Michael, J., and Kundu, S. (2020a). Sscam: Smoothed score-cam for sharper visual feature localization. arXiv preprint arXiv:2006.14255.
[Wang et al., 2020b] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., and Hu, X. (2020b). Score-cam: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 24–25.
[Wang et al., 2020c] Wang, J., Feng, Z., Ren, X., Lu, N., Luo, J., and Sun, L. (2020c). Feature subset and time segment selection for the classification of eeg data based motor imagery. Biomedical Signal Processing and Control, 61:102026.
[Wang et al., 2020d] Wang, L., Huang, W., Yang, Z., and Zhang, C. (2020d). Temporalspatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomedical Signal Processing and Control, 58:101845.
[Wang et al., 2018] Wang, S., Fu, L., Yao, J., and Li, Y. (2018). The application of deep learning in biomedical informatics. In 2018 International Conference on Robots Intelligent System (ICRIS), pages 391–394.
[Wang et al., 2021] Wang, T., Du, S., and Dong, E. (2021). A novel method to reduce the motor imagery bci illiteracy. Medical & Biological Engineering & Computing, 59(11):2205–2217.
[Wang et al., 2019] Wang, Y., Nakanishi, M., and Zhang, D. (2019). EEG-Based BrainComputer Interfaces, pages 41–65. Springer Singapore, Singapore.
[Wehner et al., 1984] Wehner, T., Vogt, S., and Stadler, M. (1984). Task-specific emgcharacteristics during mental training. Psychological research, 46(4):389–401.
[Wei and Lin, 2020] Wei, M. and Lin, F. (2020). A novel multi-dimensional features fusion algorithm for the eeg signal recognition of brain’s sensorimotor region activated tasks. International Journal of Intelligent Computing and Cybernetics.
[Wei et al., 2021] Wei, X., Ortega, P., and Faisal, A. (2021). Inter-subject deep transfer learning for motor imagery eeg decoding. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), pages 21–24.
[Wu et al., 2021] Wu, D., Jiang, X., Peng, R., Kong, W., Huang, J., and Zeng, Z. (2021). Transfer learning for motor imagery based brain-computer interfaces: A complete pipeline.
[Wu et al., 2019] Wu, H., Niu, Y., Li, F., Li, Y., Fu, B., Shi, G., and Dong, M. (2019). A parallel multiscale filter bank convolutional neural networks for motor imagery eeg classification. Frontiers in Neuroscience, 13:1275.
[Wuyam et al., 1995] Wuyam, B., Moosavi, S., Decety, J., Adams, L., Lansing, R., and Guz, A. (1995). Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. The Journal of physiology, 482(3):713–724.
[Xiao et al., 2018] Xiao, C., Choi, E., and Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. Journal of the American Medical Informatics Association, 25(10):1419–1428.
[Xu et al., 2019] Xu, G., Shen, X., Chen, S., Zong, Y., Zhang, C., Yue, H., Liu, M., Chen, F., and Che, W. (2019). A deep transfer convolutional neural network framework for eeg signal classification. IEEE Access, 7:112767–112776.
[Xu et al., 2020a] Xu, J., Zheng, H., Wang, J., Li, D., and Fang, X. (2020a). Recognition of eeg signal motor imagery intention based on deep multi-view feature learning. Sensors, 20(12):3496.
[Xu et al., 2020b] Xu, L., Xu, M., Ke, Y., An, X., Liu, S., and Ming, D. (2020b). Crossdataset variability problem in eeg decoding with deep learning. Frontiers in human neuroscience, 14:103.
[Xu et al., 2021] Xu, L., Xu, M., Ma, Z., Wang, K., Jung, T., and Ming, D. (2021). Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization. Journal of Neural Engineering, 18(4):0460e5.
[Xu et al., 2020c] Xu, M., Wei, Z., and Ming, D. (2020c). Research advancements of motor imagery for motor function recovery after stroke. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 37(1):169–173.
[Xu et al., 2020d] Xu, M., Yao, J., Zhang, Z., Li, R., Yang, B., Li, C., Li, J., and Zhang, J. (2020d). Learning eeg topographical representation for classification via convolutional neural network. Pattern Recognition, 105:107390.
[Yang et al., 2015] Yang, H., Sakhavi, S., Ang, K. K., and Guan, C. (2015). On the use of convolutional neural networks and augmented csp features for multi-class motor imagery of eeg signals classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2620–2623.
[Yang et al., 2018] Yang, J., Yao, S., and Wang, J. (2018). Deep fusion feature learning network for mi-eeg classification. IEEE Access, 6:79050–79059.
[Yang et al., 2019] Yang, X., Liu, W., Liu, W., and Tao, D. (2019). A survey on canonical correlation analysis. IEEE Transactions on Knowledge and Data Engineering, 33(6):2349–2368.
[Yi et al., 2020] Yi, C., Chen, C., Si, Y., Li, F., Zhang, T., Liao, Y., Jiang, Y., Yao, D., and Xu, P. (2020). Constructing large-scale cortical brain networks from scalp eeg with bayesian nonnegative matrix factorization. Neural Networks, 125:338–348.
[Yoon and Lee, 2020] Yoon, J. and Lee, M. (2020). Effective correlates of motor imagery performance based on default mode network in resting-state. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–5.
[You et al., 2020] You, Y., Chen, W., and Zhang, T. (2020). Motor imagery eeg classification based on flexible analytic wavelet transform. Biomedical Signal Processing and Control, 62:102069.
[Yu et al., 2022] Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.
[Zeiler and Fergus, 2014a] Zeiler, M. and Fergus, R. (2014a). Visualizing and understanding convolutional networks. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, Computer Vision – ECCV 2014, pages 818–833, Cham. Springer International Publishing.
[Zeiler and Fergus, 2014b] Zeiler, M. and Fergus, R. (2014b). Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818–833. Springer.
[Zhang et al., 2021a] Zhang, H., Zhao, X., Wu, Z., Sun, B., and Li, T. (2021a). Motor imagery recognition with automatic eeg channel selection and deep learning. Journal of Neural Engineering, 18(1):016004.
[Zhang et al., 2021b] Zhang, K., Robinson, N., Lee, S., and Guan, C. (2021b). Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network. Neural Networks, 136:1–10.
[Zhang et al., 2020a] Zhang, K., Xu, G., Chen, L., Tian, P., Han, C., Zhang, S., and Duan, N. (2020a). Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Computational and Mathematical Methods in Medicine, 2020.
[Zhang et al., 2020b] Zhang, K., Xu, G., Zheng, X., Li, H., Zhang, S., Yu, Y., and Liang, R. (2020b). Application of transfer learning in eeg decoding based on brain-computer interfaces: A review. Sensors, 20(21).
[Zhang et al., 2019a] Zhang, R., Zong, Q., Dou, L., and Zhao, X. (2019a). A novel hybrid deep learning scheme for four-class motor imagery classification. Journal of neural engineering, 16(6):066004.
[Zhang et al., 2021c] Zhang, R., Zong, Q., Dou, L., Zhao, X., Tang, Y., and Li, Z. (2021c). Hybrid deep neural network using transfer learning for eeg motor imagery decoding. Biomedical Signal Processing and Control, 63:102144.
[Zhang et al., 2019b] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv., 52(1).
[Zhang et al., 2021d] Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., and Zhang, Y. (2021d). A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 18(3):031002.
[Zhang et al., 2015] Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A. (2015). Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. Journal of neuroscience methods, 255:85–91.
[Zhao et al., 2019a] Zhao, D., Tang, F., Si, B., and Feng, X. (2019a). Learning joint space–time–frequency features for eeg decoding on small labeled data. Neural Networks, 114:67–77.
[Zhao et al., 2019b] Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., and Sun, L. (2019b). A multi-branch 3d convolutional neural network for eeg-based motor imagery classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10):2164–2177.
[Zhao et al., 2020] Zhao, X., Zhao, J., Liu, C., and Cai, W. (2020). Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. BioMed research international, 2020.
[Zheng et al., 2021] Zheng, M., Yang, B., Gao, S., and Meng, X. (2021). Spatio-timefrequency joint sparse optimization with transfer learning in motor imagery-based braincomputer interface system. Biomedical Signal Processing and Control, 68:102702.
[Zheng et al., 2020] Zheng, M., Yang, B., and Xie, Y. (2020). Eeg classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Medical & biological engineering & computing, 58(7).
[Zhou et al., 2016] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[Zhou et al., 2014] Zhou, B., Wu, X., Zhang, L., Lv, Z., and Guo, X. (2014). Robust spatial filters on three-class motor imagery eeg data using independent component analysis. Journal of Biosciences and Medicines, 2(2):43–49.
[Zhuang et al., 2020] Zhuang, M., Wu, Q., Wan, F., and Hu, Y. (2020). State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. Journal of Neurorestoratology, 8(1):4.
[Zimmermann-Schlatter et al., 2008] Zimmermann-Schlatter, A., Schuster, C., Puhan, M., Siekierka, E., and Steurer, J. (2008). Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal of neuroengineering and rehabilitation, 5(1):1–10.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 127 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84594/2/1053812740.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84594/3/1053812740.2022.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84594/1/license.txt
bitstream.checksum.fl_str_mv 571bc16fb2be9497e21fc0e273a8a11a
cedcc4542db6f6f0e283b90a2ee62a7c
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089825539588096
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos-Dominguez, Germane7877f60c5ac464594daa00d2d4e8180600Collazos Huertas, Diego Fabian5cc69bc03905da42acdf3868d78f9c56600Grupo de Control y Procesamiento Digital de SeñalesCollazos Huertas, Diego Fabian [0002-0434-3444]Collazos Huertas, Diego Fabian [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000017335]Collazos Huertas, Diego Fabian [https://www.researchgate.net/profile/Diego-Collazos]Collazos Huertas, Diego Fabian [D.F Collazos-Huertas]2023-08-23T20:54:23Z2023-08-23T20:54:23Z2022https://repositorio.unal.edu.co/handle/unal/84594Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasDeep learning (DL) allows models composed of multiple processing layers to learn representations of data with several levels of abstraction. These methods have improved state-of-the-art tasks like speech recognition, visual object identification, and many other fields. Regarding electroencephalographic (EEG) signals analysis, especially for the Motor Imagery (MI) paradigm, the availability of large data sets and advances in machine learning have led to the deployment of DL architectures, allowing the understanding of the information that may contain for brain functionality. However, these models suffer some limitations in practice: i) often DL models not integrate properly EEG spatial information with extracted time-frequency features, ii) the resulting inter and intra-subject variability, along with frequently available small datasets, significantly decreases the performance of EEG-based MI systems, and iii) DL models are treated as “black boxes” lacking physiological interpretability. In this Ph.D. thesis proposal, we pretend to solve these issues i) developing a Deep&Wide learning methodology using multi-view feature extraction, ii) proposing a coupling information strategy based on transfer learning including subject’s clinical data, and iii) developing a relevance analysis methodology that allows improving the interpretability of neural responses. The detailed methodology and its respective execution plan (schedule) to carry out these objectives are further described. In addition, we list the available computational resources necessary for the proposed implementation (Texto tomado de la fuente)El aprendizaje profundo (por sus siglas en inglés DL) permite que los modelos compuestos por múltiples capas de procesamiento aprendan representaciones de datos con varios niveles de abstracción. Estos métodos han mejorado tareas de vanguardia como el reconocimiento de voz, la identificación de objetos visuales y muchos otros campos. En cuanto al análisis de señales electroencefalográficas (EEG), especialmente para el paradigma de Imaginación Motora (por sus siglas en inglés MI), la disponibilidad de grandes conjuntos de datos y los avances en el aprendizaje automático han llevado al despliegue de arquitecturas DL, permitiendo la comprensión de la información que puede contener para la funcionalidad cerebral. Sin embargo, estos modelos sufren algunas limitaciones en la práctica: i) a menudo los modelos DL no integran correctamente la información espacial de EEG con las características extraídas de tiempo-frecuencia, ii) la alta variabilidad inter e intra-sujeto resultante, junto con los pequeños conjuntos de datos disponibles, disminuye significativamente el rendimiento de los sistemas MI a partir de registros EEG, y iii) los modelos DL se tratan como “cajas negras ” que carecen de interpretabilidad fisiológica. En esta propuesta de tesis, pretendemos resolver estos problemas i) desarrollando una metodolog´ıa de aprendizaje Deep&Wide utilizando extracción de características de múltiples dominios, ii) proponiendo una estrategia de acoplamiento de información basada en el aprendizaje de transferencia que incluye los datos clínicos del sujeto, y iii) desarrollando una metodología de análisis de relevancia que permita mejorar la interpretabilidad de las respuestas neuronales. La metodología detallada y su respectivo plan de ejecución (cronograma) para llevar a cabo estos objetivos de describe más adelante. Además, se reportan los recursos computacionales disponibles y necesarios para la implementación de esta propuesta.Minciencias a través de la convocatoria Doctorados Nacionales Conv. 785 -2017DoctoradoDoctor en IngenieríaInteligencia artificial y Machine LearningEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesxxii, 127 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesDeep learningEEGMotor imageryDeep&Wide networkTransfer learningPhysiological interpretabilityAprendizaje profundoImaginación motoraAprendizaje por transferenciaInterpretabilidad fisiológicaTecnología médicaIngenieríaMedical technologyEngineeringDeep learning framework with enhanced interpretability for classification of motor imagery tasksMarco de aprendizaje profundo con interpretabilidad mejorada para la clasificación de tareas de imaginación motoraTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageText[Aellen et al., 2021] Aellen, F., G¨oktepe-Kavis, P., Apostolopoulos, S., and Tzovara, A. (2021). Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. Journal of Neuroscience Methods, 364:109367.[Aggarwal and Chugh, 2019] Aggarwal, S. and Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1:100003.[Al-Saegh et al., 2021] Al-Saegh, A., Dawwd, S., and Abdul-Jabbar, J. (2021). Deep learning for motor imagery eeg-based classification: A review. Biomedical Signal Processing and Control, 63:102172.[Alonso-Valerdi, 2016] Alonso-Valerdi, L. (2016). Python executable script for estimating two effective parameters to individualize brain-computer interfaces: Individual alpha frequency and neurophysiological predictor. Frontiers in neuroinformatics, 10:22.Altaheri et al., 2021] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S., Altuwaijri, G., Abdul, W., Bencherif, M., and Faisal, M. (2021). Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Computing and Applications, pages 1–42.[Alvarez-Meza et al., 2017] Alvarez-Meza, A., Orozco-Gutierrez, A., and CastellanosDominguez, G. (2017). Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Frontiers in neuroscience, 11:550.[Alvarez-Meza et al., 2014] ´ Alvarez-Meza, A. M., C´ardenas-Pe˜na, D., and Castellanos- ´ Dominguez, G. (2014). Unsupervised kernel function building using maximization of information potential variability. In Bayro-Corrochano, E. and Hancock, E., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 335–342, Cham. Springer International Publishing.[Amin et al., 2020] Amin, S., Alsulaiman, M., Muhammad, G., Hossain, M., and Guizani, M. (2020). Deep learning for eeg motor imagery-based cognitive healthcare. In Connected Health in Smart Cities, pages 233–254. Springer.[Amin et al., 2019] Amin, S., Alsulaiman, M., Muhammad, G., Mekhtiche, M., and Shamim, H. (2019). Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion. Future Generation Computer Systems, 101:542–554.[Amin et al., 2021] Amin, S., Altaheri, H., Muhammad, G., Alsulaiman, M., and Abdul, W. (2021). Attention based inception model for robust eeg motor imagery classification. In 2021 IEEE international instrumentation and measurement technology conference (I2MTC), pages 1–6. IEEE.[Anowar et al., 2021] Anowar, F., Sadaoui, S., and Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Computer Science Review, 40:100378.Aral and Peker, 2020] Aral, L. and Peker, G. (2020). A novel hybrid: Neuro-immunoengineering. Natural and Applied Sciences Journal, 3:1 – 12[Bai et al., 2021] Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., and Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120:108102Bang et al., 2021] Bang, J., Lee, M., Fazli, S., Guan, C., and Lee, S. (2021). Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12[Belaout et al., 2018] Belaout, A., Krim, F., Mellit, A., Talbi, B., and Arabi, A. (2018). Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renewable Energy, 127:548–558.[Bengio, 2012] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.[Bengio et al., 2017] Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, volume 1. MIT press Massachusetts, USA:.[Bin et al., 2020] Bin, H., Lei, D., and Abbas, S. (2020). Electrophysiological Mapping and Source Imaging, pages 379–413. Springer International Publishing, Cham.[Borra et al., 2020] Borra, D., Fantozzi, S., and Magosso, E. (2020). Interpretable and lightweight convolutional neural network for eeg decoding: Application to movement execution and imagination. Neural Networks, 129:55–74.[Brunner et al., 2008] Brunner, C., Leeb, R., M¨uller-Putz, G., Schl¨ogl, A., and Pfurtscheller, G. (2008). Bci competition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 16:1–6.[Cardona et al., 2020] Cardona, L., Vargas-Cardona, H., Navarro Gonz´alez, P., Cardenas Pe˜na, D., and Orozco Guti´errez, A. (2020). Classification of categorical data based on the chi-square dissimilarity and t-sne. Computation, 8(4):104[Chakraborty et al., 2017] Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S., Rao, R., Kelley, T., Braines, D., Sensoy, M., Willis, C., and Gurram, P. (2017). Interpretability of deep learning models: A survey of results. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6.[Chattopadhay et al., 2018] Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. (2018). Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839–847.[Chaudhary et al., 2019] Chaudhary, S., Taran, S., Bajaj, V., and Sengur, A. (2019). Convolutional neural network based approach towards motor imagery tasks eeg signals classification. IEEE Sensors Journal, 19(12):4494–4500.[Chavarriaga et al., 2017] Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., and Scherer, R. (2017). Heading for new shores! overcoming pitfalls in bci design. Brain-Computer Interfaces, 4(1-2):60–73.[Cheng et al., 2020] Cheng, G., Ehrlich, S., Lebedev, M., and Nicolelis, M. (2020). Neuroengineering challenges of fusing robotics and neuroscience. Science Robotics, 5(49):7–10.[Cheng et al., 2016] Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al. (2016). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pages 7–10.[Chhabra et al., 2020] Chhabra, H., Shajil, N., Venkatasubramanian, G., et al. (2020). Investigation of deep convolutional neural network for classification of motor imagery fnirs signals for bci applications. Biomedical Signal Processing and Control, 62:102133.[Cho et al., 2017] Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. (2017). Eeg datasets for motor imagery brain–computer interface. GigaScience, 6(7):gix034.Collazos-Huertas et al., 2021] Collazos-Huertas, D., Alvarez-Meza, A., and Castellanos- Dominguez, G. (2021). Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using deep&wide networks. Biomedical Signal Processing and Control, 68:102626.[Cortes et al., 2012] Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13(1):795–828.[Craik et al., 2019a] Craik, A., He, Y., and Contreras-Vidal, J. (2019a). Deep learning for electroencephalogram (eeg) classification tasks: a review. Journal of neural engineering, 16(3):031001.[Craik et al., 2019b] Craik, A., Kilicarslan, A., and Contreras-Vidal, J. (2019b). Classification and transfer learning of eeg during a kinesthetic motor imagery task using deep convolutional neural networks. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3046–3049. IEEE.[Dabosmita et al., 2021] Dabosmita, P., Moumita, M., and Ashish, B. (2021). A review of brain-computer interface. In Mukherjee, M., Mandal, J., Bhattacharyya, S., Huck, C., and Biswas, S., editors, Advances in Medical Physics and Healthcare Engineering, pages 507–531, Singapore. Springer Singapore.[Dai et al., 2018] Dai, C., Wang, Z., Wei, L., Chen, G., Chen, B., Zuo, F., and Li, Y. (2018). Combining early post-resuscitation eeg and hrv features improves the prognostic performance in cardiac arrest model of rats. The American journal of emergency medicine, 36(12):2242–2248.[Dai et al., 2019] Dai, M., Zheng, D., Na, R., Wang, S., and Zhang, S. (2019). Eeg classification of motor imagery using a novel deep learning framework. Sensors, 19(3).[D¨ahne et al., 2015] D¨ahne, S., Bießmann, F., Samek, W., Haufe, S., Goltz, D., Gundlach, C., Villringer, A., Fazli, S., and M¨uller, K. (2015). Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proceedings of the IEEE,103(9):1507–1530.[Doborjeh et al., 2018] Doborjeh, M., Kasabov, N., and Doborjeh, Z. (2018). Evolving, dynamic clustering of spatio/spectro-temporal data in 3d spiking neural network models and a case study on eeg data. Evolving systems, 9(3):195–211.[D’souza et al., 2020] D’souza, R., Huang, P., and Yeh, F. (2020). Structural analysis and optimization of convolutional neural networks with a small sample size. Scientific reports, 10(1):1–13.[Edelman et al., 2015] Edelman, B., Johnson, N., Sohrabpour, A., Tong, S., Thakor, N., and He, B. (2015). Systems neuroengineering: Understanding and interacting with the brain. Engineering, 1(3):292–308.[Ehrsson et al., 2000] Ehrsson, H., Naito, E., Geyer, S., Amunts, K., Zilles, K., Forssberg, H., and Roland, P. (2000). Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a pet study. European Journal of Neuroscience, 12(9):3385–3398.[Fan et al., 2021] Fan, F., Xiong, J., Li, M., and Wang, G. (2021). On interpretability of artificial neural networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–760.[Farahat et al., 2019] Farahat, A., Reichert, C., Sweeney-Reed, C., and Hinrichs, H. (2019). Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Journal of Neural Engineering, 16(6):066010.[Farmer and Rix, 2022] Farmer, W. and Rix, A. (2022). Evaluating power system network inertia using spectral clustering to define local area stability. International Journal of Electrical Power & Energy Systems, 134:107404.[Fatourechi et al., 2007] Fatourechi, M., Bashashati, A., Ward, R., and Birch, G. (2007). Emg and eog artifacts in brain computer interface systems: A survey. Clinical neurophysiology, 118(3):480–494.[Feng et al., 2018] Feng, J., Yin, E., Jin, J., Saab, R., Daly, I., Wang, X., Hu, D., and Cichocki, A. (2018). Towards correlation-based time window selection method for motor imagery bcis. Neural Networks, 102:87–95.[Fernandez-Fraga et al., 2019] Fernandez-Fraga, S., Aceves-Fernandez, M., and J, P.-O. (2019). Eeg data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (bci) development. Data in Brief, 25:103871.[Ferrero et al., 2021] Ferrero, L., Ortiz, M., Quiles, V., I´a˜nez, E., Flores, J., and Azor´ın, J. (2021). Brain symmetry analysis during the use of a bci based on motor imagery for the control of a lower-limb exoskeleton. Symmetry, 13(9):1746.[Frank et al., 2019] Frank, J., Antonini, M., and Anikeeva, P. (2019). Next-generation interfaces for studying neural function. Nature biotechnology, 37(9):1013–1023.[Freer and Yang, 2020] Freer, D. and Yang, G. (2020). Data augmentation for self-paced motor imagery classification with c-lstm. Journal of neural engineering, 17(1):016041.[Gannouni et al., 2020] Gannouni, S., Belwafi, K., Aboalsamh, H., AlSamhan, Z., Alebdi, B., Almassad, Y., and Alobaedallah, H. (2020). Eeg-based bci system to detect fingers movements. Brain Sciences, 10(12).[Gao et al., 2020] Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., and Perc, M. (2020). Complex networks and deep learning for eeg signal analysis. Cognitive Neurodynamics, pages 1–20.[Garc´ıa-Murillo et al., 2021] Garc´ıa-Murillo, D. G., Alvarez-Meza, A., and CastellanosDominguez, G. (2021). Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750.[George et al., 2021] George, O., Smith, R., Madiraju, P., Yahyasoltani, N., and Ahamed, S. (2021). Motor imagery: A review of existing techniques, challenges and potentials. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pages 1893–1899. IEEE.[G´eron, 2022] G´eron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. . O’Reilly Media, Inc.”.[Ghorbani et al., 2019] Ghorbani, A., Abid, A., and Zou, J. (2019). Interpretation of neural networks is fragile. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688.[Ghumman et al., 2021] Ghumman, M., Singh, S., Singh, N., and Jindal, B. (2021). Optimization of parameters for improving the performance of eeg-based bci system. Journal of Reliable Intelligent Environments, 7(2):145–156.[Gilbert et al., 2020] Gilbert, N., Mewis, R., and Sutcliffe, O. (2020). Classification of fentanyl analogues through principal component analysis (pca) and hierarchical clustering of gc–ms data. Forensic Chemistry, 21:100287.[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.[Grigorev et al., 2021] Grigorev, N., Savosenkov, A., Lukoyanov, M., Udoratina, A., Shusharina, N., Kaplan, A., Hramov, A., Kazantsev, V., and Gordleeva, S. (2021). A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:1583–1592.[Gubert et al., 2020] Gubert, P., Costa, M., Silva, C., and Trofino-Neto, A. (2020). The performance impact of data augmentation in csp-based motor-imagery systems for bci applications. Biomedical Signal Processing and Control, 62:102152.[Guidotti et al., 2018] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Comput. Surv., 51(5).[Guillot and Debarnot, 2019] Guillot, A. and Debarnot, U. (2019). Benefits of motor imagery for human space flight: A brief review of current knowledge and future applications. Frontiers in Physiology, 10:396.[Hassanpour et al., 2019] Hassanpour, A., Moradikia, M., Adeli, H., Khayami, S., and Shamsinejadbabaki, P. (2019). A novel end-to-end deep learning scheme for classifying multiclass motor imagery electroencephalography signals. Expert Systems, 36(6):e12494.[Ho and Hung, 2020] Ho, R. and Hung, K. (2020). A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd. In 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 203–210. IEEE.[Ibrahim and Shafiq, 2022] Ibrahim, R. and Shafiq, M. (2022). Augmented score-cam: High resolution visual interpretations for deep neural networks. Knowledge-Based Systems, 252:109287.[Ide and Kurita, 2017] Ide, H. and Kurita, T. (2017). Improvement of learning for cnn with relu activation by sparse regularization. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2684–2691. IEEE.[Ieracitano et al., 2021] Ieracitano, C., Mammone, N., Hussain, A., and Morabito, F. (2021). A novel explainable machine learning approach for eeg-based brain-computer interface systems. Neural Computing and Applications, pages 1–14.[Jackson et al., 2001] Jackson, P., Lafleur, M., Malouin, F., Richards, C., and Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of physical medicine and rehabilitation, 82(8):1133–1141.[Jeannerod, 2001] Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1):S103–S109.[Jeon et al., 2021] Jeon, E., Ko, W., Yoon, J., and Suk, H. (2021). Mutual informationdriven subject-invariant and class-relevant deep representation learning in bci. IEEE Transactions on Neural Networks and Learning Systems.[Jiang et al., 2020] Jiang, X., Chang, L., and Zhang, Y. (2020). Classification of alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques. Journal of Medical Imaging and Health Informatics, 10(5):1040–1048.[Jin et al., 2020a] Jin, J., Liu, C., Daly, I., Miao, Y., Li, S., Wang, X., and Cichocki, A. (2020a). Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10):2153–2163.[Jin et al., 2020b] Jin, J., Xiao, R., Daly, I., Miao, Y., Wang, X., and Cichocki, A. (2020b). Internal feature selection method of csp based on l1-norm and dempster–shafer theory. IEEE transactions on neural networks and learning systems, 32(11):4814–4825.[Kant et al., 2020] Kant, P., Laskar, S., Hazarika, J., and Mahamune, R. (2020). Cwt based transfer learning for motor imagery classification for brain computer interfaces. Journal of Neuroscience Methods, 345:108886.[Kappes and Morewedge, 2016] Kappes, H. and Morewedge, C. (2016). Mental simulation as substitute for experience. Social and Personality Psychology Compass, 10(7):405–420.[Keelawat et al., 2021] Keelawat, P., Thammasan, N., Numao, M., and Kijsirikul, B. (2021). A comparative study of window size and channel arrangement on eeg-emotion recognition using deep cnn. Sensors, 21(5):1678.[Khan et al., 2020] Khan, M., Das, R., Iversen, H., and Puthusserypady, S. (2020). Review on motor imagery based bci systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 123:103843.[Ko et al., 2021a] Ko, W., Jeon, E., Jeong, S., Phyo, J., and Suk, H. (2021a). A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces. Frontiers in Human Neuroscience, 15.[Ko et al., 2021b] Ko, W., Jeon, E., Jeong, S., and Suk, H. (2021b). Multi-scale neural network for eeg representation learning in bci. IEEE Computational Intelligence Magazine, 16(2):31–45.[Kumar et al., 2019] Kumar, S., Sharma, A., and Tsunoda, T. (2019). Brain wave classification using long short-term memory network based optical predictor. Scientific reports, 9(1):1–13.[Labach et al., 2019] Labach, A., Salehinejad, H., and Valaee, S. (2019). Survey of dropout methods for deep neural networks. arXiv preprint arXiv:1904.13310.[Lacey and Lawson, 2013] Lacey, S. and Lawson, R. (2013). Multisensory imagery. Springer Science & Business Media.[Ladda et al., 2021] Ladda, A., Lebon, F., and Lotze, M. (2021). Using motor imagery practice for improving motor performance – a review. Brain and Cognition, 150:105705.[Lawhern et al., 2018] Lawhern, V., Solon, A., Waytowich, N., Gordon, S., Hung, C., and Lance, B. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5):056013.[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.[Lee and Choi, 2018] Lee, H. and Choi, Y. (2018). A convolution neural networks scheme for classification of motor imagery eeg based on wavelet time-frequecy image. In 2018 International Conference on Information Networking (ICOIN), pages 906–909.[Lee et al., 2019a] Lee, M., Kwon, O., Kim, Y., Kim, H., Lee, Y., Williamson, J., Fazli, S., and Lee, S. (2019a). Eeg dataset and open bmi toolbox for three bci paradigms: an investigation into bci illiteracy. GigaScience, 8(5):giz002.[Lee et al., 2020] Lee, M., Yoon, J., and Lee, S. (2020). Predicting motor imagery performance from resting-state eeg using dynamic causal modeling. Frontiers in human neuroscience, 14:321.[Lee et al., 2019b] Lee, M.-H., Kwon, O.-Y., Kim, Y.-J., Kim, H.-K., Lee, Y.-E., Williamson, J., Fazli, S., and Lee, S.-W. (2019b). EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience, 8(5). giz002.[Li et al., 2020a] Li, A., Alimanov, K., Fazli, S., and Lee, M. (2020a). Towards paradigmindependent brain computer interfaces. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–6.[Li et al., 2019] Li, B., Yang, B., Guan, C., and Hu, C. (2019). Three-class motor imagery classification based on fbcsp combined with voting mechanism. In 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pages 1–4. IEEE.[Li et al., 2020b] Li, D., Xu, J., Wang, J., Fang, X., and Ji, Y. (2020b). A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of eeg signals decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12):2615–2626.[Li et al., 2021a] Li, R., Zhang, Y., Zhu, S., and Liu, S. (2021a). Person search via class activation map transferring. Multimedia Tools and Applications, pages 1–16.[Li et al., 2021b] Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., and Dou, D. (2021b). Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond.[Li et al., 2020c] Li, Y., Yang, H., Li, J., Chen, D., and Du, M. (2020c). Eeg-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by grad-cam. Neurocomputing, 415:225–233.[Liang et al., 2016] Liang, S., Choi, K., Qin, J., Pang, W., Wang, Q., and Heng, P. (2016). Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Computer Methods and Programs in Biomedicine, 132:63–74.[Liao et al., 2020] Liao, J., Luo, J., Yang, T., So, R., and Chua, M. (2020). Effects of local and global spatial patterns in eeg motor-imagery classification using convolutional neural network. Brain-Computer Interfaces, 7(3-4):47–56.[Lim et al., 2010] Lim, C., Lee, T., Guan, C., Fung, D., Cheung, Y., Teng, S., Zhang, H., and Krishnan, K. (2010). Effectiveness of a brain-computer interface based programme for the treatment of adhd: a pilot study. Psychopharmacol Bull, 43(1):73–82.[Liu et al., 2021] Liu, X., Lv, L., Shen, Y., Xiong, P., Yang, J., and Liu, J. (2021). Multiscale space-time-frequency feature-guided multitask learning cnn for motor imagery eeg classification. Journal of Neural Engineering, 18(2):026003.[Liu et al., 2020] Liu, X., Makeyev, O., and Besio, W. (2020). Improved spatial resolution of electroencephalogram using tripolar concentric ring electrode sensors. Journal of Sensors, 2020.[Lotte and Guan, 2011] Lotte, F. and Guan, C. (2011). Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 58(2):355–362.[Lotze et al., 2003] Lotze, M., Scheler, G., Tan, H., Braun, C., and Birbaumer, N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage, 20(3):1817–1829.[Luo et al., 2020] Luo, W., Zhang, J., Feng, P., Yu, D., and Wu, Z. (2020). A concise peephole model based transfer learning method for small sample temporal feature-based data-driven quality analysis. Knowledge-Based Systems, 195:105665.[Ma et al., 2021] Ma, W., Gong, Y., Zhou, G., Liu, Y., Zhang, L., and He, B. (2021). A channel-mixing convolutional neural network for motor imagery eeg decoding and feature visualization. Biomedical Signal Processing and Control, 70:103021.[Mahamune and Laskar, 2021] Mahamune, R. and Laskar, S. (2021). Classification of the four-class motor imagery signals using continuous wavelet transform filter bank-based two-dimensional images. International Journal of Imaging Systems and Technology.[Marchesotti et al., 2016] Marchesotti, S., Bassolino, M., Serino, A., Bleuler, H., and Blanke, O. (2016). Quantifying the role of motor imagery in brain-machine interfaces. Scientific reports, 6(1):1–12.[McFarland et al., 2000] McFarland, D., Miner, L., Vaughan, T., and Wolpaw, J. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain topography, 12(3):177–186.[Meng and He, 2019] Meng, J. and He, B. (2019). Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci. Frontiers in human neuroscience, 13:128.[Miotto et al., 2018] Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246.[Mirzaei and Ghasemi, 2021] Mirzaei, S. and Ghasemi, P. (2021). Eeg motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomedical Signal Processing and Control, 68:102584.[Mohdiwale et al., 2021] Mohdiwale, S., Sahu, M., Sinha, G., and Nisar, H. (2021). Investigating feature ranking methods for sub-band and relative power features in motor imagery task classification. Journal of healthcare engineering, 2021.[Monga et al., 2021] Monga, V., Li, Y., and Eldar, Y. (2021). Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44.[Morewedge et al., 2010] Morewedge, C., Huh, Y., and Vosgerau, J. (2010). Thought for food: Imagined consumption reduces actual consumption. Science, 330(6010):1530–1533.[Munzert and Lorey, 2013] Munzert, J. and Lorey, B. (2013). Motor and visual imagery in sports. In Multisensory imagery, pages 319–341. Springer[Naidu et al., 2020] Naidu, R., Ghosh, A., Maurya, Y., Kundu, S., et al. (2020). Is-cam: Integrated score-cam for axiomatic-based explanations. arXiv preprint arXiv:2010.03023.[Neuper et al., 2005] Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial eeg. Cognitive brain research, 25(3):668–677.[Olivas-Padilla et al., 2019] Olivas-Padilla, B. et al. (2019). Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Applied Soft Computing, 75:461–472[Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C., Salazar-Colores, S., Rodr´ıguez-Res´endiz, J., and G´omez-Loenzo, R. (2019). A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors, 19(20).[Ostarek et al., 2019] Ostarek, M., Joosen, D., Ishag, A., De Nijs, M., and Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentencepicture verification task? Cognition, 182:84–94.[Padfield et al., 2019] Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6):1423.[Page, 2000] Page, S. (2000). Imagery improves upper extremity motor function in chronic stroke patients: a pilot study. The Occupational Therapy Journal of Research, 20(3):200– 215.[Park and Kwak, 2016] Park, S. and Kwak, N. (2016). Analysis on the dropout effect in convolutional neural networks. In Asian conference on computer vision, pages 189–204. Springer.[Parvan et al., 2019] Parvan, M., Ghiasi, A., Rezaii, T., and Farzamnia, A. (2019). Transfer learning based motor imagery classification using convolutional neural networks. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages 1825–1828.[Petrichella et al., 2016] Petrichella, S., Vollere, L., Ferreri, F., Guerra, A., M¨a¨atta, S., K¨on¨onen, M., Di Lazzaro, V., and Iannello, G. (2016). Channel interpolation in tmseeg: A quantitative study towards an accurate topographical representation. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 989–992.[Pfurtscheller et al., 2006] Pfurtscheller, G., Brunner, C., Schl¨ogl, A., and Da Silva, F. (2006). Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage, 31(1):153–159.[Pillette et al., 2019] Pillette, L., Jeunet, C., N’Kambou, R., N’Kaoua, B., and Lotte, F. (2019). Towards artificial learning companions for mental imagery-based brain-computer interfaces.[Proakis, 2001] Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications. Pearson Education India.[Qian et al., 2018] Qian, X., Loo, B., Castellanos, F., Liu, S., Koh, H., Poh, X., Krishnan, R., Fung, D., Chee, M., Guan, C., et al. (2018). Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder. Translational psychiatry, 8(1):1–11.[Qin et al., 2018] Qin, Z., Yu, F., Liu, C., and Chen, X. (2018). How convolutional neural network see the world - a survey of convolutional neural network visualization methods.[Ras et al., 2018] Ras, G., van Gerven, M., and Haselager, P. (2018). Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges, pages 19–36. Springer International Publishing, Cham[Ren et al., 2020] Ren, S., Wang, W., Hou, Z., Liang, X., Wang, J., and Shi, W. (2020). Enhanced motor imagery based brain-computer interface via fes and vr for lower limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(8):1846–1855.[Rezeika et al., 2018] Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., and Volosyak, I. (2018). Brain–computer interface spellers: A review. Brain sciences, 8(4):57.[Rim et al., 2020] Rim, B., Sung, N., Min, S., and Hong, M. (2020). Deep learning in physiological signal data: A survey. Sensors, 20(4).[Rimbert et al., 2019] Rimbert, S., Gayraud, N., Bougrain, L., Clerc, M., and Fleck, S. (2019). Can a subjective questionnaire be used as brain-computer interface performance predictor? Frontiers in Human Neuroscience, 12:529.[Rong et al., 2020] Rong, Y., Wu, X., and Zhang, Y. (2020). Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. International Journal of Imaging Systems and Technology, 30(3):653–659.[Roth et al., 1996] Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., Morand, S., Gemignani, A., D´ecorps, M., and Jeannerod, M. (1996). Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport, 7(7):1280–1284.[Roy et al., 2020] Roy, S., Chowdhury, A., McCreadie, K., and Prasad, G. (2020). Deep learning based inter-subject continuous decoding of motor imagery for practical braincomputer interfaces. Frontiers in Neuroscience, 14.[Saha et al., 2018] Saha, S., Ahmed, K., Mostafa, R., Hadjileontiadis, L., and Khandoker, A. (2018). Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2):371–382.[Saha and Baumert, 2020] Saha, S. and Baumert, M. (2020). Intra-and inter-subject variability in eeg-based sensorimotor brain computer interface: a review. Frontiers in computational neuroscience, 13:87.[Sakhavi et al., 2015] Sakhavi, S., Guan, C., and Yan, S. (2015). Parallel convolutional-linear neural network for motor imagery classification. In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 2736–2740.[Sannelli et al., 2016] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2016). Ensembles of adaptive spatial filters increase bci performance: an online evaluation. Journal of neural engineering, 13(4):046003.[Sannelli et al., 2019] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2019). A large scale screening study with a smr-based bci: Categorization of bci users and differencesn in their smr activity. PLoS One, 14(1):e0207351.[Schalk et al., 2004] Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., and Wolpaw, J. (2004). Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on biomedical engineering, 51(6):1034–1043.[Sch¨olkopf et al., 2002] Sch¨olkopf, B., Smola, A., Bach, F., et al. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.[Seghier and Price, 2018] Seghier, M. and Price, C. (2018). Interpreting and utilising intersubject variability in brain function. Trends in Cognitive Sciences, 22(6):517–530.[Selvaraju et al., 2017] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626.[Selvaraju et al., 2016] Selvaraju, R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450.[Shahtalebi et al., 2020] Shahtalebi, S., Asif, A., and Mohammadi, A. (2020). Siamese neural networks for eeg-based brain-computer interfaces. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 442– 446. IEEE.[Shajil et al., 2020] Shajil, N., Mohan, S., Srinivasan, P., Arivudaiyanambi, J., and Murrugesan, A. (2020). Multiclass classification of spatially filtered motor imagery eeg signals using convolutional neural network for bci based applications. Journal of Medical and Biological Engineering, 40(5):663–672.[Shen et al., 2017] Shen, Y., Lu, H., and Jia, J. (2017). Classification of motor imagery eeg signals with deep learning models. In Sun, Y., Lu, H., Zhang, L., Yang, J., and Huang, H., editors, Intelligence Science and Big Data Engineering, pages 181–190, Cham. Springer International Publishing.[Singh et al., 2021] Singh, A., Hussain, A., Lal, S., and Guesgen, H. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6).[Skola et al., 2019] ˇ Skola, F., Tinkov´a, S., and Liarokapis, F. (2019). Progressive training for motor imagery brain-computer interfaces using gamification and virtual reality embodiment. Frontiers in human neuroscience, 13:329.[Song et al., 2013] Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine, 30(4):98–111.[Souto et al., 2020] Souto, D., Cruz, T., Fontes, P., Batista, R., and Haase, V. (2020). Motor imagery development in children: Changes in speed and accuracy with increasing age. Frontiers in Pediatrics, 8.[Spezialetti et al., 2018] Spezialetti, M., Cinque, L., Tavares, J., and Placidi, G. (2018). Towards eeg-based bci driven by emotions for addressing bci illiteracy: a meta-analytic review. Behaviour & Information Technology, 37(8):855–871.[Springenberg et al., 2014] Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.[Stasiak et al., 2018] Stasiak, B., Opa lka, S., Szajerman, D., and Wojciechowski, A. (2018). Eeg-based mental task classification with convolutional neural networks–parallel vs 2d data representation. In International Conference on Information Technologies in Biomedicine, pages 549–560. Springer.[Tabar and Halici, 2016] Tabar, Y. R. and Halici, U. (2016). A novel deep learning approach for classification of eeg motor imagery signals. Journal of neural engineering, 14(1):016003.[Taheri et al., 2020] Taheri, S., Ezoji, M., and Sakhaei, S. (2020). Convolutional neural network based features for motor imagery eeg signals classification in brain–computer interface system. SN Applied Sciences, 2(4):1–12.[Tan et al., 2018] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep transfer learning. In K˚urkov´a, V., Manolopoulos, Y., Hammer, B., Iliadis, L., and Maglogiannis, I., editors, Artificial Neural Networks and Machine Learning– ICANN 2018, pages 270–279, Cham. Springer International Publishing.[Tang et al., 2020] Tang, X., Li, W., Li, X., Ma, W., and Dang, X. (2020). Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multiscale convolutional neural network. Expert Systems with Applications, 149:113285.[Taran and Bajaj, 2019] Taran, S. and Bajaj, V. (2019). Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform. Neural Computing and Applications, 31(11):6925–6932.[Thodoroff et al., 2016] Thodoroff, P., Pineau, J., and Lim, A. (2016). Learning robust features using deep learning for automatic seizure detection. In Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., and Wiens, J., editors, Proceedings of the 1st Machine Learning for Healthcare Conference, volume 56 of Proceedings of Machine Learning Research, pages 178–190, Northeastern University, Boston, MA, USA. PMLR.[Thompson, 2019] Thompson, M. (2019). Critiquing the concept of bci illiteracy. Science and engineering ethics, 25(4):1217–1233.[Tilgner et al., 2021] Tilgner, S., Wagner, D., Kalischewski, K., Schmitz, J., and Kummert, A. (2021). Study on the influence of multiple image inputs of a multi-view fusion neural network based on grad-cam and masked image inputs. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 1427–1431. IEEE.[Uktveris and Jusas, 2017] Uktveris, T. and Jusas, V. (2017). Application of convolutional neural networks to four-class motor imagery classification problem. Information Technology and Control, 46(2):260–273.[Ulsamer et al., 2020] Ulsamer, P., Fertig, T., Pfeffel, K., and M¨uller, N. (2020). Motor imagery to control mobile applications-an fnirs study. In PACIS, page 56.[Vasilyev et al., 2021] Vasilyev, A., Nuzhdin, Y., and Kaplan, A. (2021). Does real-time feedback affect sensorimotor eeg patterns in routine motor imagery practice? Brain Sciences, 11(9):1234.[Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L., Caicedo-Acosta, J., AcostaMedina, C., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2020a). Regression networks for neurophysiological indicator evaluation in practicing motor imagery tasks. Brain Sciences, 10(10):707.[Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L., Caicedo-Acosta, J., and Castellanos-Dominguez, G. (2020b). Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns. Entropy, 22(6):703.[Versaci et al., 2020] Versaci, M., Angiulli, G., di Barba, P., and Morabito, F. (2020). Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates. Open Physics, 18(1):230–240.[Vidaurre et al., 2019] Vidaurre, C., Murguialday, A., Haufe, S., G´omez, M., M¨uller, K.-R., and Nikulin, V. (2019). Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation. NeuroImage, 199:375–386.[Wan et al., 2021] Wan, Z., Yang, R., Huang, M., Zeng, N., and Liu, X. (2021). A review on transfer learning in eeg signal analysis. Neurocomputing, 421:1–14.[Wang et al., 2020a] Wang, H., Naidu, R., Michael, J., and Kundu, S. (2020a). Sscam: Smoothed score-cam for sharper visual feature localization. arXiv preprint arXiv:2006.14255.[Wang et al., 2020b] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., and Hu, X. (2020b). Score-cam: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 24–25.[Wang et al., 2020c] Wang, J., Feng, Z., Ren, X., Lu, N., Luo, J., and Sun, L. (2020c). Feature subset and time segment selection for the classification of eeg data based motor imagery. Biomedical Signal Processing and Control, 61:102026.[Wang et al., 2020d] Wang, L., Huang, W., Yang, Z., and Zhang, C. (2020d). Temporalspatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomedical Signal Processing and Control, 58:101845.[Wang et al., 2018] Wang, S., Fu, L., Yao, J., and Li, Y. (2018). The application of deep learning in biomedical informatics. In 2018 International Conference on Robots Intelligent System (ICRIS), pages 391–394.[Wang et al., 2021] Wang, T., Du, S., and Dong, E. (2021). A novel method to reduce the motor imagery bci illiteracy. Medical & Biological Engineering & Computing, 59(11):2205–2217.[Wang et al., 2019] Wang, Y., Nakanishi, M., and Zhang, D. (2019). EEG-Based BrainComputer Interfaces, pages 41–65. Springer Singapore, Singapore.[Wehner et al., 1984] Wehner, T., Vogt, S., and Stadler, M. (1984). Task-specific emgcharacteristics during mental training. Psychological research, 46(4):389–401.[Wei and Lin, 2020] Wei, M. and Lin, F. (2020). A novel multi-dimensional features fusion algorithm for the eeg signal recognition of brain’s sensorimotor region activated tasks. International Journal of Intelligent Computing and Cybernetics.[Wei et al., 2021] Wei, X., Ortega, P., and Faisal, A. (2021). Inter-subject deep transfer learning for motor imagery eeg decoding. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), pages 21–24.[Wu et al., 2021] Wu, D., Jiang, X., Peng, R., Kong, W., Huang, J., and Zeng, Z. (2021). Transfer learning for motor imagery based brain-computer interfaces: A complete pipeline.[Wu et al., 2019] Wu, H., Niu, Y., Li, F., Li, Y., Fu, B., Shi, G., and Dong, M. (2019). A parallel multiscale filter bank convolutional neural networks for motor imagery eeg classification. Frontiers in Neuroscience, 13:1275.[Wuyam et al., 1995] Wuyam, B., Moosavi, S., Decety, J., Adams, L., Lansing, R., and Guz, A. (1995). Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. The Journal of physiology, 482(3):713–724.[Xiao et al., 2018] Xiao, C., Choi, E., and Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. Journal of the American Medical Informatics Association, 25(10):1419–1428.[Xu et al., 2019] Xu, G., Shen, X., Chen, S., Zong, Y., Zhang, C., Yue, H., Liu, M., Chen, F., and Che, W. (2019). A deep transfer convolutional neural network framework for eeg signal classification. IEEE Access, 7:112767–112776.[Xu et al., 2020a] Xu, J., Zheng, H., Wang, J., Li, D., and Fang, X. (2020a). Recognition of eeg signal motor imagery intention based on deep multi-view feature learning. Sensors, 20(12):3496.[Xu et al., 2020b] Xu, L., Xu, M., Ke, Y., An, X., Liu, S., and Ming, D. (2020b). Crossdataset variability problem in eeg decoding with deep learning. Frontiers in human neuroscience, 14:103.[Xu et al., 2021] Xu, L., Xu, M., Ma, Z., Wang, K., Jung, T., and Ming, D. (2021). Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization. Journal of Neural Engineering, 18(4):0460e5.[Xu et al., 2020c] Xu, M., Wei, Z., and Ming, D. (2020c). Research advancements of motor imagery for motor function recovery after stroke. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 37(1):169–173.[Xu et al., 2020d] Xu, M., Yao, J., Zhang, Z., Li, R., Yang, B., Li, C., Li, J., and Zhang, J. (2020d). Learning eeg topographical representation for classification via convolutional neural network. Pattern Recognition, 105:107390.[Yang et al., 2015] Yang, H., Sakhavi, S., Ang, K. K., and Guan, C. (2015). On the use of convolutional neural networks and augmented csp features for multi-class motor imagery of eeg signals classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2620–2623.[Yang et al., 2018] Yang, J., Yao, S., and Wang, J. (2018). Deep fusion feature learning network for mi-eeg classification. IEEE Access, 6:79050–79059.[Yang et al., 2019] Yang, X., Liu, W., Liu, W., and Tao, D. (2019). A survey on canonical correlation analysis. IEEE Transactions on Knowledge and Data Engineering, 33(6):2349–2368.[Yi et al., 2020] Yi, C., Chen, C., Si, Y., Li, F., Zhang, T., Liao, Y., Jiang, Y., Yao, D., and Xu, P. (2020). Constructing large-scale cortical brain networks from scalp eeg with bayesian nonnegative matrix factorization. Neural Networks, 125:338–348.[Yoon and Lee, 2020] Yoon, J. and Lee, M. (2020). Effective correlates of motor imagery performance based on default mode network in resting-state. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–5.[You et al., 2020] You, Y., Chen, W., and Zhang, T. (2020). Motor imagery eeg classification based on flexible analytic wavelet transform. Biomedical Signal Processing and Control, 62:102069.[Yu et al., 2022] Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.[Zeiler and Fergus, 2014a] Zeiler, M. and Fergus, R. (2014a). Visualizing and understanding convolutional networks. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, Computer Vision – ECCV 2014, pages 818–833, Cham. Springer International Publishing.[Zeiler and Fergus, 2014b] Zeiler, M. and Fergus, R. (2014b). Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818–833. Springer.[Zhang et al., 2021a] Zhang, H., Zhao, X., Wu, Z., Sun, B., and Li, T. (2021a). Motor imagery recognition with automatic eeg channel selection and deep learning. Journal of Neural Engineering, 18(1):016004.[Zhang et al., 2021b] Zhang, K., Robinson, N., Lee, S., and Guan, C. (2021b). Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network. Neural Networks, 136:1–10.[Zhang et al., 2020a] Zhang, K., Xu, G., Chen, L., Tian, P., Han, C., Zhang, S., and Duan, N. (2020a). Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Computational and Mathematical Methods in Medicine, 2020.[Zhang et al., 2020b] Zhang, K., Xu, G., Zheng, X., Li, H., Zhang, S., Yu, Y., and Liang, R. (2020b). Application of transfer learning in eeg decoding based on brain-computer interfaces: A review. Sensors, 20(21).[Zhang et al., 2019a] Zhang, R., Zong, Q., Dou, L., and Zhao, X. (2019a). A novel hybrid deep learning scheme for four-class motor imagery classification. Journal of neural engineering, 16(6):066004.[Zhang et al., 2021c] Zhang, R., Zong, Q., Dou, L., Zhao, X., Tang, Y., and Li, Z. (2021c). Hybrid deep neural network using transfer learning for eeg motor imagery decoding. Biomedical Signal Processing and Control, 63:102144.[Zhang et al., 2019b] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv., 52(1).[Zhang et al., 2021d] Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., and Zhang, Y. (2021d). A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 18(3):031002.[Zhang et al., 2015] Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A. (2015). Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. Journal of neuroscience methods, 255:85–91.[Zhao et al., 2019a] Zhao, D., Tang, F., Si, B., and Feng, X. (2019a). Learning joint space–time–frequency features for eeg decoding on small labeled data. Neural Networks, 114:67–77.[Zhao et al., 2019b] Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., and Sun, L. (2019b). A multi-branch 3d convolutional neural network for eeg-based motor imagery classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10):2164–2177.[Zhao et al., 2020] Zhao, X., Zhao, J., Liu, C., and Cai, W. (2020). Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. BioMed research international, 2020.[Zheng et al., 2021] Zheng, M., Yang, B., Gao, S., and Meng, X. (2021). Spatio-timefrequency joint sparse optimization with transfer learning in motor imagery-based braincomputer interface system. Biomedical Signal Processing and Control, 68:102702.[Zheng et al., 2020] Zheng, M., Yang, B., and Xie, Y. (2020). Eeg classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Medical & biological engineering & computing, 58(7).[Zhou et al., 2016] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).[Zhou et al., 2014] Zhou, B., Wu, X., Zhang, L., Lv, Z., and Guo, X. (2014). Robust spatial filters on three-class motor imagery eeg data using independent component analysis. Journal of Biosciences and Medicines, 2(2):43–49.[Zhuang et al., 2020] Zhuang, M., Wu, Q., Wan, F., and Hu, Y. (2020). State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. Journal of Neurorestoratology, 8(1):4.[Zimmermann-Schlatter et al., 2008] Zimmermann-Schlatter, A., Schuster, C., Puhan, M., Siekierka, E., and Steurer, J. (2008). Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal of neuroengineering and rehabilitation, 5(1):1–10.MincienciasBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1053812740.2022.pdf1053812740.2022.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf18769057https://repositorio.unal.edu.co/bitstream/unal/84594/2/1053812740.2022.pdf571bc16fb2be9497e21fc0e273a8a11aMD52THUMBNAIL1053812740.2022.pdf.jpg1053812740.2022.pdf.jpgGenerated Thumbnailimage/jpeg4544https://repositorio.unal.edu.co/bitstream/unal/84594/3/1053812740.2022.pdf.jpgcedcc4542db6f6f0e283b90a2ee62a7cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84594/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51unal/84594oai:repositorio.unal.edu.co:unal/845942023-08-23 23:03:48.369Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=