Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico
ilustraciones, gráficas, tablas
- Autores:
-
Quevedo Amaya, Yeison Mauricio
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77580
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Estrés de sequia
Genotipos
Gossypium hirsutum
genotypes
Gossypium hirsutum
Photosynthesis
Antioxidants
osmoregulation
proline
tolerance index
yield
Fotosíntesis
antioxidantes
osmoregulación
prolina
índices de tolerancia
rendimiento
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_69c5a2b8d78b00b14d8f508fc26ad917 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77580 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
dc.title.translated.eng.fl_str_mv |
Physiological and biochemical characterization of four cotton genotypes (Gossypium hirsutum L.) under conditions of water deficit |
title |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
spellingShingle |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales Estrés de sequia Genotipos Gossypium hirsutum genotypes Gossypium hirsutum Photosynthesis Antioxidants osmoregulation proline tolerance index yield Fotosíntesis antioxidantes osmoregulación prolina índices de tolerancia rendimiento |
title_short |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
title_full |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
title_fullStr |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
title_full_unstemmed |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
title_sort |
Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico |
dc.creator.fl_str_mv |
Quevedo Amaya, Yeison Mauricio |
dc.contributor.advisor.spa.fl_str_mv |
Barragán Quijano, Eduardo Moreno Fonseca, Liz Patricia |
dc.contributor.author.spa.fl_str_mv |
Quevedo Amaya, Yeison Mauricio |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales |
topic |
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales Estrés de sequia Genotipos Gossypium hirsutum genotypes Gossypium hirsutum Photosynthesis Antioxidants osmoregulation proline tolerance index yield Fotosíntesis antioxidantes osmoregulación prolina índices de tolerancia rendimiento |
dc.subject.agrovoc.spa.fl_str_mv |
Estrés de sequia Genotipos Gossypium hirsutum |
dc.subject.agrovoc.eng.fl_str_mv |
genotypes Gossypium hirsutum |
dc.subject.proposal.eng.fl_str_mv |
Photosynthesis Antioxidants osmoregulation proline tolerance index yield |
dc.subject.proposal.spa.fl_str_mv |
Fotosíntesis antioxidantes osmoregulación prolina índices de tolerancia rendimiento |
description |
ilustraciones, gráficas, tablas |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-06-01T17:48:39Z |
dc.date.available.spa.fl_str_mv |
2020-06-01T17:48:39Z |
dc.date.issued.spa.fl_str_mv |
2020-05-27 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77580 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/77580 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adhikari, P., Ale, S., Bordovsky, J. P., Thorp, K. R., Modala, N. R., Rajan, N. and Barnes, E. M. (2016). Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agricultural Water Management, 164, 317–330. https://doi.org/10.1016/j.agwat.2015.10.011 Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (2006). Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. Estudio Fao Riego Y Drenaje. Aranjuelo, I., Erice, G., Nogués, S., Morales, F., Irigoyen, J. J. and Sánchez-Díaz, M. (2008). The mechanism(s) involved in the photoprotection of PSII at elevated CO2 in nodulated alfalfa plants. Environmental and Experimental Botany, 64(3), 295–306. https://doi.org/https://doi.org/10.1016/j.envexpbot.2008.01.002 Argentel, L., González, M., Ávila, C. and Aguilera, R. (2006). Comportamiento del contenido relativo de agua y la concentración de pigmentos fotosintéticos de variedades de trigo cultivadas en condiciones de salinidad. Cultivos Tropicales, 27(3), 49–53. Ashraf, M. and Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Balaguer, L., Pugnaire, F. I., Martínez-Ferri, E., Armas, C., Valladares, F. and Manrique, E. (2002). Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240(2), 343–352. https://doi.org/10.1023/A:1015745118689 Basu, S., and Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/j.plgene.2017.04.008 Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060 Batra, N. G., Sharma, V., and Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9(1), 712–721. https://doi.org/10.1080/17429145.2014.905801 Ben Rejeb, I., Pastor, V. and Mauch-Mani, B. (2014a). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. (S. Renault & G. A. Sakar, Eds.), Plants. https://doi.org/10.3390/plants3040458 Ben Rejeb, K., Abdelly, C. and Savouré, A. (2014b). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284. https://doi.org/10.1016/j.plaphy.2014.04.007 Blum, A. (2011). Drought resistance and its improvement. In Plant Breeding for Water-Limited Environments (1st ed., pp. 53–152). https://doi.org/Doi 10.1007/978-1-4419-7491-4_3 Bourland, F. M., and Hornbeck, J. M. (2007). Variation in marginal bract trichome density in upland cotton. The Journal of Cotton Science, 11, 242–251. Boyer, J. S. (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annual Review of Phytopathology, 33, 251–274. https://doi.org/10.1146/annurev.py.33.090195.001343 Brito, G. G. de, Sofiatti, V., Lima, M. M. de A., Carvalho, L. P. and Silva Filho, J. L. da. (2011). Physiological traits for drought phenotyping in cotton. Acta Scientiarum. Agronomy, 33(1). https://doi.org/10.4025/actasciagron.v33i1.9839 Brito, G. G., Suassuna, N. D., Silva, V. N., Sofiatti, V., Diola, V. and Morello, C. L. (2014). Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions. Acta Scientiarum Agronomy, 36(3), 335–345. https://doi.org/10.4025/actasciagron.v36i3.17986 Burbano, O., Montes-Mercado, K. S., Pastrana-Vargas, I. J. and Cadena-Torres, J. (2017). Introducción y desarrollo de variedades de algodón Upland en el sistema productivo colombiano: Una revisión. Ciencia y Agricultura, 15(1), 29–44. https://doi.org/10.19053/01228420.v15.n1.2018.7754 Calle, K. and Proaño, J. (2006). Determinación de la curva de retención de humedad para los principales tipos de suelo de la península de Santa Helena, provincia del Guayas. In X Congreso ecuatoriano de la ciencia del suelo (pp. 1–25). Guayaquil. Campbell, G. S., and Norman, J. M. (1998). Wind. In An Introduction to Environmental Biophysics (pp. 63–75). https://doi.org/10.1007/978-1-4612-1626-1_5 Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T. and Kangasjärvi, J. (2016). ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 203, 69–83. https://doi.org/10.1016/j.jplph.2016.06.008 Castro, F., Contreras, D., Tamayo, L. and Trujillo, L. (2013). Análisis de la competitividad de la cadena algodón, fibras, textiles y confecciones 1. Fedesarrollo. Retrieved from http://www.fedesarrollo.org.co/wp-content/uploads/2011/08/Analisis-de-la-competitividad-de-la-cadena-algodon-Informe-Final-Conalgodon-_paginaweb.pdf Chastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C. D., Whitaker, J., Grey, T.L., Sorensen, R.B., Van lersen, M., Byrd, S.A. and Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18–28. https://doi.org/10.1016/j.jplph.2016.05.003 Chaves, M. M., and Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384. https://doi.org/10.1093/jxb/erh269 Chen, D., Ye, G., Yang, C., Chen, Y., and Wu, Y. (2005). The effect of high temperature on the insecticidal properties of Bt Cotton. Environmental and Experimental Botany, 53(3), 333–342. https://doi.org/https://doi.org/10.1016/j.envexpbot.2004.04.004 Chen, J. M. and Black, T. A. (1992). Defining leaf area index for non‐flat leaves. Plant, Cell & Environment, 15(4), 421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x Chool Boo, Y., and Jung, J. (1999). Water Deficit — Induced Oxidative Stress and Antioxidative Defenses in Rice Plants. Journal of Plant Physiology, 155(2), 255–261. https://doi.org/10.1016/S0176-1617(99)80016-9 Conalgodon. (2019). Estadisticas algodoneras. Retrieved November 22, 2019, from http://conalgodon.com/estadisticas/ Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536 Dar, N. A., Amin, I., Wani, W., Wani, S. A., Shikari, A. B., Wani, S. H., and Masoodi, K. Z. (2017). Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene, 11, 106–111. https://doi.org/10.1016/j.plgene.2017.07.003 De Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P. and Williams, M. (2011). An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 115, 767–780. https://doi.org/10.1016/j.rse.2010.11.004 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017 Ehleringer, J. (1980). Leaf morphology and reflectance in relation to water and temperature stress. In Adaptation of Plants to Water and High Temperature Stress (1st ed.). New York: John Wiley and Sons, Inc. El-Hashash, E. F. and Agwa, A. M. (2018). Genetic Parameters and Stress Tolerance Index for Quantitative Traits in Barley under Different Drought Stress Severities. Asian Journal of Research in Crop Science, 1(1), 1–16. https://doi.org/10.9734/ajrcs/2018/38702 Ennahli, S., and Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374–2382. https://doi.org/10.2135/cropsci2005.0147 Fageria, N. K., Baligar, V. C. and Jones, C. A. (2011). Growth and mineral nutrition of field crops. Books in soils, plants, and the environment. Retrieved from http://files/12941/Fageria et al - Growth and mineral nutrition of field crops - 2011.pdf Fang, Y., and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, Vol. 72, pp. 673–689. https://doi.org/10.1007/s00018-014-1767-0 FAO. (2017). FAOSTAT. Retrieved from Food and Agriculture Organization of the United Nations website: http://www.fao.org/faostat/en/#home Farquhar, G. D., O’Leary, M. H. and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121–137. https://doi.org/10.1071/PP9820121 Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetable and Other Food Crops in Temperature and Water Stress (pp. 257–270). Galmés, J., Medrano, H., and Flexas, J. (2007). Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environmental and Experimental Botany, 60(1), 105–111. https://doi.org/10.1016/j.envexpbot.2006.08.001 Geladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185(C), 1–17. https://doi.org/10.1016/0003-2670(86)80028-9 Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058 Gómez, S., Torres, V., García, Y. and Navarro, J. (2012). Procedimientos estadísticos más utilizados en el análisis de medidas repetidas en el tiempo en el sector agropecuario. Revista Cubana de Ciencia Agrícola, 46(1), 1–7. Gonzáles, W. L., Negritto, M. A., Suárez, L. H., and Gianoli, E. (2008). Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 33(1), 128–132. https://doi.org/10.1016/j.actao.2007.10.004 Head, G., and Dennehy, T. (2010). Insect resistance management for transgenic Bt cotton. In U. B. Zehr (Ed.), Cotton (Vol. 65, pp. 113–125). https://doi.org/10.1007/978-3-642-04796-1_7 Hennouni, N., Djebar, M. R., Rouabhi, R., Youbi, M. and Berrebbah, H. (2008). Effects of Artea, a systemic fungicide, on the antioxidant system and the respiratory activity of durum wheat (Triticum durum L.). African Journal of Biotechnology, 7(5), 591–594. Hornbeck, J. M., and Bourland, F. M. (2007). Visual Ratings and Relationships of Trichomes on Bracts, Leaves, and Stems of Upland Cotton. The Journal of Cotton Science, 11, 252–258. Hsiao, T. C. and Acevedo, E. (1974). Plant responses to water deficits, water-use efficiency, and drought resistance. Agricultural Meteorology, 14(1–2), 59–84. https://doi.org/https://doi.org/10.1016/0002-1571(74)90011-9 Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Marjorie, P., Bouteillé, M., Stitt, M., Gibon, Y., Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357–372. https://doi.org/10.1104/pp.110.157008 Huttunen, P., Kärkkäinen, K., Løe, G., Rautio, P., and Agren, J. (2010). Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Annales Botanici Fennici, 47(3), 199–207. https://doi.org/10.5735/085.047.0304 IDEAM. (2009). Los fenómenos el niño/niña. Retrieved from http://www.ideam.gov.co Indahl, U. (2005). A twist to partial least squares regression. Journal of Chemometrics, 19(1), 32–44. https://doi.org/10.1002/cem.904 IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. In Cambio Climático 2014: Informe de síntesis. https://doi.org/10.1016/S1353-8020(09)70300-1 Jarma, A., Cardona, C., and Araméndiz, H. (2012). Efecto del cambio climático sobre la fisiología de las plantas cultivadas: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 15(1), 63–76. Jia, H., Wang, C., Wang, F., Liu, S., Li, G., and Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0120646 Kale, S., Sönmez, B., Madenoğlu, S., Avağ, K., Türker, U., Çayci, G. and Kütük, A. C. (2017). Effect of irrigation regimes on carbon isotope discrimination, yield and irrigation water productivity of wheat. Turkish Journal of Agriculture and Forestry, 41, 50–58. https://doi.org/10.3906/tar-1604-47 Kennedy, C. W., Ba, M. T., Caldwell, A. G., Hutchinson, R. L. and Jones, J. E. (1987). Differences in root and shoot growth and soil moisture extraction between cotton cultivars in an acid subsoil. Plant and Soil, 101(2), 241–246. https://doi.org/10.1007/BF02370651 Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R. and Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1), 1–17. https://doi.org/10.1186/s40659-018-0198-z Kirkham, M. B. (2005). Stomata and measurement of stomatal resistance. In M. B. Kirkham (Ed.), Principles of Soil and Plant Water Relations (pp. 379–401). https://doi.org/https://doi.org/10.1016/B978-012409751-3/50022-0 Koleva, M., and Dimitrova, V. (2018). Evaluation of Drought Tolerance in New Cotton Cultivars Using Stress Tolerance Indices. AGROFOR International Journal, 3(1), 11–17. https://doi.org/10.7251/agreng1801011k Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012 Kuai, J., Zhou, Z., Wang, Y., Meng, Y., Chen, B. and Zhao, W. (2015). The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. European Journal of Agronomy, 67, 61–74. https://doi.org/10.1016/j.eja.2015.03.005 Lawlor, D. W.,and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.x Leidi, E O, Lopez, M, Gorham, J. and Gutie, J. C. (1999). Variation in carbon isotope discrimination and other traits related to drought tolerance in upland cotton cultivars under dryland conditions. Field Crops Research, 61, 109–123. https://doi.org/10.1016/S0378-4290(98)00151-8 Levi, A., Ovnat, L., Paterson, A. H. and Saranga, Y. (2009). Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Science, 177(2), 88–96. https://doi.org/10.1016/j.plantsci.2009.04.001 Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1 Liu, F., Jensen, C. R. and Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13. https://doi.org/10.1016/S0378-4290(03)00165-5 Liu, Z., Zhang, P., Wang, R., Kuai, J., Li, L., Wang, Y. and Zhou, Z. (2014). Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll. The journal of applied ecology, 25(12), 3533–3539. Loka, D. and Oosterhuis, D. M. (2012). Water Stress and Reproductive Development in Cotton. In D. M. Oosterhuis & J. T. Cothren (Eds.), Floweting and Fruiting in Cotton (pp. 51–58). Cordova, Tennessee. Longenberger, P. S., Smith, C. W., Duke, S. E. and Mc Michael, B. L. (2009). Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica, 166(1), 25–33. https://doi.org/10.1007/s10681-008-9820-4 Lopez, F. B., Chauhan, Y. S. and Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeonpea. Journal of Agronomy and Crop Science, 178(1), 1–7. https://doi.org/10.1111/j.1439-037X.1997.tb00344.x Ludlow, M. (1989). Strategies of Response to Water Stress. In T. Kreeeb, K.H., Richter, H. and Hinckley (Ed.), Structural and Functional Responses to Environmental Stresses. The Hague. Lugojan, C. and Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173–177. Luo, H. H., Zhang, Y. L. and Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54(1), 65–73. https://doi.org/10.1007/s11099-015-0165-7 Madhava Rao, K. V. (2006). Introduction. In K. V. Madhava Rao, A. S. Raghavendra, and K. Janardhan Reddy (Eds.), Physiology and Molecular Biology of Stress Tolerance in plants (pp. 1–14). https://doi.org/10.1007/1-4020-4225-6 Maiti, R. K., Pawar, R. V, Misra, S. K., Rajkumar, D., Ramaswamy, A., and Vidyasagar, P. (2011). Comparative anatomy of cotton and its applications. International Journal of Bio-resource and Stress Management, 2(21), 257–262. Malik, R. S., Dhankar, J. S., and Turner, N. C. (1979). Influence of soil water deficits on root growth of cotton seedlings. Plant and Soil, 115, 109–115. Massacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., Chernikova, T. N., Thor, K., and Leipner, J. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 46(2), 189–195. https://doi.org/10.1016/j.plaphy.2007.10.006 Melgarejo, L. M., Romero, M., Hernández, S., Barrera, Jaime, S. M. E., Suárez, D. and Pérez, W. (2010). Experimentos en fisiología vegetal, Laboratorio de físiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia. Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1. Retrieved from http://ciencias.bogota.unal.edu.co/fileadmin/content/laboratorios/fisiologiavegetal/documentos/Libro_experimentos_en_fisiologia_y_bioquimica_vegetal__Reparado_.pdf Moreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Agronomía Colombiana, 27(2), 179–191. Murillo Solano, J. (2001). Requerimientos hídricos y efectos del agua sobre el rendimiento del algodonero. Memorias Del Foro Tecnológico Estrategias de Organización, Comercialización y Tecnológicas Para Mejorar La Competitividad Del Sistema de Producción Del Algodón En El César y Guajira. Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C. and Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/https://doi.org/10.1016/j.jplph.2018.03.001 Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135 Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135 Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(March), 1–8. https://doi.org/10.3389/fpls.2014.00086 Pandey, S., and Nagar, P. K. (2002). Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biologia Plantarum, 45(2), 291–294. https://doi.org/10.1023/A:1015165210967 Pandey, V., and Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/j.rsci.2015.04.001 Papathanasiou, F., Dordas, C., Gekas, F., Pankou, C., Ninou, E., Mylonas, I., Tsantarmas, K., Sistanis, I., Sinapidou, E., Lithourgidis, A., Petrevska, J., Katarzyna, Papadopoulos, I., Zouliamis, P., Kargiotidou, A. and Tokatlidis, I. (2015). The Use of Stress Tolerance Indices for the Selection of Tolerant Inbred Lines and their Correspondent Hybrids under Normal and Water-stress Conditions. Procedia Environmental Sciences, 29, 274–275. https://doi.org/10.1016/J.PROENV.2015.07.279 Parida, A. K., Dagaonkar, V. S. and Aurangabadkar, M. S. P. L. P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery, Acta Physiologiae Plantarum, 30, 619–627. https://doi.org/10.1007/s11738-008-0157-3 Parida, A. K., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V. and Aurangabadkar, L. P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1(1), 37–48. https://doi.org/10.1007/s11816-006-0004-1 Parida, A. K., Das, A. B. and Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, 18, 167–174. https://doi.org/10.1007/s00468-003-0293-8 Parimala, P., and Muthuchelian, K. (2010). Physiological response of non-Bt and Bt cotton to short-term drought stress. Photosynthetica, 48(4), 630–634. https://doi.org/10.1007/s11099-010-0081-9 Patil, B. C., Babu, A. G. and Pawar, K. N. (2013). Assessment of Genotypic Variability for Growth, Biophysical Parameters, Yield and Yield-Attributing Characters Under Drought Stress in Cotton. In A. Sabu & A. Augustine (Eds.), Prospects in Bioscience: Addressing the Issues (pp. 103–110). https://doi.org/10.1007/978-81-322-0810-5 Pettigrew, W. T. (2004). Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4), 1265–1272. https://doi.org/10.2135/cropsci2004.1265 Pettigrew, W. T. (2004b). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96, 377–383. https://doi.org/10.2134/agronj2004.3770 Pettigrew, W. T. and Gerik, T. J. (2007). Cotton Leaf Photosynthesis and Carbon Metabolism. Advances in Agronomy, 94(06), 209–236. https://doi.org/10.1016/S0065-2113(06)94005-X Quevedo Amaya, Y. M., Beltrán Medina, J. I. and Barragán Quijano, E. (2019). Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Revista Facultad Nacional de Agronomía Medellín, 72(1), 8699–8706. https://doi.org/10.15446/rfnam.v72n1.72076 Raines, C. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology, 115(1), 36–42. https://doi.org/10.1104/pp.110.168559 Raja, V., Majeed, U., Kang, H., Andrabi, K. I. and John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/j.envexpbot.2017.02.010 Rich, S. M. and Watt, M. (2013). Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 64, 1193–1208. https://doi.org/10.1093/jxb/ert043 Rodríguez P, L., Ñústez L, C. E., and Moreno F, L. P. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901 Rodriguez, E. (1984). Biology and Chemistry of Plant Trichomes (1st ed.). Springer US. Rojas Palacio, H. (1989). Requerimientos de agua en el cultivo del algodonero. Foro Tecnologico Del Algodonero En Valledupar (Colombia), 59–89. Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P. and Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2014.09.006 Rosenow, D. T., Quisenberry, J. E., Wendt, C. W. and Clark, L. E. (1983). Drought tolerant sorghum and cotton germplasm. Agricultural Water Management, 7(1–3), 207–222. https://doi.org/10.1016/0378-3774(83)90084-7 Rosielle, A. A., and Hamblin, J. (1981). Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943–946. https://doi.org/doi:10.2135/cropsci1981.0011183X002100060033x Ruiz, M. C., Domingo, R., Save, R., Biel, C. and Torrecillas, A. (1997). Effects of water stress and rewatering on leaf water relations of lemon plants. Biologia Plantarum, 39(4), 623–631. https://doi.org/10.1023/A:1000943218256 Sahito, A., Baloch, Z. A., Mahar, A., Otho, S. A., Kalhoro, S. A., Ali, A., Kalhoro, F., Soomro, R. and Ali, F. (2015). Effect of Water Stress on the Growth and Yield of Cotton Crop (Gossypium hirsutum L.). American Journal of Plant Sciences, 6(7), 1027–1039. https://doi.org/10.4236/ajps.2015.67108 Saleem, M. F., Raza, M. A. S., Ahmad, S., Khan, I. H., and Shahid, A. M. (2016). Understanding and mitigating the impacts of drought stress in cotton- A review. Pakistan Journal of Agricultural Sciences, 53(3), 609–623. https://doi.org/10.21162/PAKJAS/16.3341 Santos, I. C. dos, Almeida, A.-A. F. de, Anhert, D., Conceição, A. S. da, Pirovani, C. P., Pires, J. L., Valle, R. and Baligar, V. C. (2014). Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit. PLoS ONE, 9(12), e115746. https://doi.org/10.1371/journal.pone.0115746 Saranga, Y., Paterson, A. H., and Levi, A. (2009). Bridging Classical and Molecular Genetics of Abiotic Stress Resistance in Cotton. In A. H. Paterson (Ed.), Genetics and Genomics of Cotton (pp. 337–352). https://doi.org/10.1007/978-0-387-70810-2_14 Saranga, Y., Rudich, J. and Marani, A. (1991). The relations between leaf water potential of cotton plants and environmental and plant factors. Field Crops Research, 28(1–2), 39–46. https://doi.org/10.1016/0378-4290(91)90072-4 Saranga, Yehoshua, Flash, I., Paterson, A. H. and Yakir, D. (1999). Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Science, 142(1), 47–56. https://doi.org/10.1016/S0168-9452(99)00004-7 Schneider, K. A., Rosales, R., Ibarra, F., Cazares, B., Acosta, J. A., Ramirez, P., Wassimi, N, Kelly, J. D. (1997). Improving common bean performance under drought stress. Crop Science, 37(1), 43–50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x Sekmen, A. H., Ozgur, R., Uzilday, B. and Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99, 141–149. https://doi.org/10.1016/j.envexpbot.2013.11.010 Shao, H.B., Chu, L.Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R. and Shao, M.-A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29(2), 131–151. https://doi.org/10.1080/07388550902869792 Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., and Nguyen, H. T. (2004). Root growth maintenance during water deficits: Physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343–2351. https://doi.org/10.1093/jxb/erh276 Showler, A., and Moran, P. J. (2003). Effects of drought stressed cotton, Gossypium hirsutum L., on beet armyworm, Spodoptera exigua (Hubner), oviposition, and larval feeding preferences and growth. Journal of Chemical Ecology, 29(9), 1997–2011. https://doi.org/10.1023/A:1025626200254 Siembra. (n.d.). Demandas de investigación de la cadena algodón-textil-confecciones. Retrieved October 15, 2017, from http://www.siembra.gov.co/siembra/Agenda.aspx Signorelli, S., Coitiño, E. L., Borsani, O. and Monza, J. (2014). Molecular mechanisms for the reaction between ˙OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118(1), 37–47. https://doi.org/10.1021/jp407773u Singh, C., Kumar, V., Prasad, I., Patil, V. R. and Rajkumar, B. K. (2016). Response of upland cotton (G.hirsutum L.) genotypes to drought stress using drought tolerance indices. Journal of Crop Science and Biotechnology, 19(1), 53–59. https://doi.org/10.1007/s12892-015-0073-1 Singh, R., Pandey, N., Kumar, A. and Shirke, P. A. (2016a). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-y Singh, R., Pandey, N., Kumar, A., and Shirke, P. A. (2016b). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-y Sisó, S., Camarero, J., and Gil-Pelegrín, E. (2001). Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees - Structure and Function, 15(6), 341–345. https://doi.org/10.1007/s004680100110 Snider, J. L. and Oosterhuis, D. M. (2015). Physiology. In S. ASA, CSSA (Ed.), Cotton (2nd ed., Vol. 1, pp. 339–400). Madison, WI. https://doi.org/10.2134/agronmonogr57.2013.0044 Stevens, G., Rhine, M., Straatmann, Z. and Dunn, D. (2016). Measuring Soil and Tissue Potassium with a Portable Ion-Specific Electrode in Cotton. Communications in Soil Science and Plant Analysis, 47(18), 2148–2155. https://doi.org/10.1080/00103624.2016.1228944 Strauss, A. J., Krüger, G., Strasser, R. J., and Heerden, P. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/j.envexpbot.2005.01.011 Su, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B. and Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2017.07.017 Tamás, L., Mistrík, I. and Zelinová, V. (2017). Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environmental and Experimental Botany, 140, 34–40. https://doi.org/10.1016/j.envexpbot.2017.05.016 Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067 Tuteja, N., Sahoo, R. K., Huda, K. M. K., Tula, S. and Tuteja, R. (2015). OsBAT1 Augments Salinity Stress Tolerance by Enhancing Detoxification of ROS and Expression of Stress-Responsive Genes in Transgenic Rice. Plant Molecular Biology Reporter, 33(5), 1192–1209. https://doi.org/10.1007/s11105-014-0827-9 Uarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M. and Nerling, D. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. In D. K. Gupta, J. M. Palma and F. J. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher Plants (1st ed., pp. 207–232). Springer International Publishing. https://doi.org/10.1007/978-3-319-75088-0 Ullah, A., Sun, H., Yang, X. and Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688 USDA-ERS. (2017). Cotton and Wool Outlook. Retrieved November 22, 2019, from https://www.ers.usda.gov/publications/pub-details/?pubid=84691 Wang, R., Gao, M., Ji, S., Wang, S., Meng, Y. and Zhou, Z. (2016b). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137–146. https://doi.org/10.1016/j.plaphy.2016.05.035 Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B. and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477 Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477 Wang, X., Mohamed, I., Xia, Y. and Chen, F. (2014). Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. Journal of Soil Science and Plant Nutrition, 14(2), 833–844. https://doi.org/10.4067/s0718-95162014005000066 Wang, Y. S., Ding, M. Di, Pang, Y., Gu, X. G., Gao, L. P. and Xia, T. (2013). Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. American Journal of Biochemistry and Biotechnology, 9(3), 235–242. https://doi.org/10.3844/ajbbsp.2013.235.242 Wani, S. H., Dutta, T., Neelapu, N. R. R., and Surekha, C. (2017). Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 11, 219–231. https://doi.org/10.1016/j.plgene.2017.05.006 Werker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35. https://doi.org/10.1016/S0065-2296(00)31005-9 Wilhite, D. A., Sivakumar, M. V. K. and Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002 Yakir, D., Deniro, M. J. and Ephrath, J. E. (1990). Effects of water stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environment, 13(9), 949–955. Yang, H., Zhang, D., Li, X., Li, H., Zhang, D., Lan, H., Wood, A. and Wang, J. (2016). Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding, 36(3), 1–13. https://doi.org/10.1007/s11032-015-0422-2 Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S. and Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/j.jplph.2016.01.016 Zahoor, R., Zhao, W., Dong, H., Snider, J. L., Abid, M., Iqbal, B., and Zhou, Z. (2017). Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 119, 21–32. https://doi.org/10.1016/j.plaphy.2017.08.011 Zangi, M. R. (2005). Correlation Between Drought Resistance Indices and Cotton Yield in Stress and Non Stress Conditions. Asian Journal of Plant Sciences, 4(2), 106–108. https://doi.org/10.3923/ajps.2005.106.108 Zhang, C. zhi, Zhang, J. bao, Zhao, B. zi, Zhang, H. and Huang, P. (2009). Stable Isotope Studies of Crop Carbon and Water Relations: A Review. Agricultural Sciences in China, 8(5), 578–590. https://doi.org/10.1016/S1671-2927(08)60249-7 Zhang, C., Zhan, D. X., Luo, H. H., Zhang, Y. L., and Zhang, W. F. (2016). Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica, 54(1), 12–18. https://doi.org/10.1007/s11099-015-0139-9 Zhang, F., Li, S., Yang, S., Wang, L. and Guo, W. (2015). Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Molecular Biology, 87(1–2), 47–67. https://doi.org/10.1007/s11103-014-0260-3 Zhao, C. Y., Yan, Y. Y., Yimamu, Y., Li, J. Y., Zhao, Z. M. and Wu, L. S. (2010). Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. Journal of Arid Land, 2(4), 243–249. https://doi.org/10.3724/SP.J.1227.2010.00243 Zlatev, Z. S. (2013). Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food and Agriculture, 25(12), 1014–1023. https://doi.org/10.9755/ejfa.v25i12.16734 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
publisher.none.fl_str_mv |
Universidad Nacional de Colombia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77580/2/1110520425.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77580/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/77580/4/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77580/5/1110520425.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
defde4253030f92bdb1cd6c5643fc28f 6f3f13b02594d02ad110b3ad534cd5df 217700a34da79ed616c2feb68d4c5e06 4c40f5ce3b0803eb6041f74bd9ed4ede |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090180150165504 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barragán Quijano, Eduardo2b1bc9cc-77ed-45b3-8e97-12d4bb92aaebMoreno Fonseca, Liz Patricia88fd0503-2fdc-4ce5-8693-e30417a7f0e9Quevedo Amaya, Yeison Mauricio677fd04f3dba313ef0312cd5cf3eb54f2020-06-01T17:48:39Z2020-06-01T17:48:39Z2020-05-27https://repositorio.unal.edu.co/handle/unal/77580Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl déficit hídrico es limitante de la productividad del cultivo de algodón. Para mitigar el efecto del estrés es necesario el desarrollo de variedades con tolerancia al estrés. El déficit hídrico afecta el estado hídrico, esto reduce la fotosíntesis y el crecimiento y desarrollo. Las plantas de algodón hacen frente al estrés mediante el crecimiento radical, síntesis de antioxidantes y osmolitos. El objetivo de este trabajo fue la caracterización fisiológica y bioquímica de cuatro variedades de algodón en condiciones de déficit hídrico durante la floración. Se evaluó el estado hídrico, intercambio de gases, pigmentos fotosintéticos, fluorescencia de la clorofila, acumulación de masa seca, absición de estructuras reproductivas, perdida de electrolitos y malondialdehido, contenido de potasio, azúcares, prolina y carotenoides. Además, se evaluó el rendimiento y calidad. Mediante el análisis de índices de tolerancia y análisis multivariado se identificaron variables altamente relacionadas con la tolerancia al déficit hídrico. Los datos mostraron que el déficit hídrico causó reducción del estado hídrico, esto genero una limitación estomática de la fotosíntesis, y reducción de la discriminación del carbono 13. La limitación estomática generó estrés oxidativo que fue mitigado con la acumulación de prolina y carotenoides. También se observó un aumento en la acumulación de osmolitos como potasio, azúcares y prolina. Sin embargo, no mejoró sustancialmente el estado hídrico. Se observó una traslocación de asimilados hacia la raíz durante el periodo de estrés. Después de la rehidratación en la variedad 159 una compensación del crecimiento radical fue observada. El déficit hídrico genero reducción del índice de área foliar y absición de estructuras reproductivas. Pero después de la rehidratación se observó una rápida recuperación del índice de área foliar y una emisión de nuevas estructuras reproductivas y de ramas monopodiales en 123,159 y 168. La variedad más tolerante al déficit hídrico fue 129 debido a su alto índice de tolerancia al estrés, dado por una alta acumulación de prolina, bajo malondialdehido y alto peso de cápsula. Las variedades 159 y 168 presentaron estabilidad en el rendimiento entre plantas estresadas y bien regadas, este comportamiento se relacionó con el contenido de azúcares totales y la relación clorofila a/b. Por tanto, el diferencial en la magnitud de la expresión de moléculas protectoras fue el factor determinante en el nivel de tolerancia al déficit hídrico. (Texto tomado de la fuente).The drought stress is an abiotic stress limiting the productivity of cotton crop. To mitigate the effect of stress is necessary, the development of varieties with stress tolerance. drought stress affects the hydric status, this reduces photosynthesis and growth and development. Cotton plants cope with stress through radical growth, synthesis of antioxidants and osmolytes. The aim of this work was the physiological and biochemical characterization of four varieties of cotton under drought stress conditions during flowering. Hydric status gas exchange, photosynthetic pigments, chlorophyll fluorescence, accumulation of dry mass, abscission of reproductive structures, electrolyte leakage and malondialdehyde, potassium content, sugars, proline and carotenoids were evaluated. In addition, yield and quality were evaluated. Through of the analysis of tolerance indices and multivariate analysis, variables highly related to drought stress tolerance are identified. The data’s shows that affect the drought stress cause the reduction of the hydric status, this generates a stomatic limitation of photosynthesis, and the reduction of carbon discrimination 13. The drought stress generates oxidative stress that is mitigated with the accumulation of proline and carotenoids. An increase in the accumulation of osmolytes such as potassium, sugars and proline were also increased. However, the water status did not improve. It is a translocation of assimilates to the root during the period of stress. After rehydration in variety 159 compensation for radical growth was observed. The drought stress generated a reduction in the leaf area index and the abscission of reproductive structures. After rehydration there was a rapid recovery of the leaf area index and an emission of new reproductive structures and monopodial branches in 123,159 and 168. The variety most tolerant to drought stress was 129 due to its high stress tolerance index, given by a high accumulation of proline, low malondialdehyde and high capsule weight. Varieties 159 and 168 characteristics yield stability between stressed and well-watered plants, this behavior was related to the total sugar content and the chlorophyll a / b ratio.MaestríaMagíster en Ciencias AgrariasFisiología de cultivosCiencias Agronómicas113 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesEstrés de sequiaGenotiposGossypium hirsutumgenotypesGossypium hirsutumPhotosynthesisAntioxidantsosmoregulationprolinetolerance indexyieldFotosíntesisantioxidantesosmoregulaciónprolinaíndices de toleranciarendimientoCaracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídricoPhysiological and biochemical characterization of four cotton genotypes (Gossypium hirsutum L.) under conditions of water deficitTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdhikari, P., Ale, S., Bordovsky, J. P., Thorp, K. R., Modala, N. R., Rajan, N. and Barnes, E. M. (2016). Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agricultural Water Management, 164, 317–330. https://doi.org/10.1016/j.agwat.2015.10.011Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (2006). Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. Estudio Fao Riego Y Drenaje.Aranjuelo, I., Erice, G., Nogués, S., Morales, F., Irigoyen, J. J. and Sánchez-Díaz, M. (2008). The mechanism(s) involved in the photoprotection of PSII at elevated CO2 in nodulated alfalfa plants. Environmental and Experimental Botany, 64(3), 295–306. https://doi.org/https://doi.org/10.1016/j.envexpbot.2008.01.002Argentel, L., González, M., Ávila, C. and Aguilera, R. (2006). Comportamiento del contenido relativo de agua y la concentración de pigmentos fotosintéticos de variedades de trigo cultivadas en condiciones de salinidad. Cultivos Tropicales, 27(3), 49–53.Ashraf, M. and Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006Balaguer, L., Pugnaire, F. I., Martínez-Ferri, E., Armas, C., Valladares, F. and Manrique, E. (2002). Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240(2), 343–352. https://doi.org/10.1023/A:1015745118689Basu, S., and Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/j.plgene.2017.04.008Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060Batra, N. G., Sharma, V., and Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9(1), 712–721. https://doi.org/10.1080/17429145.2014.905801Ben Rejeb, I., Pastor, V. and Mauch-Mani, B. (2014a). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. (S. Renault & G. A. Sakar, Eds.), Plants. https://doi.org/10.3390/plants3040458Ben Rejeb, K., Abdelly, C. and Savouré, A. (2014b). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284. https://doi.org/10.1016/j.plaphy.2014.04.007Blum, A. (2011). Drought resistance and its improvement. In Plant Breeding for Water-Limited Environments (1st ed., pp. 53–152). https://doi.org/Doi 10.1007/978-1-4419-7491-4_3Bourland, F. M., and Hornbeck, J. M. (2007). Variation in marginal bract trichome density in upland cotton. The Journal of Cotton Science, 11, 242–251.Boyer, J. S. (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annual Review of Phytopathology, 33, 251–274. https://doi.org/10.1146/annurev.py.33.090195.001343Brito, G. G. de, Sofiatti, V., Lima, M. M. de A., Carvalho, L. P. and Silva Filho, J. L. da. (2011). Physiological traits for drought phenotyping in cotton. Acta Scientiarum. Agronomy, 33(1). https://doi.org/10.4025/actasciagron.v33i1.9839Brito, G. G., Suassuna, N. D., Silva, V. N., Sofiatti, V., Diola, V. and Morello, C. L. (2014). Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions. Acta Scientiarum Agronomy, 36(3), 335–345. https://doi.org/10.4025/actasciagron.v36i3.17986Burbano, O., Montes-Mercado, K. S., Pastrana-Vargas, I. J. and Cadena-Torres, J. (2017). Introducción y desarrollo de variedades de algodón Upland en el sistema productivo colombiano: Una revisión. Ciencia y Agricultura, 15(1), 29–44. https://doi.org/10.19053/01228420.v15.n1.2018.7754Calle, K. and Proaño, J. (2006). Determinación de la curva de retención de humedad para los principales tipos de suelo de la península de Santa Helena, provincia del Guayas. In X Congreso ecuatoriano de la ciencia del suelo (pp. 1–25). Guayaquil.Campbell, G. S., and Norman, J. M. (1998). Wind. In An Introduction to Environmental Biophysics (pp. 63–75). https://doi.org/10.1007/978-1-4612-1626-1_5Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T. and Kangasjärvi, J. (2016). ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 203, 69–83. https://doi.org/10.1016/j.jplph.2016.06.008Castro, F., Contreras, D., Tamayo, L. and Trujillo, L. (2013). Análisis de la competitividad de la cadena algodón, fibras, textiles y confecciones 1. Fedesarrollo. Retrieved from http://www.fedesarrollo.org.co/wp-content/uploads/2011/08/Analisis-de-la-competitividad-de-la-cadena-algodon-Informe-Final-Conalgodon-_paginaweb.pdfChastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C. D., Whitaker, J., Grey, T.L., Sorensen, R.B., Van lersen, M., Byrd, S.A. and Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18–28. https://doi.org/10.1016/j.jplph.2016.05.003Chaves, M. M., and Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384. https://doi.org/10.1093/jxb/erh269Chen, D., Ye, G., Yang, C., Chen, Y., and Wu, Y. (2005). The effect of high temperature on the insecticidal properties of Bt Cotton. Environmental and Experimental Botany, 53(3), 333–342. https://doi.org/https://doi.org/10.1016/j.envexpbot.2004.04.004Chen, J. M. and Black, T. A. (1992). Defining leaf area index for non‐flat leaves. Plant, Cell & Environment, 15(4), 421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.xChool Boo, Y., and Jung, J. (1999). Water Deficit — Induced Oxidative Stress and Antioxidative Defenses in Rice Plants. Journal of Plant Physiology, 155(2), 255–261. https://doi.org/10.1016/S0176-1617(99)80016-9Conalgodon. (2019). Estadisticas algodoneras. Retrieved November 22, 2019, from http://conalgodon.com/estadisticas/Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536Dar, N. A., Amin, I., Wani, W., Wani, S. A., Shikari, A. B., Wani, S. H., and Masoodi, K. Z. (2017). Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene, 11, 106–111. https://doi.org/10.1016/j.plgene.2017.07.003De Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P. and Williams, M. (2011). An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 115, 767–780. https://doi.org/10.1016/j.rse.2010.11.004Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017Ehleringer, J. (1980). Leaf morphology and reflectance in relation to water and temperature stress. In Adaptation of Plants to Water and High Temperature Stress (1st ed.). New York: John Wiley and Sons, Inc.El-Hashash, E. F. and Agwa, A. M. (2018). Genetic Parameters and Stress Tolerance Index for Quantitative Traits in Barley under Different Drought Stress Severities. Asian Journal of Research in Crop Science, 1(1), 1–16. https://doi.org/10.9734/ajrcs/2018/38702Ennahli, S., and Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374–2382. https://doi.org/10.2135/cropsci2005.0147Fageria, N. K., Baligar, V. C. and Jones, C. A. (2011). Growth and mineral nutrition of field crops. Books in soils, plants, and the environment. Retrieved from http://files/12941/Fageria et al - Growth and mineral nutrition of field crops - 2011.pdfFang, Y., and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, Vol. 72, pp. 673–689. https://doi.org/10.1007/s00018-014-1767-0FAO. (2017). FAOSTAT. Retrieved from Food and Agriculture Organization of the United Nations website: http://www.fao.org/faostat/en/#homeFarquhar, G. D., O’Leary, M. H. and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121–137. https://doi.org/10.1071/PP9820121Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetable and Other Food Crops in Temperature and Water Stress (pp. 257–270).Galmés, J., Medrano, H., and Flexas, J. (2007). Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environmental and Experimental Botany, 60(1), 105–111. https://doi.org/10.1016/j.envexpbot.2006.08.001Geladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185(C), 1–17. https://doi.org/10.1016/0003-2670(86)80028-9Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058Gómez, S., Torres, V., García, Y. and Navarro, J. (2012). Procedimientos estadísticos más utilizados en el análisis de medidas repetidas en el tiempo en el sector agropecuario. Revista Cubana de Ciencia Agrícola, 46(1), 1–7.Gonzáles, W. L., Negritto, M. A., Suárez, L. H., and Gianoli, E. (2008). Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 33(1), 128–132. https://doi.org/10.1016/j.actao.2007.10.004Head, G., and Dennehy, T. (2010). Insect resistance management for transgenic Bt cotton. In U. B. Zehr (Ed.), Cotton (Vol. 65, pp. 113–125). https://doi.org/10.1007/978-3-642-04796-1_7Hennouni, N., Djebar, M. R., Rouabhi, R., Youbi, M. and Berrebbah, H. (2008). Effects of Artea, a systemic fungicide, on the antioxidant system and the respiratory activity of durum wheat (Triticum durum L.). African Journal of Biotechnology, 7(5), 591–594.Hornbeck, J. M., and Bourland, F. M. (2007). Visual Ratings and Relationships of Trichomes on Bracts, Leaves, and Stems of Upland Cotton. The Journal of Cotton Science, 11, 252–258.Hsiao, T. C. and Acevedo, E. (1974). Plant responses to water deficits, water-use efficiency, and drought resistance. Agricultural Meteorology, 14(1–2), 59–84. https://doi.org/https://doi.org/10.1016/0002-1571(74)90011-9Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Marjorie, P., Bouteillé, M., Stitt, M., Gibon, Y., Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357–372. https://doi.org/10.1104/pp.110.157008Huttunen, P., Kärkkäinen, K., Løe, G., Rautio, P., and Agren, J. (2010). Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Annales Botanici Fennici, 47(3), 199–207. https://doi.org/10.5735/085.047.0304IDEAM. (2009). Los fenómenos el niño/niña. Retrieved from http://www.ideam.gov.coIndahl, U. (2005). A twist to partial least squares regression. Journal of Chemometrics, 19(1), 32–44. https://doi.org/10.1002/cem.904IPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. In Cambio Climático 2014: Informe de síntesis. https://doi.org/10.1016/S1353-8020(09)70300-1Jarma, A., Cardona, C., and Araméndiz, H. (2012). Efecto del cambio climático sobre la fisiología de las plantas cultivadas: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 15(1), 63–76.Jia, H., Wang, C., Wang, F., Liu, S., Li, G., and Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0120646Kale, S., Sönmez, B., Madenoğlu, S., Avağ, K., Türker, U., Çayci, G. and Kütük, A. C. (2017). Effect of irrigation regimes on carbon isotope discrimination, yield and irrigation water productivity of wheat. Turkish Journal of Agriculture and Forestry, 41, 50–58. https://doi.org/10.3906/tar-1604-47Kennedy, C. W., Ba, M. T., Caldwell, A. G., Hutchinson, R. L. and Jones, J. E. (1987). Differences in root and shoot growth and soil moisture extraction between cotton cultivars in an acid subsoil. Plant and Soil, 101(2), 241–246. https://doi.org/10.1007/BF02370651Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R. and Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1), 1–17. https://doi.org/10.1186/s40659-018-0198-zKirkham, M. B. (2005). Stomata and measurement of stomatal resistance. In M. B. Kirkham (Ed.), Principles of Soil and Plant Water Relations (pp. 379–401). https://doi.org/https://doi.org/10.1016/B978-012409751-3/50022-0Koleva, M., and Dimitrova, V. (2018). Evaluation of Drought Tolerance in New Cotton Cultivars Using Stress Tolerance Indices. AGROFOR International Journal, 3(1), 11–17. https://doi.org/10.7251/agreng1801011kKooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012Kuai, J., Zhou, Z., Wang, Y., Meng, Y., Chen, B. and Zhao, W. (2015). The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. European Journal of Agronomy, 67, 61–74. https://doi.org/10.1016/j.eja.2015.03.005Lawlor, D. W.,and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.xLeidi, E O, Lopez, M, Gorham, J. and Gutie, J. C. (1999). Variation in carbon isotope discrimination and other traits related to drought tolerance in upland cotton cultivars under dryland conditions. Field Crops Research, 61, 109–123. https://doi.org/10.1016/S0378-4290(98)00151-8Levi, A., Ovnat, L., Paterson, A. H. and Saranga, Y. (2009). Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Science, 177(2), 88–96. https://doi.org/10.1016/j.plantsci.2009.04.001Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1Liu, F., Jensen, C. R. and Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13. https://doi.org/10.1016/S0378-4290(03)00165-5Liu, Z., Zhang, P., Wang, R., Kuai, J., Li, L., Wang, Y. and Zhou, Z. (2014). Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll. The journal of applied ecology, 25(12), 3533–3539.Loka, D. and Oosterhuis, D. M. (2012). Water Stress and Reproductive Development in Cotton. In D. M. Oosterhuis & J. T. Cothren (Eds.), Floweting and Fruiting in Cotton (pp. 51–58). Cordova, Tennessee.Longenberger, P. S., Smith, C. W., Duke, S. E. and Mc Michael, B. L. (2009). Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica, 166(1), 25–33. https://doi.org/10.1007/s10681-008-9820-4Lopez, F. B., Chauhan, Y. S. and Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeonpea. Journal of Agronomy and Crop Science, 178(1), 1–7. https://doi.org/10.1111/j.1439-037X.1997.tb00344.xLudlow, M. (1989). Strategies of Response to Water Stress. In T. Kreeeb, K.H., Richter, H. and Hinckley (Ed.), Structural and Functional Responses to Environmental Stresses. The Hague.Lugojan, C. and Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173–177.Luo, H. H., Zhang, Y. L. and Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54(1), 65–73. https://doi.org/10.1007/s11099-015-0165-7Madhava Rao, K. V. (2006). Introduction. In K. V. Madhava Rao, A. S. Raghavendra, and K. Janardhan Reddy (Eds.), Physiology and Molecular Biology of Stress Tolerance in plants (pp. 1–14). https://doi.org/10.1007/1-4020-4225-6Maiti, R. K., Pawar, R. V, Misra, S. K., Rajkumar, D., Ramaswamy, A., and Vidyasagar, P. (2011). Comparative anatomy of cotton and its applications. International Journal of Bio-resource and Stress Management, 2(21), 257–262.Malik, R. S., Dhankar, J. S., and Turner, N. C. (1979). Influence of soil water deficits on root growth of cotton seedlings. Plant and Soil, 115, 109–115.Massacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., Chernikova, T. N., Thor, K., and Leipner, J. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 46(2), 189–195. https://doi.org/10.1016/j.plaphy.2007.10.006Melgarejo, L. M., Romero, M., Hernández, S., Barrera, Jaime, S. M. E., Suárez, D. and Pérez, W. (2010). Experimentos en fisiología vegetal, Laboratorio de físiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia. Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1. Retrieved from http://ciencias.bogota.unal.edu.co/fileadmin/content/laboratorios/fisiologiavegetal/documentos/Libro_experimentos_en_fisiologia_y_bioquimica_vegetal__Reparado_.pdfMoreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Agronomía Colombiana, 27(2), 179–191.Murillo Solano, J. (2001). Requerimientos hídricos y efectos del agua sobre el rendimiento del algodonero. Memorias Del Foro Tecnológico Estrategias de Organización, Comercialización y Tecnológicas Para Mejorar La Competitividad Del Sistema de Producción Del Algodón En El César y Guajira.Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C. and Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/https://doi.org/10.1016/j.jplph.2018.03.001Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(March), 1–8. https://doi.org/10.3389/fpls.2014.00086Pandey, S., and Nagar, P. K. (2002). Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biologia Plantarum, 45(2), 291–294. https://doi.org/10.1023/A:1015165210967Pandey, V., and Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/j.rsci.2015.04.001Papathanasiou, F., Dordas, C., Gekas, F., Pankou, C., Ninou, E., Mylonas, I., Tsantarmas, K., Sistanis, I., Sinapidou, E., Lithourgidis, A., Petrevska, J., Katarzyna, Papadopoulos, I., Zouliamis, P., Kargiotidou, A. and Tokatlidis, I. (2015). The Use of Stress Tolerance Indices for the Selection of Tolerant Inbred Lines and their Correspondent Hybrids under Normal and Water-stress Conditions. Procedia Environmental Sciences, 29, 274–275. https://doi.org/10.1016/J.PROENV.2015.07.279Parida, A. K., Dagaonkar, V. S. and Aurangabadkar, M. S. P. L. P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery, Acta Physiologiae Plantarum, 30, 619–627. https://doi.org/10.1007/s11738-008-0157-3Parida, A. K., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V. and Aurangabadkar, L. P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1(1), 37–48. https://doi.org/10.1007/s11816-006-0004-1Parida, A. K., Das, A. B. and Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, 18, 167–174. https://doi.org/10.1007/s00468-003-0293-8Parimala, P., and Muthuchelian, K. (2010). Physiological response of non-Bt and Bt cotton to short-term drought stress. Photosynthetica, 48(4), 630–634. https://doi.org/10.1007/s11099-010-0081-9Patil, B. C., Babu, A. G. and Pawar, K. N. (2013). Assessment of Genotypic Variability for Growth, Biophysical Parameters, Yield and Yield-Attributing Characters Under Drought Stress in Cotton. In A. Sabu & A. Augustine (Eds.), Prospects in Bioscience: Addressing the Issues (pp. 103–110). https://doi.org/10.1007/978-81-322-0810-5Pettigrew, W. T. (2004). Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4), 1265–1272. https://doi.org/10.2135/cropsci2004.1265Pettigrew, W. T. (2004b). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96, 377–383. https://doi.org/10.2134/agronj2004.3770Pettigrew, W. T. and Gerik, T. J. (2007). Cotton Leaf Photosynthesis and Carbon Metabolism. Advances in Agronomy, 94(06), 209–236. https://doi.org/10.1016/S0065-2113(06)94005-XQuevedo Amaya, Y. M., Beltrán Medina, J. I. and Barragán Quijano, E. (2019). Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Revista Facultad Nacional de Agronomía Medellín, 72(1), 8699–8706. https://doi.org/10.15446/rfnam.v72n1.72076Raines, C. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology, 115(1), 36–42. https://doi.org/10.1104/pp.110.168559Raja, V., Majeed, U., Kang, H., Andrabi, K. I. and John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/j.envexpbot.2017.02.010Rich, S. M. and Watt, M. (2013). Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 64, 1193–1208. https://doi.org/10.1093/jxb/ert043Rodríguez P, L., Ñústez L, C. E., and Moreno F, L. P. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901Rodriguez, E. (1984). Biology and Chemistry of Plant Trichomes (1st ed.). Springer US.Rojas Palacio, H. (1989). Requerimientos de agua en el cultivo del algodonero. Foro Tecnologico Del Algodonero En Valledupar (Colombia), 59–89.Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P. and Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2014.09.006Rosenow, D. T., Quisenberry, J. E., Wendt, C. W. and Clark, L. E. (1983). Drought tolerant sorghum and cotton germplasm. Agricultural Water Management, 7(1–3), 207–222. https://doi.org/10.1016/0378-3774(83)90084-7Rosielle, A. A., and Hamblin, J. (1981). Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943–946. https://doi.org/doi:10.2135/cropsci1981.0011183X002100060033xRuiz, M. C., Domingo, R., Save, R., Biel, C. and Torrecillas, A. (1997). Effects of water stress and rewatering on leaf water relations of lemon plants. Biologia Plantarum, 39(4), 623–631. https://doi.org/10.1023/A:1000943218256Sahito, A., Baloch, Z. A., Mahar, A., Otho, S. A., Kalhoro, S. A., Ali, A., Kalhoro, F., Soomro, R. and Ali, F. (2015). Effect of Water Stress on the Growth and Yield of Cotton Crop (Gossypium hirsutum L.). American Journal of Plant Sciences, 6(7), 1027–1039. https://doi.org/10.4236/ajps.2015.67108Saleem, M. F., Raza, M. A. S., Ahmad, S., Khan, I. H., and Shahid, A. M. (2016). Understanding and mitigating the impacts of drought stress in cotton- A review. Pakistan Journal of Agricultural Sciences, 53(3), 609–623. https://doi.org/10.21162/PAKJAS/16.3341Santos, I. C. dos, Almeida, A.-A. F. de, Anhert, D., Conceição, A. S. da, Pirovani, C. P., Pires, J. L., Valle, R. and Baligar, V. C. (2014). Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit. PLoS ONE, 9(12), e115746. https://doi.org/10.1371/journal.pone.0115746Saranga, Y., Paterson, A. H., and Levi, A. (2009). Bridging Classical and Molecular Genetics of Abiotic Stress Resistance in Cotton. In A. H. Paterson (Ed.), Genetics and Genomics of Cotton (pp. 337–352). https://doi.org/10.1007/978-0-387-70810-2_14Saranga, Y., Rudich, J. and Marani, A. (1991). The relations between leaf water potential of cotton plants and environmental and plant factors. Field Crops Research, 28(1–2), 39–46. https://doi.org/10.1016/0378-4290(91)90072-4Saranga, Yehoshua, Flash, I., Paterson, A. H. and Yakir, D. (1999). Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Science, 142(1), 47–56. https://doi.org/10.1016/S0168-9452(99)00004-7Schneider, K. A., Rosales, R., Ibarra, F., Cazares, B., Acosta, J. A., Ramirez, P., Wassimi, N, Kelly, J. D. (1997). Improving common bean performance under drought stress. Crop Science, 37(1), 43–50. https://doi.org/10.2135/cropsci1997.0011183X003700010007xSekmen, A. H., Ozgur, R., Uzilday, B. and Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99, 141–149. https://doi.org/10.1016/j.envexpbot.2013.11.010Shao, H.B., Chu, L.Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R. and Shao, M.-A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29(2), 131–151. https://doi.org/10.1080/07388550902869792Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., and Nguyen, H. T. (2004). Root growth maintenance during water deficits: Physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343–2351. https://doi.org/10.1093/jxb/erh276Showler, A., and Moran, P. J. (2003). Effects of drought stressed cotton, Gossypium hirsutum L., on beet armyworm, Spodoptera exigua (Hubner), oviposition, and larval feeding preferences and growth. Journal of Chemical Ecology, 29(9), 1997–2011. https://doi.org/10.1023/A:1025626200254Siembra. (n.d.). Demandas de investigación de la cadena algodón-textil-confecciones. Retrieved October 15, 2017, from http://www.siembra.gov.co/siembra/Agenda.aspxSignorelli, S., Coitiño, E. L., Borsani, O. and Monza, J. (2014). Molecular mechanisms for the reaction between ˙OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118(1), 37–47. https://doi.org/10.1021/jp407773uSingh, C., Kumar, V., Prasad, I., Patil, V. R. and Rajkumar, B. K. (2016). Response of upland cotton (G.hirsutum L.) genotypes to drought stress using drought tolerance indices. Journal of Crop Science and Biotechnology, 19(1), 53–59. https://doi.org/10.1007/s12892-015-0073-1Singh, R., Pandey, N., Kumar, A. and Shirke, P. A. (2016a). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-ySingh, R., Pandey, N., Kumar, A., and Shirke, P. A. (2016b). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-ySisó, S., Camarero, J., and Gil-Pelegrín, E. (2001). Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees - Structure and Function, 15(6), 341–345. https://doi.org/10.1007/s004680100110Snider, J. L. and Oosterhuis, D. M. (2015). Physiology. In S. ASA, CSSA (Ed.), Cotton (2nd ed., Vol. 1, pp. 339–400). Madison, WI. https://doi.org/10.2134/agronmonogr57.2013.0044Stevens, G., Rhine, M., Straatmann, Z. and Dunn, D. (2016). Measuring Soil and Tissue Potassium with a Portable Ion-Specific Electrode in Cotton. Communications in Soil Science and Plant Analysis, 47(18), 2148–2155. https://doi.org/10.1080/00103624.2016.1228944Strauss, A. J., Krüger, G., Strasser, R. J., and Heerden, P. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/j.envexpbot.2005.01.011Su, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B. and Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2017.07.017Tamás, L., Mistrík, I. and Zelinová, V. (2017). Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environmental and Experimental Botany, 140, 34–40. https://doi.org/10.1016/j.envexpbot.2017.05.016Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067Tuteja, N., Sahoo, R. K., Huda, K. M. K., Tula, S. and Tuteja, R. (2015). OsBAT1 Augments Salinity Stress Tolerance by Enhancing Detoxification of ROS and Expression of Stress-Responsive Genes in Transgenic Rice. Plant Molecular Biology Reporter, 33(5), 1192–1209. https://doi.org/10.1007/s11105-014-0827-9Uarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M. and Nerling, D. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. In D. K. Gupta, J. M. Palma and F. J. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher Plants (1st ed., pp. 207–232). Springer International Publishing. https://doi.org/10.1007/978-3-319-75088-0Ullah, A., Sun, H., Yang, X. and Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688USDA-ERS. (2017). Cotton and Wool Outlook. Retrieved November 22, 2019, from https://www.ers.usda.gov/publications/pub-details/?pubid=84691Wang, R., Gao, M., Ji, S., Wang, S., Meng, Y. and Zhou, Z. (2016b). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137–146. https://doi.org/10.1016/j.plaphy.2016.05.035Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B. and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477Wang, X., Mohamed, I., Xia, Y. and Chen, F. (2014). Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. Journal of Soil Science and Plant Nutrition, 14(2), 833–844. https://doi.org/10.4067/s0718-95162014005000066Wang, Y. S., Ding, M. Di, Pang, Y., Gu, X. G., Gao, L. P. and Xia, T. (2013). Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. American Journal of Biochemistry and Biotechnology, 9(3), 235–242. https://doi.org/10.3844/ajbbsp.2013.235.242Wani, S. H., Dutta, T., Neelapu, N. R. R., and Surekha, C. (2017). Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 11, 219–231. https://doi.org/10.1016/j.plgene.2017.05.006Werker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35. https://doi.org/10.1016/S0065-2296(00)31005-9Wilhite, D. A., Sivakumar, M. V. K. and Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002Yakir, D., Deniro, M. J. and Ephrath, J. E. (1990). Effects of water stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environment, 13(9), 949–955.Yang, H., Zhang, D., Li, X., Li, H., Zhang, D., Lan, H., Wood, A. and Wang, J. (2016). Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding, 36(3), 1–13. https://doi.org/10.1007/s11032-015-0422-2Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S. and Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/j.jplph.2016.01.016Zahoor, R., Zhao, W., Dong, H., Snider, J. L., Abid, M., Iqbal, B., and Zhou, Z. (2017). Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 119, 21–32. https://doi.org/10.1016/j.plaphy.2017.08.011Zangi, M. R. (2005). Correlation Between Drought Resistance Indices and Cotton Yield in Stress and Non Stress Conditions. Asian Journal of Plant Sciences, 4(2), 106–108. https://doi.org/10.3923/ajps.2005.106.108Zhang, C. zhi, Zhang, J. bao, Zhao, B. zi, Zhang, H. and Huang, P. (2009). Stable Isotope Studies of Crop Carbon and Water Relations: A Review. Agricultural Sciences in China, 8(5), 578–590. https://doi.org/10.1016/S1671-2927(08)60249-7Zhang, C., Zhan, D. X., Luo, H. H., Zhang, Y. L., and Zhang, W. F. (2016). Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica, 54(1), 12–18. https://doi.org/10.1007/s11099-015-0139-9Zhang, F., Li, S., Yang, S., Wang, L. and Guo, W. (2015). Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Molecular Biology, 87(1–2), 47–67. https://doi.org/10.1007/s11103-014-0260-3Zhao, C. Y., Yan, Y. Y., Yimamu, Y., Li, J. Y., Zhao, Z. M. and Wu, L. S. (2010). Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. Journal of Arid Land, 2(4), 243–249. https://doi.org/10.3724/SP.J.1227.2010.00243Zlatev, Z. S. (2013). Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food and Agriculture, 25(12), 1014–1023. https://doi.org/10.9755/ejfa.v25i12.16734ORIGINAL1110520425.2020.pdf1110520425.2020.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2871891https://repositorio.unal.edu.co/bitstream/unal/77580/2/1110520425.2020.pdfdefde4253030f92bdb1cd6c5643fc28fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77580/3/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77580/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54THUMBNAIL1110520425.2020.pdf.jpg1110520425.2020.pdf.jpgGenerated Thumbnailimage/jpeg6607https://repositorio.unal.edu.co/bitstream/unal/77580/5/1110520425.2020.pdf.jpg4c40f5ce3b0803eb6041f74bd9ed4edeMD55unal/77580oai:repositorio.unal.edu.co:unal/775802024-07-23 23:34:50.291Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |